Mémento de géométrie. Cycle 3. J appartiens à : Ecole de Saint Jean le Vieux

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Mémento de géométrie. Cycle 3. J appartiens à : Ecole de Saint Jean le Vieux"

Transcription

1 Mémento de géométrie ycle 3 J appartiens à : Ecole de Saint Jean le Vieu Mars 2015

2 Sommaire 1. Point, droite et segment 2 2. roites perpendiculaires 3 3. roites parallèles 4 4. Les polygones 5 5. Le parallélogramme 6 6. Le rectangle 7 7. Le losange 8 8. Le carré 9 9. Les triangles Le cercle

3 Une droite est un ensemble infini de points alignés. Un point est représenté par une croi et on le nomme avec une lettre majuscule. Une droite est un ensemble infini de points alignés. On la nomme avec une lettre minuscule ou deu lettres majuscules entre parenthèses. Les points, et sont alignés. est la droite () ou () ou (). est aussi la droite (d). Un segment est une partie de droite limitée par deu points. On le nomme avec deu lettres majuscules entre crochets, ce sont les deu etrémités du segment. est le segment [] de la droite (d). est le segment []. La longueur du segment se nomme avec deu lettres majuscules sans crochet. Le segment [] mesure 5 cm se note : = 5 cm. Le milieu d un segment est le point qui le partage en deu segments de même longueur. M est le milieu du segment []. Les segments [M] et [M] ont la même longueur : M = M. M (d) (d)

4 eu droites sécantes sont deu droites qui se coupent en un point. (d 1 ) Les droites (d1) et (d2) sont sécantes en. Le point est le point d intersection des droites (d1) et (d2). (d 2 ) eu droites sont perpendiculaires si elles se coupent en formant un angle droit (angle de 90 ). (d 1 ) (d 2 ) Les droites (d1) et (d2) sont perpendiculaires. La droite (d1) est perpendiculaire à la droite (d2) : (d1) (d2). Pour le vérifier, on utilise une équerre. (d 4 ) (d 5 ) (d 3 ) Les droites (d3) et (d4) sont perpendiculaires. Les droites (d3) et (d4) ne sont pas perpendiculaires

5 eu droites sont parallèles si elles n ont aucun point en commun : l écartement entre les deu droites est constant et elles ne se coupent jamais. (d 1 ) (d 2 ) Les droites (d1) et (d2) sont parallèles. La droite (d1) est parallèle à la droite (d2) : (d1) (d2). Pour le vérifier, on peut : 1) mesurer l écart entre les deu droites au moins à deu endroits. (d 1 ) 1 cm 1 cm (d 2 ) 2) vérifier avec l équerre que les deu droites sont perpendiculaires à une même droite. (d 1 ) (d 2 ) - 4 -

6 Un polygone est une figure plane délimitée par une ligne brisée fermée. Tous les côtés d un polygone sont des segments de droite. es figures sont des polygones. es figures ne sont pas des polygones. Vocabulaire ôté, sommet et angle : côté E angle sommet Le polygone E a 5 côtés : [], [], [], [E] et [E] ; 5 sommets :,,, et E et 5 angles. Les différents polygones : le nom du polygone est défini en fonction du nombre de côtés qu il possède. 3 côtés : triangle 4 côtés : quadrilatère 5 côtés : pentagone 6 côtés : heagone 8 côtés : octogone 10 côtés : décagone - 5 -

7 Un parallélogramme est un quadrilatère dont les côtés opposés sont parallèles et de même longueur. Le côté [] est parallèle au côté [] et de même longueur : [] [] et =. Le côté [] est parallèle au côté [] et de même longueur : [] [] et =. On appelle diagonale le segment qui relie deu sommets non consécutifs. Les segments [] et [] sont les diagonales du parallélogramme. ans un parallèlogramme, les deu diagonales se croisent en leur milieu. M Le point M est le milieu de la diagonale [] et de la diagonale []. Les segments [M] et [M] ont la même longueur : M=M. Les segments [M] et [M] ont la même longueur : M=M

8 Les définition suivantes sont équivalentes. Un rectangle est un polygone qui possède 4 côtés et dont les angles sont droits. Un rectangle est un quadrilatère qui possède 4 angles droits. Un rectangle est un parallélogramme dont les diagonales ont la même longueur. M Les propriétés du rectangle sont : Les côtés opposés sont parallèles et de même longueur : [] [] et [] [] = et = eu côtés consécutifs sont perpendiculaires : [] [] [] [] [] [] [] [] Les diagonales se coupent en leur milieu et sont de même longueur : M est le milieu des diagonales [] et [] du rectangle. =. M=M=M=M

9 Les définition suivantes sont équivalentes. Un losange est un polygone qui a 4 côtés de même longueur. Un losange est un quadrilatère dont les côtés sont de même longueur. Un losange est un parallélogramme dont les diagonales sont perpendiculaires. M Les propriétés du losange sont : Les côtés opposés sont parallèles : [] [] et [] [] Les côtés sont de même longueur : === Les diagonales se coupent en leur milieu et sont perpendiculaires : M est le milieu des diagonales [] et [] du losange. M=M M=M. [] [] Les angles opposés sont égau : L angle est égale à l angle, L angle est égale à l angle

10 Les définition suivantes sont équivalentes. Un carré est un polygone qui a 4 côtés de même longueur et dont les angles sont droits. Un carré est un quadrilatère dont les côtés sont de même longueur et dont les angles sont droits. Un carré est un rectangle dont les côtés sont de même longueur. Un carré est un losange dont les angles sont droits. M Les propriétés du carré sont : Les côtés opposés sont parallèles : [] [] et [] [] Les 4 côtés sont de même longueur : === eu côtés consécutifs sont perpendiculaires : [] [] [] [] [] [] [] [] Les diagonales se coupent en leur milieu, sont de même longueur et sont perpendiculaires : = M=M=M=M. [] [] - 9 -

11 Un triangle est un polygone qui a 3 côtés. La somme des angles d un triangle est égale à 2 angles droits ou à 180. La hauteur d un triangle est le segment qui part d un sommet et est perpendiculaire au côté opposé à ce sommet. angle + angle + angle =180. H 3 Les segments [H1], [H2] et [H3] sont les H 2 hauteurs du triangle. H1 [H1] [] [H2] [] [H3] [] Il eiste plusieurs sortes de triangles. Le triangle rectangle a un angle droit. E [F] [FE] angle F =90 =angle + angle E F Le triangle isocèle a 2 côtés de même longueur. H [HM] est la hauteur passant par H et M est le milieu de [GI]. I Les côtés [GH] et [HI] ont la même M longueur : GH =HI G Le triangle équilatérale a ses 3 côtés de même longueur. K Tous les côtés ont la même longueur : JK =KL=JL Les trois angles sont égau à 60. J L

12 Un cercle est une ligne courbe fermée dont tous les points sont situés à égale distance d un point fie appelé centre. Le diamètre d un cercle est le segment qui relie deu points du cercle en passant par le centre. Le rayon d un cercle est le segment qui relie n importe quel point du cercle au centre. O E Le point O est le centre du cercle (). Le segment [] est un diamètre du cercle (). Les segments [OE], [O] et [O] sont des rayons du cercle ()

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle.

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle. 1 / 6 I. Polygones : Un polygone est une figure fermée dont les côtés sont des segments. II. Triangles : 1) Un triangle est un polygone à trois côtés. Les segments [AC], [AB] et [BC] sont les trois côtés

Plus en détail

Géom1. Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé.

Géom1. Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé. Connaître le vocabulaire et le codage en géométrie Géom1 La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE.

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE. CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc pas

Plus en détail

Une droite ne s arrête jamais. On peut la prolonger à l infini.

Une droite ne s arrête jamais. On peut la prolonger à l infini. G 1 POINTS, LIGNES ET SEGMENTS Une ligne peut être droite ou courbe. Une droite ne s arrête jamais. On peut la prolonger à l infini. On la nomme par une lettre entre parenthèses. ( ) es points situés sur

Plus en détail

I. Les figures élémentaires :

I. Les figures élémentaires : I. Les figures élémentaires : A. Les triangles : Triangle isocèle Un triangle isocèle est un triangle qui a deux de ses côtés de. un triangle est isocèle les deux côtés issus du sommet principal ont. un

Plus en détail

Petit dictionnaire de géométrie plane

Petit dictionnaire de géométrie plane Petit dictionnaire de géométrie plane Le point 'est l'élément de base de la géométrie. eux droites qui se coupent définissent un point à leur intersection. xemple : Les droites (a) et (b) définissent le

Plus en détail

GÉOMÉTRIE. Ecole santa cruz M.Cohen

GÉOMÉTRIE. Ecole santa cruz M.Cohen GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

Le vocabulaire de géométrie

Le vocabulaire de géométrie Géom1 Le vocabulaire de géométrie En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire : Un point A A X Un segment [AB] (d) Une droite (d)

Plus en détail

Vocabulaire de la géométrie

Vocabulaire de la géométrie GEOM 1 Vocabulaire de la géométrie 1 Le point Le point est un endroit précis du plan. On le représente par une croix dont il est le centre et on le nomme avec une lettre majuscule. 2 Droite Trois points

Plus en détail

«LES QUADRILATÈRES» Fiche pédagogique élaborée par Lidia SARAT

«LES QUADRILATÈRES» Fiche pédagogique élaborée par Lidia SARAT «LES QUADRILATÈRES» Fiche pédagogique élaborée par Lidia SARAT 1. Définition : un quadrilatère est une figure géométrique qui a 4 côtés 2. Définition : un trapèze est un quadrilatère qui a deux côtés parallèles.

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Ex 1 : Vrai ou faux

Plus en détail

CHAPITRE 2 : LES PROPRITES DES FIGURES PLANES

CHAPITRE 2 : LES PROPRITES DES FIGURES PLANES CHAPITRE 2 : LES PROPRITES DES FIGURES PLANES 1. Le carré : le carré est un quadrilatère qui a les côtés égaux et les angles droits. es propriétés : a) Quatre côtés de même longueur ; b) Quatre angles

Plus en détail

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe :

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe : GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

Géom1. Connaitre le vocabulaire et les instruments géométriques

Géom1. Connaitre le vocabulaire et les instruments géométriques Connaitre le vocabulaire et les instruments géométriques Géom1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer,

Plus en détail

Attention! Pour être droit, l angle doit longer en même temps les deux plus petits côtés de ton équerre!

Attention! Pour être droit, l angle doit longer en même temps les deux plus petits côtés de ton équerre! Deux droites sont perpendiculaires si elles se coupent en formant un angle droit. On peut vérifier que deux droites sont perpendiculaires en utilisant une équerre. (d2) (d2) ttention! Pour être droit,

Plus en détail

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD].

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD]. GÉOMÉTRIE PLANE Langage géométrique : notations et vocabulaire. [ ] = segment [AB] = segment d extrémités A et B. AB = longueur du segment AB (ou parfois la distance de A à B). ( ) = droite (AB) = droite

Plus en détail

GEOMETRIE. Tableaux et quadrillages. Reproduire une figure. Droites perpendiculaires. Droites parallèles. Les quadrilatères

GEOMETRIE. Tableaux et quadrillages. Reproduire une figure. Droites perpendiculaires. Droites parallèles. Les quadrilatères GEOMETRIE GEOM. 1 Le vocabulaire GEOM. 2 Des instruments pour tracer, mesurer, vérifier GEOM. 3 Tableaux et quadrillages GEOM. 4 Reproduire une figure GEOM. 5 Les angles GEOM. 6 Droites perpendiculaires

Plus en détail

Table des matières DANS L ESPACE 24. N Leçon Niveau 1 Niveau 2 Niveau 3 Page

Table des matières DANS L ESPACE 24. N Leçon Niveau 1 Niveau 2 Niveau 3 Page Géométrie Table des matières N Leçon Niveau 1 Niveau 2 Niveau 3 Page DANS LE PLAN 3 Gé1 Les lignes X X X 4 Gé2 La droite X X X 5 Gé3 Les points alignés X X 5 Gé4 Le segment X X 6 Gé5 La demi-droite X X

Plus en détail

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés.

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. Th Trois longueurs étant données, Si la plus grande est

Plus en détail

Symétrie centrale: AB = A'B' Figures symétriques

Symétrie centrale: AB = A'B' Figures symétriques Symétrie centrale: Figures symétriques ide mémoire Géométrie 5 ème Le symétrique d'un segment par rapport à un point est un segment de même longueur. La symétrie centrale conserve les longueurs. ' = ''

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Chapitre 11 Géométrie 4. Figures usuelles

Chapitre 11 Géométrie 4. Figures usuelles I : Quelques éfinitions hapitre 11 Géométrie 4 Figures usuelles Nous avons vu au premier chapitre de géométrie la définition d'un segment. Voici donc quelques définitions supplémentaires: Ligne risée:

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GÉOMÉTRIE GEOM 0 Points, lignes, droites et segments GEOM 1 Tableaux et quadrillages GEOM 2 Reproduire une figure GEOM 3 ercle et compas

Plus en détail

Classeur de géométrie 4 ème

Classeur de géométrie 4 ème - 1 - lasseur de géométrie 4 ème Pour démontrer que. Un point est le milieu d un segment Un point est sur un cercle Un point est l image d un autre par es distances sont égales eux angles ont la même mesure

Plus en détail

Un point est toujours représenté par deux lignes qui se croisent. Il y a trois cas : Le point se situe ici

Un point est toujours représenté par deux lignes qui se croisent. Il y a trois cas : Le point se situe ici PREIERES NOTIONS DE GEOETRIE 1 POINT, DROITE, DEI-DROITE, SEGENT : a. Point : Un point est toujours représenté par deux lignes qui se croisent. Il y a trois cas : Le point se situe ici Un point n a pas

Plus en détail

Chapitre 11 : Symétrie axiale.

Chapitre 11 : Symétrie axiale. Chapitre 11 : Symétrie axiale. I Approche expérimentale. Définition : Deux figures sont symétriques par rapport à une droite si, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

Géométrie EUCLIDIENNE

Géométrie EUCLIDIENNE MPM1D - Module 4 Géométrie EUCLIDIENNE Fiches d observation de l élève Géométrie euclidienne - Activité d exploration avec le Cybergéomètre Nom : Date : Diagramme Mes observations et mes conclusions Leçon

Plus en détail

Les quadrilatères. 1 Polygones Définition Différentes sortes de polygones... 2

Les quadrilatères. 1 Polygones Définition Différentes sortes de polygones... 2 ERNIÈRE IMPRESSIN LE 27 juin 2016 à 10:06 Les quadrilatères Table des matières 1 Polygones 2 1.1 éfinition................................. 2 1.2 ifférentes sortes de polygones..................... 2 2

Plus en détail

GÉOMÉTRIE. Définition Méthode de tracé avec la règle et l'équerre GM.04 Tracer 2 droites parallèles

GÉOMÉTRIE. Définition Méthode de tracé avec la règle et l'équerre GM.04 Tracer 2 droites parallèles GÉOMÉTRIE GM.0 Objets et notations Le point La ligne et la droite Le segment Intersection GM.0 Les instruments de dessin La règle L'équerre Le compas Le calque Le gabarit GM.0 Tracer droites perpendiculaires

Plus en détail

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe :

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe : GÉOMÉTRIE GM.0 Objets et notations GM.0 Les instruments de dessin GM.0 Tracer droites perpendiculaires GM.0 Tracer droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés GM.08

Plus en détail

GEOMETRIE. Points, lignes, droites et segments Tableaux et quadrillages Reproduire une figure Cercle et compas Construire une figure géométrique

GEOMETRIE. Points, lignes, droites et segments Tableaux et quadrillages Reproduire une figure Cercle et compas Construire une figure géométrique SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GEOMETRIE GEOM 0 GEOM 1 GEOM 2 GEOM 3 GEOM 4 GEOM 5 GEOM 6 GEOM 7 GEOM 8 GEOM 9 GEOM 10 GEOM 11 GEOM 12 GEOM 13 Points, lignes, droites

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

Cours 6ème Chapitre VIII. La symétrie axiale. Définition 1 : Deux figures sont symétriques par rapport à une droite (d) lorsque par

Cours 6ème Chapitre VIII. La symétrie axiale. Définition 1 : Deux figures sont symétriques par rapport à une droite (d) lorsque par La symétrie axiale I. Figures symétriques Définition 1 : Deux figures sont symétriques par rapport à une droite (d) lorsque par pliage autour de la droite (d), elles se superposent. Ex : (d) (F 1 ) (F

Plus en détail

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB]

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB] EC 4A : ELEMENTS DE MATHEMATIQUES PARALLELISME, PERPENDICULARITE, FIGURES PLANES ELEMENTAIRES COURS Objectifs du chapitre : Reconnaître et construire les figures de base de la géométrie Caractériser, reconnaître

Plus en détail

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme CRPE Mise en route 1. Trouver l intrus. Justifier. 2. Voici des polygones convexes S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes 1 2 3 4 5 6 7 8 Lesquels sont : des quadrilatères?

Plus en détail

Géométrie Cycle 3. Aide-mémoire. J appartiens à : version 1.0. Sommaire. 1. Distinguer : point, droite, segment, demi-droite, alignement de points

Géométrie Cycle 3. Aide-mémoire. J appartiens à : version 1.0. Sommaire. 1. Distinguer : point, droite, segment, demi-droite, alignement de points ide-mémoire Géométrie Cycle 3 Sommaire 1. Distinguer : point, droite, segment, demi-droite, alignement de points 2. Mesurer et tracer des segments 3. Se repérer dans un quadrillage 4. Repérer les angles

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

Droites parallèles et perpendiculaires Groupe 3

Droites parallèles et perpendiculaires Groupe 3 Droites parallèles et perpendiculaires Groupe 3 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Trace la droite (d4) passant par A et parallèle à (d2). Trace la droite (d5)

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

Éléments de base de géométrie

Éléments de base de géométrie Chapitre 1 Éléments de base de géométrie Points et droites Pour représenter un point, on dessine une petite croix avec des traits ns. (Il ne faut pas faire quelque chose comme ça : parce que ce n'est pas

Plus en détail

6 ème COURS : droites perpendiculaires et droites parallèles.

6 ème COURS : droites perpendiculaires et droites parallèles. 1 Droites sécantes Définition : deux droites sécantes sont deux droites qui ont un seul point commun. Ce point commun est appelé point d intersection des deux droites. Les deux droites (d1) et (d2) se

Plus en détail

PARALLELES ET PERPENDICULAIRES

PARALLELES ET PERPENDICULAIRES PARALLELES ET PERPENDICULAIRES Je sais définir et construire deux droites perpendiculaires Je sais définir et construire deux droites parallèles Je comprends les propriétés permettant de démontrer que

Plus en détail

Corrigé fiche 1 géométrie

Corrigé fiche 1 géométrie orrigé fiche 1 géométrie 1. On trace la droite (). vec l équerre, on trace une perpendiculaire (µ) à () passant par. Puis une autre perpendiculaire à (µ) passant par. 2. onstruction : cf. cours. La médiatrice

Plus en détail

Géométrie transformation du plan.

Géométrie transformation du plan. Géométrie transformation du plan. I. Cercle 2 A. Définitions 2 B. Positions relatives d une droite et d un cercle 2 C. Positions relatives de deux cercles 2 II. 2 A. Construction à la règle et au compas

Plus en détail

Droites perpendiculaires et droites parallèles

Droites perpendiculaires et droites parallèles hapitre 6 ème Droites perpendiculaires et droites parallèles Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée. édiatrice. auteur d'un triangle. Triangle rectangle. Rectangle

Plus en détail

Géométrie. Quadrilatères, constructions et mesures

Géométrie. Quadrilatères, constructions et mesures Géométrie Quadrilatères, constructions et mesures 1. Quadrilatères et caractéristiques Un quadrilatère est une figure plane qui a quatre côtés, quatre angles et quatre sommets: Il existe différentes sortes

Plus en détail

Droite et segment B B A A. une droite. un segment. C est un trait qui passe par deux points et qui va à l infini. On ne peut pas mesurer une droite.

Droite et segment B B A A. une droite. un segment. C est un trait qui passe par deux points et qui va à l infini. On ne peut pas mesurer une droite. Droite et segment une droite un segment B B A A C est un trait qui passe par deux points et qui va à l infini. On ne peut pas mesurer une droite. C est la partie de la droite qui est délimitée par deux

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

Prop. Directe : Si un quadrilatère est un parallélogramme, alors il a ses côtés opposés parallèles.

Prop. Directe : Si un quadrilatère est un parallélogramme, alors il a ses côtés opposés parallèles. 5 ème hapitre G5 PRLLELOGRMMES 1 I) éfinition. f : Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles. On peut citer cette définition sous la forme de deux propriétés réciproques

Plus en détail

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d C3 Géométrie : droite, segment, milieu Leçon Géom1 CM1/2 La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

Plus en détail

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite 6 ème - 5 ème Géométrie de base Notation : On note un point à l aide d une croix pour indiquer le lieu et d une lettre MAJUSCULE à côté pour indiquer son nom Attention : Une MÊME lettre ne peut désigner

Plus en détail

RECTANGLE. I- Définition: Le quadrilatère ABCD a quatre angles droits. ABCD est un rectangle

RECTANGLE. I- Définition: Le quadrilatère ABCD a quatre angles droits. ABCD est un rectangle RECTANGLE I- Définition: Le quadrilatère ABCD a quatre angles droits ABCD est un rectangle Un rectangle est un quadrilatère ayant quatre angles droits II- Remarque: Si ABCD un rectangle, alors (AB) est

Plus en détail

Déclic Correction Construire-02. Déclic Correction Construire Réponds aux questions suivantes en écrivant des phrases

Déclic Correction Construire-02. Déclic Correction Construire Réponds aux questions suivantes en écrivant des phrases éclic orrection onstruire-01 1. Trace un carré de 8 cm de cöté. Nomme chacun des sommets de ce carré. 2. Trace les diagonales [] et [] du carré. 3. Le point est le point d'intersection de ces deux diagonales.

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

en effectuant un pliage le long de la droite, les figures se superposent. en effectuant un demi-tour autour de ce point, les figures se superposent.

en effectuant un pliage le long de la droite, les figures se superposent. en effectuant un demi-tour autour de ce point, les figures se superposent. 1 Symétrie par rapport à une droite JETIF 1 ÉFINITIN ire que deux figures sont symétriques par rapport à une droite signifie que, en effectuant un pliage le long de la droite, les figures se superposent.

Plus en détail

Clé de correction. en Mathématique. Section 5 : Les propriétés de diverses figures géométriques. Révision des préalables

Clé de correction. en Mathématique. Section 5 : Les propriétés de diverses figures géométriques. Révision des préalables Mathématique FBC Révision des préalables au cours MAT-2101 101-3 Révision des préalables en Mathématique MAT 2101 101-3 Modélisation algébrique Section 5 : Les propriétés de diverses figures géométriques

Plus en détail

MODULE G1 : VOCABULAIRE, CONSTRUCTIONS ET ELEMENTS DE BASE

MODULE G1 : VOCABULAIRE, CONSTRUCTIONS ET ELEMENTS DE BASE Théorie Géométrie MODULE G1 : VOCULIRE, CONSTRUCTIONS ET ELEMENTS DE SE 4 1. Elements de base 4. Droites parallèles, sécantes, perpendiculaires ; distances. 44 3. Les angles plans 45 4. Médiatrice et bissectrice

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE 1 Les instruments pour reproduire 2 Reproduire des figures planes 3 Les polygones 4 Les quadrilatères 5 Le carré et le rectangle 6 Les triangles 7 Construire des figures géométriques

Plus en détail

LE PÉRIMÈTRE DE FIGURES SIMPLES MATHÉMATIQUES

LE PÉRIMÈTRE DE FIGURES SIMPLES MATHÉMATIQUES LE PÉRIMÈTRE DE FIGURES SIMPLES MATHÉMATIQUES CAHIER D EXERCICES Les Services de la formation professionnelle et de l éducation des adultes FP9803 C201206 2 TABLE DES MATIÈRES 1 EXPLICATION 3 Page 1.1

Plus en détail

Géométrie. Polygones à plus de 4 côtés, polygones réguliers inscrits dans des cercles, constructions et mesures

Géométrie. Polygones à plus de 4 côtés, polygones réguliers inscrits dans des cercles, constructions et mesures Géométrie Polygones à plus de 4 côtés, polygones réguliers inscrits dans des cercles, constructions et mesures 1. Polygones Un polygone est une figure plane limitée uniquement par des segments, une figure

Plus en détail

LES BASES DE LA GEOMETRIE.

LES BASES DE LA GEOMETRIE. Chapitre 2 LES BASES DE LA GEOMETRIE. GEOMETRIE 1 ) Les triangles. Condition d existence: la somme de la mesure de deux côtés est toujours supérieure à la mesure du troisième côté. Exemples : le triangle

Plus en détail

Polygones réguliers. Corrigé

Polygones réguliers. Corrigé 1 ère partie 1. Dans le dossier «ch 7» ouvre le fichier «polygones reg1» de type GEOGEBRA (vous le trouverez dans poste de travail, sous «3b/commun» ou «3d/commun») 2. D après les codages, quelle est la

Plus en détail

ÉLÉMENTS DE GÉOMÉTRIE PLANE

ÉLÉMENTS DE GÉOMÉTRIE PLANE ÉLÉMENTS DE GÉOMÉTRIE PLANE I. DROITE ET SEGMENT 1. Généralités Il existe une droite et une seule passant par deux points A et B distincts donnés, on la note (AB). On peut dire que la droite passe par

Plus en détail

Étymologiquement, le mot «polygone» vient du grec «polus» qui signifie «nombreux», et «gônia» qui signifie «angle».

Étymologiquement, le mot «polygone» vient du grec «polus» qui signifie «nombreux», et «gônia» qui signifie «angle». 2 Quadrilatères Ce deuxième chapitre 4 de géométrie plane sera consacré à l étude des quadrilatères d un point de vue théorique et d un point de vue didactique, par l intermédiaire d extraits de manuels,

Plus en détail

Les parallélogrammes. Cinquième, chapitre n o 5

Les parallélogrammes. Cinquième, chapitre n o 5 Cinquième, chapitre n o 5 Les parallélogrammes Le parallélogramme est le quadrilatère fondammental : outre les propriétés de ses côtés et de ses diagonales, il est à l'origine de nombreuses démonstrations

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE DROITES REMARQUABLES D'UN TRIANGLE Hauteurs : On appelle hauteur d'un triangle une droite qui passe par un sommet du triangle et qui est perpendiculaire au coté opposé à ce sommet.

Plus en détail

Thème N 12: SYMETRIE AXIALE

Thème N 12: SYMETRIE AXIALE Thème N 12: SYMETRIE XILE la fin du thème, tu dois savoir : onstruire le symétrique d un point, d une droite, d un segment, d un cercle (que l axe de symétrie coupe ou non la figure). onstruire ou compléter

Plus en détail

Vers le PARALLÉLOGRAMME

Vers le PARALLÉLOGRAMME Vers le PRLLÉLOGRMME es quadrilatères ont des propriétés particulières. près avoir effectué les mesures nécessaires, trouve ces particularités après avoir effectué les mesures nécessaires et indique les

Plus en détail

Se repérer sur un quadrillage

Se repérer sur un quadrillage Se repérer sur un quadrillage Sur un quadrillage, on peut repérer grâce aux nœuds ou aux cases: Repérage de cases Repérage de nœuds Sur ce quadrillage, les colonnes sont repérées par des le8res et les

Plus en détail

On dit que deux droites sont perpendiculaires si elles se coupent en formant un angle droit.

On dit que deux droites sont perpendiculaires si elles se coupent en formant un angle droit. Géométrie Les droites perpendiculaires Gé11 n dit que deux droites sont perpendiculaires si elles se coupent en formant un angle droit. n peut vérifier que deux droites sont perpendiculaires en utilisant

Plus en détail

J'ai 4 angles droits et des côtés égaux deux à deux et parallèles. Mes diagonales se coupent. J'ai 4 côtés égaux, 4 angles droits, 4 côtés parallèles.

J'ai 4 angles droits et des côtés égaux deux à deux et parallèles. Mes diagonales se coupent. J'ai 4 côtés égaux, 4 angles droits, 4 côtés parallèles. J'ai 4 côtés égaux, 4 angles droits, 4 côtés parallèles. J'ai 4 angles droits et des côtés égaux deux à deux et parallèles. J'ai 4 côtés égaux et parallèles 2 à 2. Mes diagonales se coupent en leur milieu

Plus en détail

trois milliards deux cent quatre millions cinquante-trois mille huit

trois milliards deux cent quatre millions cinquante-trois mille huit RITHMÉTIQUE. LES NOMRES ENTIERS.. Ecrire les nombres en lettres... vec les mots suivants, on peut écrire et énoncer tous les nombres : zéro, un, deux, trois, quatre, cinq, six, sept, huit, neuf, dix, onze,

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

SYMÉTRIE AXIALE. Exercices conseillés En devoir Exercices conseillés En devoir p182 n 12, 13, 14. p182 n 15 p180 n 12, 15, 14

SYMÉTRIE AXIALE. Exercices conseillés En devoir Exercices conseillés En devoir p182 n 12, 13, 14. p182 n 15 p180 n 12, 15, 14 1 SYMÉTRIE AXIALE Du grec, syn «avec» et metron «mesure». «symmetria» désignait la juste mesure. I. Construire le symétrique d un point Construire le symétrique de A par rapport à la droite. A 1 2 M 1

Plus en détail

12 Outils. pour la géométrie. 1 Commentaires généraux

12 Outils. pour la géométrie. 1 Commentaires généraux 1 Outils pour la géométrie 1 ommentaires généraux e chapitre rassemble les résultats géométriques vus par les élèves dans les classes précédentes et utiles pour la classe de troisième. Selon l organisation

Plus en détail

(Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau)

(Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau) (Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau) Comment faire? Le PE marque sur un côté du tableau le programme de construction.

Plus en détail

12.2 Les solides L aire des prismes et des pyramides Le cylindre et l aire des solides décomposables Les mesures manquantes

12.2 Les solides L aire des prismes et des pyramides Le cylindre et l aire des solides décomposables Les mesures manquantes 12.2 Les solides 12.3 L aire des prismes et des pyramides 14.4 Le cylindre et l aire des solides décomposables 12.4 Les mesures manquantes Notes de cours Mathématiques 2 e secondaire Mars et avril 2016

Plus en détail

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE.

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE. Seconde chap Géométrie plane /6 GEOMETRIE PLNE. I. Repère et coordonnées. oordonnées. Si O, I et J sont trois points non alignés du plan, alors (O I J) est un repère du plan d origine O. Si (OI) et (OJ)

Plus en détail

SYMETRIE AXIALE. 1 ) symétrie axiale. a) symétrique d'un point

SYMETRIE AXIALE. 1 ) symétrie axiale. a) symétrique d'un point 1 ) symétrie axiale SYMETRIE AXIALE a) symétrique d'un point Définition : A' est le symétrique du point A par rapport à la droite (d) si (d) est la médiatrice du segment [AA'] (C'est à dire si la droite

Plus en détail

Les polygones. Objectif: Reconnaître, nommer, décrire et tracer des polygones en utilisant les instruments de géométrie. Dico-maths p.

Les polygones. Objectif: Reconnaître, nommer, décrire et tracer des polygones en utilisant les instruments de géométrie. Dico-maths p. Les polygones Objectif: Reconnaître, nommer, décrire et tracer des polygones en utilisant les instruments de géométrie. Dico-maths p.40 Comparaison et report de longueurs Objectif: Utiliser le compas pour

Plus en détail

Chapitre 10 - Notions de géométrie

Chapitre 10 - Notions de géométrie Chapitre 10 - Notions de géométrie Activité 1 Exercice 1 Exercice 2 x y a b c x // // S y // // S a // // S b // // S c S S S S // Exercice 3 MATHE 1 re année - Solutionnaire, http://maths.deboeck.com

Plus en détail

EXTRAITS DU B.O. SPECIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires

EXTRAITS DU B.O. SPECIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires XTRITS U.O. SPIL N 6 U 28 OÛT 2008 onnaissances apacités ommentaires 3. Géométrie Propriétés des quadrilatères usuels. onnaître les propriétés relatives aux côtés, aux angles, aux diagonales pour le rectangle,

Plus en détail

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D.

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. QUADRILATERES I Définition Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. Quatre côtés : les segments [AB], [BC], [CD] et

Plus en détail

LEÇONS MEMO CYCLE 3 GEOMETRIE

LEÇONS MEMO CYCLE 3 GEOMETRIE LEÇONS MEMO CYCLE 3 GEOMETRIE en rouge en bleu en vert leçons CE2 nouvelles leçons CM1 nouvelles leçons CM2 SOMMAIRE DE GEOMETRIE G/1 A Utilisation de la règle p. 3 G/1 B Instruments et vocabulaire géométrique

Plus en détail

, en déduire la nature du triangle ORS.

, en déduire la nature du triangle ORS. Groupe seconde chance Feuille d exercices n 6 Exercice On appelle triangles pythagoriciens les triangles rectangles dont les trois côtés ont pour mesure un nombre entier. Soit a, b, c les mesures des côtés

Plus en détail

GEOMETRIE ENTRAINEMENT TRANSFERT RECHERCHE NIVEAU

GEOMETRIE ENTRAINEMENT TRANSFERT RECHERCHE NIVEAU Fiche n 7 1 ompétences visées : Identifier des figures. Mets une croix rouge dans les carrés, une croix verte dans les triangles et une croix bleue dans les rectangles. Fiche n 6 2 ompétences visées :

Plus en détail

EVALUATION DIAGNOSTIQUE GEOMETRIE

EVALUATION DIAGNOSTIQUE GEOMETRIE GEOMETRIE Livret 7 EVALUATION DIAGNOSTIQUE GEOMETRIE DG1 : utiliser le vocabulaire de la géométrie DG2 : effectuer des conversions d unités, utiliser le vocabulaire de la géométrie, effectuer des mesures

Plus en détail

Chapitre 10 - La géométrie Définitions et Propriétés des Angles, Triangles, Droites, Cercles

Chapitre 10 - La géométrie Définitions et Propriétés des Angles, Triangles, Droites, Cercles Chapitre 10 - La géométrie Définitions et Propriétés des Angles, Triangles, Droites, Cercles En géométrie déductive, on n accepte pas une phrase comme vrai sans preuve d un fait, une règle, ou propriété

Plus en détail

Exercices de géométrie plane Corrigés des exercices Propriétés des figures planes

Exercices de géométrie plane Corrigés des exercices Propriétés des figures planes Préparation accélérée RPE Mathématiques Exercices de géométrie plane orrigés des exercices Propriétés des figures planes Exercice 1 VRI / FUX a. Il est possible de construire le premier triangle. Il est

Plus en détail

PUZZLE À 3 PIÈCES 1. DESCRIPTION 2. UTILISATIONS

PUZZLE À 3 PIÈCES 1. DESCRIPTION 2. UTILISATIONS 1 PUZZLE À 3 PIÈCES 1. DESCRIPTION Ce jeu est construit à partir du découpage d un carré en 3 pièces à l aide de deux segment (l un joignant le milieu d un côté à l un des deux sommets opposés, l autre

Plus en détail

Mathématiques niveau CFG

Mathématiques niveau CFG Mathématiques niveau CFG Chapitre 4 : Géométrie COURS 1 : LES DROITES En géométrie, pour tracer des figures, on utilise des points, des droites, des demi-droites et des segments. 1. Lignes courbes une

Plus en détail

6 ème cours : Introduction à la géométrie

6 ème cours : Introduction à la géométrie 1 Point, droite, segment et demi-droite. Par un point passe une infinité de droites. Placer un point A et tracer trois droites passant par le point A. Par deux points passe une seule droite. Placer deux

Plus en détail

Progression des apprentissages en mathématique : quelques précisions

Progression des apprentissages en mathématique : quelques précisions en mathématique : quelques précisions Géométrie/Géométrie p. 35, n o A-1 Repérage Effectuer des activités de repérage sur un axe, selon les nombres à l étude p. 35, n o A-2 Repérer un point dans le plan

Plus en détail

A retenir : Chapitre 1

A retenir : Chapitre 1 A retenir : Chapitre 1 C1 * 1 et * 2 Définition de division euclidienne et vocabulaire Effectuer la DIVISION EUCLIDIENNE de D par d non nul, c est trouver le quotient q et le reste r tel que : D = d. q

Plus en détail

Construction géométrique : les outils dont on dispose

Construction géométrique : les outils dont on dispose Construction géométrique : les outils dont on dispose I. La règle La règle a deux utilisations principales : Mesurer une distance Tracer des droites II. L équerre L équerre à deux utilisations principales

Plus en détail

L essentiel des notions

L essentiel des notions L essentiel des notions Sésamath Sixième L essentiel des notions http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Adaptation réalisée par Marie-Laure Besson Table des matières

Plus en détail

PARALLELOGRAMMES. 1) Quelques rappels sur le rectangle, le losange et le carré. a) Le rectangle

PARALLELOGRAMMES. 1) Quelques rappels sur le rectangle, le losange et le carré. a) Le rectangle 5 ème hapitre 10 Parallélogrammes PRLLELGRMMES 1) Quelques rappels sur le rectangle, le losange et le carré a) Le rectangle définition d'un rectangle Un rectangle est un quadrilatère qui a quatre angles

Plus en détail

Position de deux droites Distance d un point à une droite. Quadrilatères :

Position de deux droites Distance d un point à une droite. Quadrilatères : Position de deux droites Distance d un point à une droite. Quadrilatères : Position de deux droites Distance d un point à une droite. Quadrilatères : Compétences: Tracer la parallèle à une droite donnée

Plus en détail

Ce document vous permettra de réviser certaines notions mathématiques préalables au cours MAT

Ce document vous permettra de réviser certaines notions mathématiques préalables au cours MAT Mathématique FBC Révision des préalables au cours MAT-2101 101-3 Révision des préalables en Mathématique MAT 2101 101-3 Modélisation algébrique Ce document vous permettra de réviser certaines notions mathématiques

Plus en détail