Synthèse de cours PanaMaths Variables aléatoires à densité

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Synthèse de cours PanaMaths Variables aléatoires à densité"

Transcription

1 Synthèse de cours PnMths Vriles létoires à densité Vrile létoire à densité Vrile létoire réelle continue Soit X une vrile létoire réelle. On dit que «X est une vrile létoire réelle continue» si elle prend toutes les vleurs d un intervlle non vide I de. Définition Soit X une vrile létoire réelle continue prennt ses vleurs dns l intervlle I. On dit que «X est une vrile létoire réelle à densité» s il existe une fonction réelle f de l vrile réelle telle que : L fonction f est continue sur I. L fonction f est positive sur I ( x f ( x) f x dx=1. ( ) I I, 0 ). On dit lors que «l fonction f est une densité de proilité» et que «X est une vrile létoire réelle de densité de proilité f» (ou que «X est une vrile létoire réelle de densité f» ou ien encore que «l loi de proilité de X dmet pour densité f»). x dx : Remrque sur l écriture f ( ) I Si I = [ ; ], f ( x) dx = f ( x) dx. Il s git de l intégrle dite «définie» vue dns le cours d intégrtion. I Si I = [ ; + [, f ( x) dx= f ( x) dx= lim f ( x) dx. I ; [ + [ t + t Si I = ] ;], f ( x) dx= f ( x) dx= lim f ( x) dx. ] ] I ; [1-10] Juin 01 + t t Si I =, ( ) = ( ) = lim ( ) + lim ( ) quelconque). I α f x dx f x dx f x dx f x dx (α étnt un réel t t t t + α

2 Vriles létoires réelles à densité Propriété fondmentle Si X est une vrile létoire réelle de densité f sur l intervlle I lors pour tous réels et dns I ( ) on : ( ) ( [ ]) ( ) P X = P X ; = f x dx De l définition d une densité et de l propriété fondmentle précédente, il découle : Conséquences (clculs de proilités) Soit X une vrile létoire réelle continue de densité f sur l intervlle I. Pour tous réels et ( < ) de I, on : p( X= ) = 0 ; p ( X ) p( X ) > = ; ( X ) ( X ) ( X ) ( X ) ( ) p p p p f x dx < < = < = < = =. Remrque : si J et K sont deux intervlles disjoints inclus dns I lors on J K = et donc P J K = 0. L première des conséquences ci-dessus nous permet de comprendre que l ( ) réciproque est fusse! En effet, si on considère dns I les intervlles J = [ ; ] et K = [ ; c] (vec < < c), on [ ; ] [ ; c] = { } mis P( X [ ; ] [ ; c] ) = P( X = ) = 0. Espérnce Soit X une vrile létoire réelle de densité f sur l intervlle I. On ppelle «espérnce de X», notée E( X ), le réel (sous réserve d existence de l intégrle) : ( ) ( ) E X = x f x dx I [-10] Juin 01

3 Vriles létoires réelles à densité Deux exemples de lois à densité L loi uniforme sur ; Définition On dit que «l vrile létoire X suit l loi uniforme sur l intervlle [ ; ]» si elle dmet une densité constnte f sur cet intervlle. L fonction f est lors définie pr : [ ] f : ; 1 x Remrque : l vleur de l constnte est otenue grâce à l églité : f ( x) dx = 1. Espérnce Si X est une vrile létoire qui suit l loi uniforme sur l intervlle [ ; ] lors elle dmet une espérnce E( X ) qui vut : E( X) x + = dx = [3-10] Juin 01

4 Vriles létoires réelles à densité L loi normle L loi normle centrée réduite L loi normle centre réduite, notée «N ( 0;1)», est l loi de proilité continue de densité f définie sur pr : 1 f ( x) = e π 1 x Nous fournissons ci-dessous l coure représenttive de l fonction f. Cette coure, célère, est dite «coure en cloche». [4-10] Juin 01

5 Espérnce et écrt type Vriles létoires réelles à densité Si X est une vrile létoire suivnt l loi normle centrée réduite lors : E( X) = 0 et σ X = 1 Exemple de clcul de proilité On suppose que l vrile létoire T suit l loi normle centrée réduite. p 0,5 T. On cherche ( ) Grphiquement, cette proilité est égle à l ire sous l coure de l densité f sur 0,5 ; (voir l figure ci-dessous). l intervlle [ ] A l ide d un tleur ou de l clcultrice, on otient : ( T ) p 0,5 = 0, [5-10] Juin 01

6 Vriles létoires réelles à densité Des vleurs utiles On retiendr les vleurs suivntes d usge fréquent : ( ) ( ) ( ) x p 1 T 1 = e dx 0,683 = 68,3% π x p T = e dx 0,955 = 95,5% π x p 3 T 3 = e dx 0,997 = 99,7% π 3 Dns d utres situtions très courntes (cf. pr exemple en sttistiques, l notion d intervlle de confince), on impose plutôt l vleur de l proilité : 0,95 dns ien des cs. Avec des 1, 96 ; 1, 96. Ceci ornes rrondies u centième, on otient lors pour l intervlle de T : [ ] signifie que 95% des rélistions de l vrile létoire T pprtiennent à l intervlle 1, 96 ; 1, 96. [ ] Propriétés L fonction f étnt pire, on : x x ( ) ( ) pt 0 = e dx= pt 0 = e dx= 0,5 π π 0 [6-10] Juin 01

7 Vriles létoires réelles à densité Pour tout réel t : pt ( t) = pt ( t) et il en résulte : pt ( t) = 1 pt ( < t) L loi normle N ( μ ; σ ) Définition On dit que «l vrile létoire réelle X suit l loi normle ( μ ; σ ) seulement si, l vrile létoire centrée réduite réduite N ( 0;1). N» (vec σ > 0 ) si, et X μ X* = suit l loi normle centrée σ N. Remrque : on dmet ussi l écriture ( μ ; σ ) Espérnce et écrt type L espérnce et l écrt type de l loi normle ( μ ; σ ) N vlent respectivement μ et σ. [7-10] Juin 01

8 Densité (hors progrmme) Vriles létoires réelles à densité Si X est une vrile létoire suivnt l loi normle ( μ ; σ ) f définie sur définie pr : 1 f : x e π σ N lors elle dmet une densité 1 x μ σ Remrque : l coure représenttive de l fonction f est symétrique pr rpport à l droite d éqution x = μ. Proilités remrqules N lors : Si X est une vrile létoire suivnt l loi normle ( μ ; σ ) p ( μ σ μ+ σ) ( μ σ μ+ σ) ( μ σ μ+ σ) p p X 0,68 X 0,95 3 X 3 0,997 [8-10] Juin 01

9 Vriles létoires réelles à densité Dns le cs d une loi normle, l écrt type σ permet insi de «mesurer» simplement l dispersion des vleurs prises pr l vrile létoire utour de l espérnce μ. Effet de l écrt type N l densité f dmet un 1 mximum glol pour x = μ et on : f ( μ ) = π σ. Ainsi, l vleur de ce mximum est-elle d utnt plus élevée que l écrt type σ est file. μ 3 σ ; μ+ 3σ, à svoir 6σ, est églement file. Pour une vrile létoire X suivnt l loi normle ( μ ; σ ) De même, l longueur de l intervlle [ ] Dns cette «première» sitution qulittive, on peut dire que l espérnce de l loi est porteuse d informtion puisque l essentiel des rélistions de l vrile X ser proche de cette espérnce. A contrrio, si l vleur de l écrt type est élevée, le mximum f ( μ ) ser file mis l longueur de l intervlle [ μ 3 σ ; μ+ 3σ], ser élevée. Dns cette deuxième sitution qulittive, l essentiel des rélistions de X se trouve dns un «grnd» intervlle et l espérnce n est ps porteuse d une informtion significtive. [9-10] Juin 01

10 Vriles létoires réelles à densité Nous fournissons ci-dessous qutre densités de lois normles de même espérnce μ pour diverses vleurs de l écrt type σ. L coure est d utnt plus pltie que σ est élevé. [10-10] Juin 01

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions.

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions. Fiches de cours nlyse 4 ème Sciences epérimentles Limites et continuité Limites et comprison de fonctions. L et L ' sont des réels. désigne soit un réel, soit +, soit Premier théorème de comprison Soit

Plus en détail

Primitives Calcul intégral

Primitives Calcul intégral Primitives Clcul intégrl Christophe ROSSIGNOL Année scolire 2009/200 Tble des mtières Primitives 2. Définition, premières propriétés..................................... 2.2 Primitives des fonctions usuelles....................................

Plus en détail

LOIS À DENSITÉ. a) Un site de vente en ligne de vêtements établit le bilan des ventes par taille. L histogramme ci-contre résume ce bilan.

LOIS À DENSITÉ. a) Un site de vente en ligne de vêtements établit le bilan des ventes par taille. L histogramme ci-contre résume ce bilan. 1 LOIS À DENSITÉ I. Loi de probbilité à densité Exemples : 1) Vrible létoire continue ) Un site de vente en ligne de vêtements étblit le biln des ventes pr tille. L histogrmme ci-contre résume ce biln.

Plus en détail

Chapitre 11 : Calcul intégral

Chapitre 11 : Calcul intégral Cpitre 11 : Clcul intégrl I Intégrle d une fonction positive I.1 Définition Définition ( 1. Dns un repère ortogonl O; i ; ) j, on ppelle unité d ire l ire du rectngle de côtés [OI] et [OJ]. 2. Soient f

Plus en détail

COURS TERMINALE S LE CALCUL INTEGRAL

COURS TERMINALE S LE CALCUL INTEGRAL COURS TERMINALE S LE CALCUL INTEGRAL A. Notion d'intégrle. Aire sous l coure On définit le domine pln, qu'on ppeller ire sous l coure C représenttive d'une fonction positive f sur un intervlle [; ], l

Plus en détail

LOI UNIFORME SUR [a ; b]

LOI UNIFORME SUR [a ; b] LOI UNIFORME SUR [ ; ] Eemple Dns une ville, un voygeur sit que sur une ligne d utous donnée, il psse un utous toutes les heures Ce voygeur ignore les horires et rrive à un rrêt de cette ligne Comien de

Plus en détail

GESTION DE LA PRODUCTION RECUEIL D EXERCICES & SOLUTIONS

GESTION DE LA PRODUCTION RECUEIL D EXERCICES & SOLUTIONS PROD 00 GESTION DE LA PRODUCTION RECUEIL D EXERCICES & SOLUTIONS de le Court Eléonore, Botton Quentin, Seml Pierre de le Court Eléonore. / Tél : 00/47.8.70 Botton Quentin.0 / Tél : 00/47.8.8 Seml Pierre

Plus en détail

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006.

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006. Résumé de cours : Terminle ES. Mths-Terminle ES. Mr Mmouni : myismil@ltern.org source disponile sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tle des mtières Eqution du second degré. 2. Ses solutions

Plus en détail

EB - INTEGRALES DEPENDANT D UN PARAMETRE

EB - INTEGRALES DEPENDANT D UN PARAMETRE EB - INTEGRALES DEPENDANT D UN PARAMETRE Définition 1 Soit (f x ) x A une fmille de fonctions continues à vleurs dns C, définies sur un intervlle [, b[ de R. On considère l intégrle impropre g(x) = que

Plus en détail

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI Intégrtion T le STI I - Intégrle d une fonction Définition Soit F une primitive de l fonction f sur [; ], lors, on note Exemple : Clcul de Clcul de 4 (3x ) dx = = [F(x)] = F() F() xdx : Une primitive de

Plus en détail

Variables aléatoires à densité

Variables aléatoires à densité Vribles létoires à densité Rppels : Une vrible létoire réelle (VAR) est une ppliction X : Ω R où (Ω,A,P) est un espce probbilisé. Lorsque X(Ω) est un ensemble discret on dit que X est une VAR discrète.

Plus en détail

Clamaths.fr - Les Roc en Terminale S

Clamaths.fr - Les Roc en Terminale S Clmths.fr - Les Roc en Terminle S CONTENTS ROC - exigibles... 2 Roc 1 Théorème de comprison pour les suites... 2 Roc 2 Limite de qn lorsque q > 1... 2 Roc 3 Unicité de l fonction exponentielle... 3 Roc

Plus en détail

Chapitre 6 - Intégration

Chapitre 6 - Intégration TES Chpitre 6 - Intégrtion 1-13 Chpitre 6 - Intégrtion I Intégrle d une fonction positive TD1 : Des clculs d ire Définition 1 Dns un repère orthogonl (O, I, J), on ppelle unité d ire l ire du rectngle

Plus en détail

Ch.4èFONCTIONS DE RÉFÉRENCE

Ch.4èFONCTIONS DE RÉFÉRENCE LFA / première S COURS - mthémtiques Mme MAINGUY Ch.4èFONCTIONS DE RÉFÉRENCE ere S Dns tout le chpitre, le pln est muni d'un repère orthonorml ( O ; i! ;! j ) I. Rppels de Seconde Soit f une fonction définie

Plus en détail

Chapitre 12 : Lois de probabilité continues

Chapitre 12 : Lois de probabilité continues Chpitre 12 : Lois de probbilité continues I. Lois de probbilité à densité Dns les situtions précédentes, on rencontré des vribles létoires dites discrètes : elles ne prennent qu un nombre fini de vleurs.

Plus en détail

8. Primitives d'une fonction et intégrales

8. Primitives d'une fonction et intégrales 8. Primitives d'une fonction et intégrles I- Usge du tleu des dérivées Compléter les tleu et en précisnt le numéro des lignes utilisées. Tleu N f () f ' () -... Fonction f f () + érivée f ' f ' ()......

Plus en détail

Intégration et primitives

Intégration et primitives TS 202-203 Intégrtion et primitives Intégrle d une fonction continue et positive. Notion d ire sous une coure Etnt donné une fonction f continue et positive sur un intervlle [; ] vec, on note C s représenttion

Plus en détail

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1 Chpitre Intégrles TABLE DES MATIÈRES pge - Chpitre Intégrles Tble des mtières I Exercices I-................................................ I-................................................ I-................................................

Plus en détail

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6 Tble des mtières Intégrle d une fonction. Définition.................................................. Propriétés................................................. 4 Notion de primitive d une fonction 5.

Plus en détail

NOTIONS DE CALCUL DIFFERENTIEL ET INTEGRAL EN PHYSIQUE

NOTIONS DE CALCUL DIFFERENTIEL ET INTEGRAL EN PHYSIQUE NOTIONS D CALCUL DIFFNTIL T INTGAL N PHYSIQU 1) Dérivée d une fonction Soit une fonction F : x F(x) D F(x + ) F(x ) ΔF x x + ( +Δ ) ( ) Δ F F x x F x Le tux de vrition = L limite de ce tux de vrition lorsque

Plus en détail

Analyse numérique : Intégration numérique

Analyse numérique : Intégration numérique Anlyse numérique : Intégrtion numérique Pgor 1A Chpitre 4 8 février 11 mrs 2013 Anlyse numérique (Pgor 1A) Intégrtion numérique 8/02-11/03/2013 1 / 67 Pln 1 Introduction 2 Intégrtion pr méthode de Monte-Crlo

Plus en détail

Lycée Stendhl (Grenole) Niveu : Titre Cours : Terminle S Année : Chpitre 09 : Les Intégrles 204-205 826-866 874-94 Cittion du moment : «Le seul enseignement qu un professeur peut donner, à mon vis, est

Plus en détail

Convergence dominée et conséquences.

Convergence dominée et conséquences. Chpitre 3 Convergence dominée et conséquences.. nterversion ite-intégrle............................................................2 / Le cs d une CU sur un segment..................................................

Plus en détail

Intégrales et primitives

Intégrales et primitives Chpitre 3 Intégrles et primitives 3.1 Définitions Soit f(x une fonction continue définie sur l intervlle [, ]. L intégrle de f sur l intervlle [, ] est un nomre réel noté qui est défini de l fçon suivnte

Plus en détail

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie Sujet de Bc 20 Mths S Oligtoire & Spécilité Polynésie Exercice : 5 points Commun à tous les cndidts. Pour chcune des propositions suivntes, indiquer si elle est vrie ou fusse et donner une démonstrtion

Plus en détail

ÉTUDES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako

ÉTUDES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako ÉUDES DE FONCIONS NUMÉRIQUES Site MthsICE de Adm roré Lycée echnique Bmko I Pln d étude d une fonction numérique : Pour étudier une fonction numérique nous dopterons le pln suivnt : Déterminer l ensemble

Plus en détail

DÉNOMBREMENT LOIS DE PROBABILITÉ

DÉNOMBREMENT LOIS DE PROBABILITÉ DÉNOMBREMENT LOIS DE PROBABILITÉ A Dénombrement I Utilistion de digrmmes, de tbleux, d rbres Exemples : 1. Un centre de loisirs ccueille 100 enfnts. Deux sports sont proposés : le footbll et le tennis.

Plus en détail

CHAPITRE 17 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES

CHAPITRE 17 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES Clcul d intégrles - Intégrtion pr prties Cours CHAPITRE 7 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES Dns ce cours, nous disposons de trois techniques de clcul d intégrles : ) primitivtion pr lecture

Plus en détail

Chapitre 6 : Fonctions Logarithme Népérien

Chapitre 6 : Fonctions Logarithme Népérien Lycée Pul Sbtier, Cstelnudry Clsse de T`le STG Chpitre 6 : Fonctions Logrithme Népérien D. Zncnro et C. Aupérin 008-009 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

Janvier 09 - Examen de Calcul de Probabilités Ex 1 Ex 2 Ex 3 Ex 4 - Page 1/8

Janvier 09 - Examen de Calcul de Probabilités Ex 1 Ex 2 Ex 3 Ex 4 - Page 1/8 Jnvier 9 - Exmen de Clcul de Proilités Ex 1 Ex 2 Ex 3 Ex 4 - Pge 1/8 Exercice 1 Enoncé. Trois chuves sont en file indienne. Le 2ème voit le 1er et le 3ème voit les 2 utres. Dns un sc, connu des trois chuves,

Plus en détail

Chapitre 6 - Fonctions numériques - Généralités

Chapitre 6 - Fonctions numériques - Généralités PS hpitre 6 - Fonctions numériques - Générlités Fonctions d une vrile réelle à vleurs réelles. Définitions Une fonction à vleurs réelles est une ppliction de ou une prtie A de dns. On note f : A ; f ().

Plus en détail

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5 Tle des mtières Frctions 1 Propriété des quotients égux 1 Addition, soustrction de deux frctions Produit de deux frctions Comprison de deux frctions Produit en croix 10 6 Quotient de deux frctions. Inverse

Plus en détail

Primitives et intégrales

Primitives et intégrales Primitives et intégrles Je donne ici des éléments pour triter l exposé de CAPES 76 (liste 2007) : Primitives d une fonction continue sur un intervlle ; définition et propriétés de l intégrle, inéglité

Plus en détail

Chapitre 1 Équations et Inéquations du 2nd degré

Chapitre 1 Équations et Inéquations du 2nd degré Cours de Mthémtiques Première S Chpitre 1 : équtions et inéqutions du second degré Chpitre 1 Équtions et Inéqutions du nd degré A) Les Polynômes 1) Définitions On ppelle monôme une expression de l forme

Plus en détail

Contrôle Continu 3 Novembre 2015

Contrôle Continu 3 Novembre 2015 L2 MIASHS 20 2016 Introduction à l Modélistion Sttistique Contrôle Continu 3 Novembre 20 Durée : 1h30 Documents interdits clcultrices UPPA utorisées Chque réponse devr être justifiée et rédigée de mnière

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS I..

LIMITES DE SUITES ET DE FONCTIONS I.. TS-cours-chp2-1 - LIMITES DE SUITES ET DE FONCTIONS I.. Limite d une suite 1 / tend vers l infini Définition ( rppel ) Dire que l suite tend vers + signifie que, pour tout nombre A, l intervlle [A ; +

Plus en détail

La logique combinatoire est une technique dédiée à la représentation de diverses

La logique combinatoire est une technique dédiée à la représentation de diverses Chpitre I Logique comintoire 1 L logique comintoire est une technique dédiée à l représenttion de diverses fonctions. Elle permet de synthétiser des systèmes comportnt des étts finis. Les circuits logiques

Plus en détail

x est la variable et f(x) est l image de x. On note y = f(x). L ensemble des éléments de I ayant une image est appelé ensemble de définition, noté E.

x est la variable et f(x) est l image de x. On note y = f(x). L ensemble des éléments de I ayant une image est appelé ensemble de définition, noté E. http://mths-sciences.r LES FONCTIONS NUMÉRIQUES USUELLES I) Générlités ) Déinition Soit I un intervlle de, une onction est une reltion qui ssocie à tout élément x de I, un nombre réel (x) u plus. : I x

Plus en détail

Calcul différentiel et intégral 2 (M-1.1)

Calcul différentiel et intégral 2 (M-1.1) Clcul différentiel et intégrl (M-.) Cdre : dns l suite on considère une fonction numérique f définie sur un intervlle I et un réel I I. Dérivée d'une fonction Définition du nomre dérivé : l fonction f

Plus en détail

Chapitre 1 Le Second Degré

Chapitre 1 Le Second Degré Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Chpitre 1 Le Second Degré A) Résolution de l'éqution du second degré 1) Définitions On ppelle polynôme de second degré l expression x² x c

Plus en détail

TS 2, Correction Bac Blanc n o 2

TS 2, Correction Bac Blanc n o 2 TS, Correction Bc Blnc n o Exercice Nouvelle-Clédonie, mrs extrit) points Restitution Orgnisée de Connissnces On utiliser le résultt suivnt : les solutions de l éqution différentielle E ) y = y où R sont

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

Calcul intégral. I Intégrale d une fonction 2

Calcul intégral. I Intégrale d une fonction 2 T le STIGE Clcul intégrl 8-9 Clcul intégrl Tble des mtières I Intégrle d une fonction II Interpréttion grphique : clcul d ire II. Aire d un fonction positive...................................... II. Aire

Plus en détail

Mémo de cours n 4. Intégrales

Mémo de cours n 4. Intégrales Mémo de cours n 4 Intégrles v.0 4. Primitive 4.. Définition Si l fonction f (x) est l dérivée de l fonction F(x), c est à dire que f (x) = df(x) dx, lors nous ppelons l fonction F une primitive de f. On

Plus en détail

11 Fonctions numériques - continuité

11 Fonctions numériques - continuité 11 Fonctions numériques - continuité 11.1 Ensemble des fonctions à vleurs réelles 11.1.1 Fonctions numériques Soit E un ensemble non vide. On note E l ensemble des pplictions de E dns. On définit les opértions

Plus en détail

Les équations dans l ensemble des nombres complexes Le degré 1 et le degré 2

Les équations dans l ensemble des nombres complexes Le degré 1 et le degré 2 Les équtions dns l ensemle des nomres complexes Le degré et le degré Eqution du premier degré 3 Eqution du second degré : Résolution de l éqution A 4 Exemples de résolutions d équtions simples (rédction

Plus en détail

CHAPITRE III. CONSTRUCTION DE L INTÉGRALE DE RIEMANN

CHAPITRE III. CONSTRUCTION DE L INTÉGRALE DE RIEMANN CHAPITRE III. CONSTRUCTION DE L INTÉGRALE DE RIEMANN 1. Fonctions en esclier. Le but de l construction de l intégrle d une fonction f : [, b] R étit, initilement, de définir rigoureusement l ire de l figure

Plus en détail

Corrigé du baccalauréat S Pondichéry 21 avril 2010

Corrigé du baccalauréat S Pondichéry 21 avril 2010 Corrigé du bcclurét S Pondichéry 2 vril 2 EXERCICE Commun à tous les cndidts Prtie A : Restitution orgnisée de connissnces 6 points f et g sont deux fonctions continues sur un intervlle [ ; b] donc g f

Plus en détail

5. Intégration complexe

5. Intégration complexe 49 5. Intégrtion complexe 1. Intégrles définies d une fonction complexe d une vrible réelle Les intégrles sont extrêmement importntes dns l étude des fonctions d une vrible complexe. Nous étblirons l équivlence

Plus en détail

Primitives et intégrales

Primitives et intégrales Primitives et intégrles 19 mrs 14 Introduction Chercher une primitive et clculer une intégrle n est ps tout à fit l même chose. Une primitive d une fonction f, c est une fonction F qui, lorsqu on l dérive,

Plus en détail

Chapitre 2 Limites et asymptotes

Chapitre 2 Limites et asymptotes Chpitre 2 Limites et symptotes A) Introduction ) Le grenier Je veux monter un toit à une pente en lissnt l plce pour une pièce (grenier) de 3 mètres de long et 2 mètres de hut. OA = 3, OC = 2, OE = x.

Plus en détail

Méthodes de calcul de valeurs approchées d une intégrale.

Méthodes de calcul de valeurs approchées d une intégrale. Clcul de vleurs pprochées d intégrles Méthodes de clcul de vleurs pprochées d une intégrle. 1 Les formules de qudrture de type interpoltion : Présenttion On cherche à clculer l intégrle I(f) = b µ(x)f(x)

Plus en détail

! Remarque : La racine carrée d un nombre négatif n existe pas.

! Remarque : La racine carrée d un nombre négatif n existe pas. 3 ème Chpitre A 3 RACINE CARREE D UN NOMBRE POSITIF 1 I) Définition et conditions d existence de l rcine crrée d un nombre. 1) Définition. Il existe deux nombres tel que si on les multiplie pr eux même

Plus en détail

Séquence 6. Intégration. Sommaire

Séquence 6. Intégration. Sommaire Séquence 6 Intégrtion Ojectifs de l séquence Introduire une nouvelle notion : l intégrle d une fonction sur un intervlle ;. Après une première pproche géométrique, l introduction de l notion de primitive

Plus en détail

Intégration numérique

Intégration numérique Chpitre 5 Intégrtion numérique 5.1 Introduction Dns ce chpitre, on s interesse u clcul numérique d intégrles. Plus précisément, on considère une fonction f continue et une fonction w continue et positive

Plus en détail

Résumé de cours sur les intégrales dépendant d un paramètre

Résumé de cours sur les intégrales dépendant d un paramètre Résumé de cours sur les intégrles dépendnt d un prmètre On v considérer une fonction à deux vribles ' puis on étudier l existence, l continuité, dérivbilité,...de l fonction F dé nie pr x! F (x) = F est

Plus en détail

LE CALCUL ALGEBRIQUE

LE CALCUL ALGEBRIQUE I. Clculs vec des frctions : ce fcteur : ) Rppels : LE CALCUL ALGEBRIQUE b = b = b = b Exemple : 3 x = x 3 = 3x ( b ) c = ( bc ) = bc Exemple : ( 3x ) 5 = 3 ( 5x ) = 15x 1 = 1 = b) Signe moins dns une

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS)

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) Équtions différentielles du ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) TI-Nspire CAS 1. Objectifs Découvrir les équtions différentielles du premier ordre. Résoudre à l min et à l ide de l clcultrice

Plus en détail

LIMITES ET CONTINUITÉ

LIMITES ET CONTINUITÉ LIMITES ET CONTINUITÉ Cours Terminle S Limite d une onction à l inini ) Limite inie en l inini Déinition : Soit une onction déinie sur un intervlle de l orme ] A ; + [ On dit que l onction dmet pour limite

Plus en détail

LES CONIQUES. Qu est-ce qu une conique?

LES CONIQUES. Qu est-ce qu une conique? LES CONIQUES Qu est-ce qu une conique? Une conique est une courbe plne que l on peut trcer sur un cône de révolution à deux nppes. Suivnt l position qu il occupe pr rpport à un cône, un pln qui coupe ce

Plus en détail

Théorie des Langages Formels Chapitre 4 : Automates complets déterministes

Théorie des Langages Formels Chapitre 4 : Automates complets déterministes 1/2 Théorie des Lngges Formels Chpitre 4 : Automtes complets déterministes Florence Levé Florence.Leve@u-picrdie.fr Année 2015-2016 2/2 Introduction 4 5 6 7 8 9 10 11 12 Recherche de :, /2 Automte déterministe

Plus en détail

Racines carrées 20 = 4,

Racines carrées 20 = 4, Clsse de 3ème 08/11/010 Chpitre Rcines crrées I. Activité n 1. ABCD est un crré de coté c et d ire. (1 ) Choisir des vleurs de c puis clculer. ( ) Choisir des vleurs de puis clculer c. c = 3 cm c = cm

Plus en détail

Chapitre I : Fonctions, expressions algébriques et problèmes

Chapitre I : Fonctions, expressions algébriques et problèmes Chpitre I : Fonctions, expressions lgériques et prolèmes I Les ensemles de nomres : Déinition 1 : 0 ;1; 2;3;4 ;...;15;16;... est l ensemle des nomres entiers nturels.... ; -16; -15;...; -4; -3; -2; -1;

Plus en détail

Licence de Mathématiques Fondamentales Calcul Scientifique feuille de TD 3

Licence de Mathématiques Fondamentales Calcul Scientifique feuille de TD 3 Licence de Mthémtiques Fondmentles Clcul Scientifique feuille de TD 3 Intégrtion numérique Soit f : [, b] R une fonction continue On cherche à clculer numériquement l intégrle f(x) dx Pour cel, on subdivise

Plus en détail

LEÇON N 76 : Primitives d une fonction continue sur un intervalle ; définition et propriétés de l intégrale, inégalité de la moyenne. Applications.

LEÇON N 76 : Primitives d une fonction continue sur un intervalle ; définition et propriétés de l intégrale, inégalité de la moyenne. Applications. LEÇON N 76 : Primitives d une fonction continue sur un intervlle ; définition et propriétés de l intégrle, inéglité de l moyenne. Applictions. Pré-requis : Si f est une fonction numérique dérivble sur

Plus en détail

LEÇON N 67 : Formules de Taylor. Applications.

LEÇON N 67 : Formules de Taylor. Applications. LEÇON N 67 : Formules de Tylor. Applictions. Pré-requis : Théorème de Rolle, théorème des Accroissements Finis ; Intégrtion pr prties ; Nottions de Lndu. 67. Résultts globux 67.. Formule de Tylor-Lgrnge

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

Terminale ES Lycée Georges Imbert 2015/2016. Notes de cours de Mathématiques en terminale ES O. Lader

Terminale ES Lycée Georges Imbert 2015/2016. Notes de cours de Mathématiques en terminale ES O. Lader Notes de cours de Mthémtiques en terminle ES O. Lder 1 Tble des mtières 1 Suites numériques (1S) 4 1.1 Rppels.................................................. 4 1.2 Suite rithmétique............................................

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

Corrigé du TD 3 : Limites

Corrigé du TD 3 : Limites Corrigé du TD 3 : Limites Eercice : Fonction réciproque. Cs f() = + L fonction f est définie sur R et à vleurs dns I = [,+ [. Elle est pire donc en prticulier pour tout réel, on f( ) = f() et en prticulier

Plus en détail

La proposition «Si n Æalors n et n» est vraie. Par contre, la réciproque «Si n et n alors n Æ» est fausse. (Il suffit de choisir n= 1)

La proposition «Si n Æalors n et n» est vraie. Par contre, la réciproque «Si n et n alors n Æ» est fausse. (Il suffit de choisir n= 1) 0 septemre 016 ENSEMBLES DE NOMBRES nde 3 I ENSEMBLES DE NOMBRES 1 NOMBRES ENTIERS NATURELS Æ DÉFINITION L ensemle des entiers nturels, noté Æ = {0;1;;3;;...}. C est l ensemle des nomres positifs qui permettent

Plus en détail

Espaces vectoriels munis d un produit scalaire EVMPS

Espaces vectoriels munis d un produit scalaire EVMPS Espces vectoriels munis d un produit sclire EVMPS Produits sclires générlisés Définition. Dns l espce vectoriel V un produit sclire est une fonction ssocint à chque pire ordonnée ( x, y) de vecteurs de

Plus en détail

Jour no1 Exercice 1.0 Exercice 1.1 Exercice 1.2

Jour no1 Exercice 1.0 Exercice 1.1 Exercice 1.2 Jour n o Exercice. ) Étudier l intégrbilité de x e x x2 sur ], + [. 2) Étudier l intégrbilité de x ln x x 2 + sur ], + [. Exercice. Soit f de clsse C 2 sur [, + [ telle que f est intégrble sur [, + [ et

Plus en détail

Table des matières 3. GÉNÉRALITÉS SUR LES FONCTIONS...63 A) ENSEMBLE DE DÉFINITION D'UNE FONCTION...63

Table des matières 3. GÉNÉRALITÉS SUR LES FONCTIONS...63 A) ENSEMBLE DE DÉFINITION D'UNE FONCTION...63 Tble des mtières 1. ALGORITHMES...15 A) LES PRINCIPAUX ALGORITHMES À SAVOIR CONSTRUIRE ET MANIPULER...15 1. Comment écrire un lgorithme qui clcule un terme u n d'une suite numérique définie pr récurrence?...15

Plus en détail

CALCULS DE FORCES DE PRESSION SUR DES PAROIS PLANES On désire construire une piscine couverte de L = 25 m de longueur, de l = 10 m de largeur et de h

CALCULS DE FORCES DE PRESSION SUR DES PAROIS PLANES On désire construire une piscine couverte de L = 25 m de longueur, de l = 10 m de largeur et de h CALCUL DE FORCE DE PREION UR DE PAROI PLANE On désire construire une piscine couverte de L = 5 m de longueur, de l = 10 m de lrgeur et de h = 4,5 m de profondeur utile (huteur d'eu). Le bâtiment qui l'brite

Plus en détail

Résumés de cours : Terminale S.

Résumés de cours : Terminale S. Résumés de cours : Terminle S. Mths-Terminle S. Mr Mmouni : myismil@ltern.org source disponible sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tble des mtières Nombres complexes. 3. Prtie réelle

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Terminale Résumé de cours de mathématiques

Terminale Résumé de cours de mathématiques Terminle Résumé de cours de mthémtiques En june, on les théorèmes dont les démonstrtions sont exigiles u BAC. 1 Algère 1.1 Les nomres complexes 1.1.1 Générlités L'ensemle des nomres complexes est noté

Plus en détail

Chapitre 0 : Mise au point sur les nombres et le calcul

Chapitre 0 : Mise au point sur les nombres et le calcul Lycée Jules Fil, Crcssonne Clsse de 2 nde Chpitre 0 : Mise u point sur les nombres et le clcul D. Zncnro C. Aupérin 2009-2010 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

Fonctions homographiques

Fonctions homographiques HAPITRE 6 Fonctions omorpiques. Fonctions omorpiques Définition. On ppelle fonction omorpique toute fonction du type f : b c où, b, c et d d sont des constntes réelles vérifint : b 0 (6.) c d Remrques.

Plus en détail

Racines carrées. 1. Généralités : 2. Propriétés. 3. Exercices de bases corrigés. 4. Exercices non corrigés. 5. Approfondissement.

Racines carrées. 1. Généralités : 2. Propriétés. 3. Exercices de bases corrigés. 4. Exercices non corrigés. 5. Approfondissement. Rcines crrées. 1. Générlités : ) Déinition : b) Nottion. c) Exemples.. Propriétés. ) Produits de rcines crrées. b) Quotient de rcines crrées. c) Lien vec les puissnces. d) Modiiction d écritures vec des

Plus en détail

Exercice 2 Soit N un nombre entier qui s écrit avec 4 chiffres en base 4, et avec 6 chiffres en base 3? Trouver toutes les valeurs possibles de N.

Exercice 2 Soit N un nombre entier qui s écrit avec 4 chiffres en base 4, et avec 6 chiffres en base 3? Trouver toutes les valeurs possibles de N. Groupe seconde chnce Feuille d exercice n 7 Exercice 1 On considère Un segment [AC] de longueur 16 cm, et le point B situé sur [AC] à 6 cm de C. P est un point du cercle de dimètre [AB] tel que AP = 8

Plus en détail

Développements limités. Généralités. Définitions usuelles

Développements limités. Généralités. Définitions usuelles Développements limités I Générlités I.A Définitions usuelles.......................... I.B Formules de Tylor.......................... I.C Développements limités usuels.................... 4 I.D Eemples

Plus en détail

CHAPITRE 10 : LA FONCTION LOGARITHME NEPERIEN

CHAPITRE 10 : LA FONCTION LOGARITHME NEPERIEN L fonction logrithme népérien Cours CHAPITRE : LA FONCTION LOGARITHME NEPERIEN. Définition de l fonction logrithme népérien L fonction logrithme népérien, notée ln, est définie sur ],+ [, prend l vleur

Plus en détail

Intégrale de Riemann cours et exercices de Licence, L1, PC, S2

Intégrale de Riemann cours et exercices de Licence, L1, PC, S2 Intégrle de Riemnn cours et exercices de Licence, L1, PC, S2 H. Le Ferrnd Jnury 29, 2010 Contents 1 Des premières méthodes 2 2 Sommes de Drboux 2 3 Fonction intégrble u sens de Riemnn 3 3.1 Qu est-ce qu

Plus en détail

1. Rappels sur la loi binomiale

1. Rappels sur la loi binomiale . Rppels sr l loi inomile On ppelle épree de Bernolli tote expérience létoire ne présentnt qe dex isses possiles (contrires l ne de l tre). On ppelle schém de Bernolli tote répétition d éprees de Bernolli

Plus en détail

LIMITES ET CONTINUITÉ DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako

LIMITES ET CONTINUITÉ DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako IMITES ET CONTINUITÉ DE FONCTIONS NUMÉRIQUES Site MthsTICE de Adm Troré ycée Technique Bmko I Notion de ite: Activité : Soit une onction de représenttion rphique ci-dessous : b C b Nous pouvons remrquer

Plus en détail

Calcul Intégral - Equations Différentielles M211-1

Calcul Intégral - Equations Différentielles M211-1 /46 Clcul Intégrl - Equtions Différentielles M11-1 Michel Fournié michel.fournie@iut-tlse3.fr http://www.mth.univ-toulouse.fr/ fournie/ /46 Introduction Tble des mtières 1 Introduction Préliminires, Rppels

Plus en détail

Chapitre VII : Les polynômes

Chapitre VII : Les polynômes Chpitre VII : Les polnômes Au terme de ce chpitre, tu sers cple de : Svoir Définir monôme, polnôme et degré d un polnôme Définir inôme et trinôme Enoncer les crctéristiques d un polnôme complet, d un polnôme

Plus en détail

1. Fonctions fortement piquées. La fonction delta de Dirac. (x) ρ n. n = 8. Figure 1

1. Fonctions fortement piquées. La fonction delta de Dirac. (x) ρ n. n = 8. Figure 1 31 3. Fonction de Dirc 1. Fonctions fortement piquées. fonction delt de Dirc 1.1. Exemple en électrosttique ρ n (x n = 8 n = 4 n = 2 n = 1-1/2 O 1/2 x Figure 1 Considérons, sur une droite, une suite de

Plus en détail

CHAPITRE VII. 1 - Définition

CHAPITRE VII. 1 - Définition CHAPITRE VII Résumé Nous llons déouvrir dns e hpitre une notion ux innombrbles pplitions physiques. Compte tenu du peu d heures dont nous disposons, nous nous ontenterons d un survol rpide en srifint l

Plus en détail

Kit de survie - Bac S

Kit de survie - Bac S - Opértions sur les inéglités Kit de survie - Bc S Inéglités - Etude de signe Règles usuelles : Pour tout : x < y x + < y + même sens Pour tout k > : x < y kx < ky même sens Pour tout k < : x < y kx >

Plus en détail

Cours d harmonisation en mathématiques. Bérangère Delourme-Jose Gomez

Cours d harmonisation en mathématiques. Bérangère Delourme-Jose Gomez Cours d hrmonistion en mthémtiques Bérngère Delourme-Jose Gomez septembre 206 2 Tble des mtières Trigonométrie et nombres complexes 7. Trigonométrie élémentire...............................................

Plus en détail

Résumé du cours d analyse de Sup et Spé

Résumé du cours d analyse de Sup et Spé Résumé du cours d nlyse de Sup et Spé 1 Topologie 1.1 Normes, normes équivlentes Une norme sur le K-espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x) 0 (positivité) x E, (N(x) = 0 x

Plus en détail

I] Généralités. b) Tableau de données et représentation graphique

I] Généralités. b) Tableau de données et représentation graphique Chpitre 4 Fonctions I] Générlités ) Notion de fonction Définition : Une fonction numérique est un processus qui fbrique un nombre (souvent noté y) à prtir d un nombre vrible (souvent noté x). On v noter

Plus en détail

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C Chpitre 2 Les nombres complexes Certines équtions polynomiles à coefficients réels n ont ps de solution dns R ; c est le cs de l éqution du second degré x 2 +1 = 0 puisque tout crré de réel est positif.

Plus en détail

Cours de 1ère S/ Géométrie plane. Eric Dostal

Cours de 1ère S/ Géométrie plane. Eric Dostal Cours de 1ère S/ Géométrie plne Eric Dostl Aout 015 Tble des mtières Vecteurs et repérge dns le pln.1 Rppels.......................................... Bses, Repères et Coordonnées.............................

Plus en détail

Fractions rationnelles

Fractions rationnelles c Christophe ertult - MPSI Frctions rtionnelles Dns tout ce chpitre, K est l un des corps R ou C. Ce chpitre se propose de vous pprendre à clculer des intégrles telles que dt π t +, sin(t) dt, etc. + cos

Plus en détail

Partiel de Physique PH1 ME1D

Partiel de Physique PH1 ME1D Prtiel de Physique PH1 ME1D Durée : 3h Les clcultrices et documents ne sont ps utorisés Le brême indiqué peut être sujet à modifictions 21 Novembre 2009 Exercice 1 : Outils mthémtiques (3 points) 1 Dériver

Plus en détail

; b Δ. 1 er cas Si <O : aucun réel n'est solution S = Ø. 2. SIGNE DU TRINOME : Posons P(x) = ax 2 + bx + c a 0

; b Δ. 1 er cas Si <O : aucun réel n'est solution S = Ø. 2. SIGNE DU TRINOME : Posons P(x) = ax 2 + bx + c a 0 Fonctions éqution et inéqution du second degré. EQUATIONS DE LA FORME x 2 + x + c =0, et c sont des réels tels que 0 L expression x 2 + x + c est ppelé trinôme Les tleux ci-dessous résument l résolution

Plus en détail