Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel."

Transcription

1 Ce documen a éé numérisé par le CRDP de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Campagne 2013 Ce fichier numérique ne peu êre reprodui, représené, adapé ou radui sans auorisaion.

2 BREVET DE TECNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATÉMATIQUES Durée : 2 heures Coefficien : 2 Maériel e documens auorisés : L usage des insrumens de calcul e du formulaire officiel de mahémaiques es auorisé. La claré du raisonnemen e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. Dès que le suje vous es remis, assurez-vous qu il es comple. Le suje compore 7 pages, numéroées de 1 à 7. L annexe page 7 es à rendre avec la copie. Le formulaire officiel de mahémaiques es join au suje. Il comprend 2 pages numéroées 1 e 2. Le suje compore 2 exercices indépendans qui seron raiés sur des copies séparées Coefficien : 2 Durée : 2 h page 1/7

3 Exercice n 1 (12 poins) L objecif de ce exercice es d uiliser une modélisaion du pourcenage de bacheliers en France enre 1951 e 1985 puis d en bâir une deuxième sur la période allan de 1985 à Parie A : éude d une foncion logisique. 33 Considérons la foncion f définie sur 0; par la relaion : f( x) 0,11x e On désigne par C la courbe représenaive de cee foncion dans un repère orhonormé. 1. On adme que f 0,11x lim e 0 x. En déduire lim f( x). Donner l inerpréaion graphique de ce résula. x 2. a) Calculer la dérivée f ' de la foncion f e monrer que pour ou x de 0;, f '( x) 5143, 71e 11417e 0,11x 0,11x b) En déduire le ableau des variaions comple de la foncion f sur Parie B : une foncion raionnelle Considérons mainenan la foncion g définie sur 85 ; par la relaion On donne ci-dessous le ableau des variaions comple de la foncion g. 2 0;. x 85 g'( x ) + 87,5 gx ( ) 29,4 85 ;. 1. Déerminer une primiive G de la foncion g sur l inervalle 2. Monrer que : g( x) dx 871ln 2187, gx ( ) 87,5. x En déduire une valeur approchée au dixième de la valeur moyenne de la foncion g sur l inervalle 85 ;110. Coefficien : 2 Durée : 2 h page 2/7

4 Parie C : modélisaion du pourcenage de bacheliers en France enre 1951 e Le pourcenage des bacheliers en France enre 1951 e 1985 e suivan une même classe d âge es rapporé dans le ableau n 1 : Tableau n 1 Année Rang pourcenage 5,3 7,4 12,5 19,6 20,1 23,7 24,6 25,9 29,4 Source : RERS, minisère de l éducaion naionale 1. a) On donne en annexe 1 à rendre avec la copie le racé du nuage de poins associé au ableau n 1. Consruire sur ce même dessin la représenaion graphique C de la foncion f éudiée parie A ainsi que l asympoe. La courbe C sera racée à parir de x 48. f On remplira au préalable le ableau de valeurs fourni dans cee même annexe (arrondir à 0,1). b) La foncion f modélise--elle convenablemen l évoluion du pourcenage de bacheliers sur la période ? 2. À parir de ce modèle, donner une prévision, en uilisan la parie A, de la proporion maximale de bacheliers en France dans les années suivanes. Parie D : modélisaion de la proporion de bacheliers en France de 1985 jusqu en À parir de 1985, sous l influence de faceurs divers, don la créaion du baccalauréa professionnel, la proporion de bacheliers en France par classe d âge augmene significaivemen. Le ableau n 2 en fourni quelques valeurs : Tableau n 2 : Année Rang Proporion en % 29,4 43,5 61,4 62,9 65,7 Source : RERS 2011, minisère de l éducaion naionale 1. Le modèle uilisé dans la parie C vous paraî-il fiable sur cee période? Jusifiez succincemen vore réponse. 2. On donne en annexe 2 le nuage de poins associé au ableau n 2 ainsi que le racé d une courbe qui approche au mieux ce nuage. Le logiciel sipule que la courbe es la représenaion graphique d une foncion g définie par la relaion a g( x) b avec a e b deux réels fixés. x 70 a) Exprimer g(85) e g (110) en foncion des réels a e b. f Coefficien : 2 Durée : 2 h page 3/7

5 b) En admean que la courbe associée à la foncion g passe par les poins de coordonnées (85 ; 29,4) e (110 ; 65,7), jusifier que les réels a e b vérifien le sysème (S) : a15b 441 a 40b 2628 c) Résoudre le sysème (S). On donnera les valeurs exaces de a e b. 3. On adme que la foncion g recherchée es celle fournie dans la parie B (les valeurs de a e b on éé arrondies). En vous aidan des résulas donnés dans la parie B : a) Donner une prévision du pourcenage maximal de bacheliers en France par classe d âge les années suivanes. b) Inerpréer par une phrase le résula obenu à la quesion 3. de la parie B. Exercice n 2 (8 poins) Les paries A e B son indépendanes. Parie A : Q.C.M. Ce exercice es un quesionnaire à choix muliple. Pour chaque iem, une seule des rois affirmaions proposées es vraie. Chaque réponse juse rappore un poin, chaque réponse fausse enlève 0,25 poin. Une absence de réponse ne rappore ni n enlève de poin. Si la somme des poins es négaive, elle es ramenée à zéro. 1. Chaque année, plusieurs dizaines de milliers de personnes emprunen les chemins de Sain Jacques de Composelle. Le ableau ci-dessous donne le nombre annuel de pèlerins arrivés à Composelle en Espagne depuis 2005 (année 2010 exclue). Année Rang de l année x Nombre de pèlerins y Source : bureau des pèlerins de Sain-Jacques de Composelle a) On adme que le nuage de poins associé à cee série saisique es reciligne. L équaion de la droie de régression de y en x associée à la série es : Réponse 1 : y 14664,4 x 87439,6 Réponse 2 : y 16697,2 x 79054,2 Réponse 3 : y 16502,6 x 85288,2 b) En 2010, le nombre de pèlerins enregisrés à Composelle fu de Le aux de variaion du nombre de pèlerins enregisrés par rappor au nombre héorique issu du modèle de la régression affine es approximaivemen égal à (arrondi à 0,1 %) : Réponse 1 : 69,6 % Réponse 2 : 41 % Réponse 3 : 1,7 % Coefficien : 2 Durée : 2 h page 4/7

6 2. En 2011, les pèlerins arrivan à Composelle on répondu à un quesionnaire leur demandan les principales moivaions de leur pèlerinage. Les réponses son les suivanes : 51 % l on fai pour des raisons culurelles e religieuses ; 43 % l on fai pour des raisons sricemen religieuses ; 6 % l on fai pour des raisons sricemen culurelles. De plus, on sai que 58 % des pèlerins son des hommes e 42 % des femmes. On choisi un pèlerin au hasard. On considère les événemens suivans : R : «le pèlerin choisi a fai le chemin pour des raisons sricemen religieuses» ; C : «le pèlerin choisi a fai le chemin pour des raisons sricemen culurelles» ; M : «le pèlerin choisi a fai le chemin pour des raisons culurelles e religieuses» ; : «le pèlerin choisi es un homme». Parmi les rois diagrammes proposés ci-dessous, lequel es un arbre de probabilié suscepible de décrire la siuaion donnée? Réponse 1 0,43 0,06 0,51 R C M 0,7 0,3 0,4 0,6 0,5 0,5 0,43 0,06 0,51 R C M Réponse 2 Réponse 3 0,8 0,2 0,5 0,5 0,1 0,9 0,43 0,06 0,51 R C M 0,2 0,2 0,2 0,1 0,18 0,12 Coefficien : 2 Durée : 2 h page 5/7

7 3. On considère la suie n Le erme w10 es égal à : w ainsi définie : Pour ou n N, w n 1 2w n 6 e w0 4. Réponse 1 : 12 Réponse 2: Réponse 3 : Parie B Tous les résulas de la parie B seron arrondis, si nécessaire, à 0,0001 près. En 2007, 38 % des Allemands venus en France le son pour des raisons professionnelles, e 62 % pour des raisons ourisiques ou personnelles. Soi X la variable aléaoire qui, à ou groupe de dix Allemands présens en France, associe le nombre de ceux venus pour des raisons professionnelles. On suppose que le nombre d Allemands venus en France es suffisammen grand pour assimiler le choix aléaoire de dix de ces Allemands à un irage avec remise. 1. Quelle loi sui la variable aléaoire X? Jusifier la réponse en précisan les paramères de la loi. 2. Dix Allemands se rerouven un soir dans une brasserie parisienne. a) Quelle es la probabilié que neuf d enre eux soien présens en France pour des raisons ourisiques ou personnelles? P X 1. Inerpréer le résula obenu. b) Déerminer la probabilié 3. Soi Y la variable aléaoire qui, à ou Allemand présen en France, associe la disance en km qu il aura parcourue pendan son séjour. On adme que Y sui la loi normale de moyenne m 2000km e d écar ype 550km. a) Déerminer PY 3200 e inerpréer, à l aide d une phrase, le résula obenu. b) Déerminer la probabilié qu un Allemand, choisi au hasard, parcoure en France une disance comprise enre km e km. Coefficien : 2 Durée : 2 h page 6/7

8 Annexe 1 à rendre avec la copie y Nuage de poins associé au ableau n x Tableau de valeurs x f (x) Annexe 2 Nuage de poins associé au ableau n 2 e courbe associée à la foncion g y x Coefficien : 2 Durée : 2 h page 7/7

9 FORMULAIRE DE MATÉMATIQUES BTS COMPTABILITÉ ET GESTION DES ORGANISATIONS 1. RELATIONS FONCTIONNELLES ln( ab) ln a ln b où a 0 e b 0 a ln a e, où a 0 exp( a b) exp a exp b ln e, où 0 2. CALCUL DIFFÉRENTIEL ET INTÉGRAL a) Limies usuelles Comporemen à l infini lim ln Comporemen à l origine limln lim e Si 0, lim 0 ; si 0 lim e 0 Si 0, lim ln 0 Si 0, lim ; si 0, lim 0 Croissances comparées à l infini e Si 0, lim Si 0, ln lim 0 b) Dérivées e primiives Foncions usuelles f() f '( ) ln 1 e e ( R*) 1 c) Calcul inégral Valeur moyenne de f sur [a, b] 1 b f ( ) d b a a u v u v ku ku uv u v uv 1 u 2 u u u uv uv 2 v v 0 Opéraions 0 v u v u u e u u e u Inégraion par paries : b b u( ) v( ) a a lim 0 u ln u, u à valeurs sricemen posiives u u u u 1 u ( ) v ( ) d u ( ) v ( ) d a b 3. PROBABILITÉS : a) Loi binomiale ( ) C k k n k P X k p q où n C k n n! k! n k! ; E( X ) np ; ( X ) npq Formulaire de mahémaiques CGMAT B.T.S.Compabilié e gesion des organisaions

10 b) Loi normale La loi normale cenrée réduie es caracérisée par la densié de probabilié ; f(x) = EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE ^(0,1) n(/) = p(r</)= f f{x)ax 0 / ( 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,0 0, , , , , , , , , , ,1 0, , , , , , , , , ,575 3 o;2 0, , , , , , , , , , , , , , , , , , , , ,4 0, , ,6628 0, , , , , , , ,5 0,6915 0, ,698 S 0, , , , , , , , , , , , , , , , , ,7 0, , , , , , , , , , ,8 0,788 I 0, , , , , , , , , ,9 0, , , , , , ,831 S 0, , , ,0 0, , ,846 I 0, , , , , , ,862 I 1,1 0, , , , , , , , , , ,2 0, , , , , , , , , ,901 S u 0, , , , , , ,913 I 0, , , ,4 0, , , , , , , , , , ,5 0, ,934 5 ' 0, , , , , , , , ,6 0, , , , , , , , , , ,7 0, , , , ,959 I 0, , ,961* 6 0, , ,8 0, , , , , , , , , , ,9 0, , , , , , , , ,9761 0, ,0 0, , , , , , , , , , ,1 0, , , , , , ,984 0, , , ,2 0, , , ,9871 0,9875 0, ,9881 0, , , , , , ,9901 0, , , ,9911 0, , ,4 0, , , ,992 S 0, , , , , , ,5 0, , , , ,994,5 0, , , , , ,6 0, , , , , , , ,996 2' 0, , ,7 0, , , , , , ,9971 0, ,9973 0, ,8 0, , ,9976 0, , , , , , , ,9 0, , , , , , , ,9985 0, ,998 6 TABLE POUR LES GRANDES VALEURS DE / 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,8 4,0 4,5 0, , ,9993! 0, , ri,m 76 0, , , , Noa: n(-f)=i-n(0 Formulaire de mahcinaiques CGMAT -2- B.T.S, Compabilié p gesion des organisaions

Épreuve de Mathématiques

Épreuve de Mathématiques Épreuve de Mahémaiques La claré des raisonnemens e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. L usage d un insrumen de calcul e du formulaire officiel de

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé mis en ligne par le Canopé de l académie de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Base Naionale des Sujes d'examens de l'enseignemen professionnel

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

CAP C.C.F. Académie de BORDEAUX ÉTUDE DU MOUVEMENT D UN SOLIDE FICHE DESCRIPTIVE DU SUJET DESTINÉE AU PROFESSEUR

CAP C.C.F. Académie de BORDEAUX ÉTUDE DU MOUVEMENT D UN SOLIDE FICHE DESCRIPTIVE DU SUJET DESTINÉE AU PROFESSEUR Ce documen comprend : une fiche descripive du suje desinée au professeur. une siuaion d évaluaion desinée au candida. une grille d'évaluaion / noaion desinée au professeur. FICHE DESCRIPTIVE DU SUJET DESTINÉE

Plus en détail

Probabilités 5 : Loi normale centée réduite N (0 ; 1)

Probabilités 5 : Loi normale centée réduite N (0 ; 1) «I» : Théorème définiion / Théorème admis Probabiliés 5 : Loi normale cenée réduie N ( ; ) La foncion f définie sur R par f ()= π e es une densié de probabilié sur R Il es clair que f es coninue e posiive

Plus en détail

1 - Etude d'une alimentation à découpage

1 - Etude d'une alimentation à découpage 1 - Eude d'une alimenaion à découpage BTS ELECTROTECHNIQUE - Session 1997 - PHYSIQUE APPLIQUEE Durée : 4 heures Coefficien : 3 Cee éude compore rois paries, liées enre elles, mais pouvan êre raiées indépendammen

Plus en détail

Unité 6 : La proportionnalité numérique 3 ème ESO

Unité 6 : La proportionnalité numérique 3 ème ESO UITÉ 6 : LA PROPORTIOALITÉ UMÉRIQUE POUR DÉBUTER Il fau rappeler - Définiion de grandeur : Une grandeur es une caracérisique qui es mesurée, e la valeur es exprimée par un nombre. Le concep de grandeur

Plus en détail

2nde FICHE n 8 Utiliser les différents types de pourcentage

2nde FICHE n 8 Utiliser les différents types de pourcentage 2nde FICHE n 8 Uiliser les différens ypes de pourcenage Lorsque l on éudie un problème avec des pourcenages, il convien d abord de se poser la quesion du ype de pourcenage uilisé dans ce problème : le

Plus en détail

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI UNIVERSIE PARIS OUES, NANERRE LA DEFENSE UFR SEGMI Année universiaire 202 203 Cours d économérie L3 Economie Cours de Valérie MIGNON D de Benoî CHEZE e David GUERREIRO Exercice : Données en coupe D Inroducion

Plus en détail

Exercices de baccalauréat série S sur la loi exponentielle

Exercices de baccalauréat série S sur la loi exponentielle Eercices de baccalauréa série S sur la loi eponenielle (page de l énoncé/page du corrigé) La compagnie d'auocars (Bac série S, cenres érangers, 23) (2/) Durée de vie d'un composan élecronique (Bac série

Plus en détail

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que PROPORTIONNALITE a) Définiion d une proporion a Quare nombres a, b, c e d éan non nuls, on di que c l une des condiions suivanes (équivalenes) es vérifiée : b d es une proporion lorsque Condiion 1 : Les

Plus en détail

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages Chapire 3 Pourcenages Objecifs du chapire : iem références auo évaluaion relier évoluions e pourcenages éudier des évoluions successives calculer le aux d évoluion réciproque 19 I lien enre une évoluion

Plus en détail

Exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation»

Exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation» Exercice du cours Managemen Bancaire : «Calcul de la VaR d une obligaion» L une des préoccupaions des gesionnaires des risques dans les banques es de prendre en compe les caracérisiques des porefeuilles

Plus en détail

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque?

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque? Nom : Prénom : Conrôle de mahémaiques, Le mercredi 30 mai 2012 Exercice 1. [3 poins] 1) Parmi les cinq premières figures numéroées de a) à e) recopie sur a copie le numéro de celles qui son des polygones

Plus en détail

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure TP SdF N 25 Modélisaion e opimisaion de la mainenance prévenive e correcive d un maériel soumis à usure Ce TP complèe le TP N 22 sur la modélisaion e l opimisaion de la mainenance d un maériel réparable

Plus en détail

Exercice n HA Corrigé

Exercice n HA Corrigé ENAC/ISTE/HYDRAM HYDROTHEQUE : base de données d exercices en Hydrologie Cours : Hydrologie Appliquée / Thémaique : Processus & Réponse Hydrologiques Exercice n HA 0101 - Corrigé Logo opimisé par J.-D.Bonour,

Plus en détail

Redressement commandé

Redressement commandé Redressemen commandé Exercice 1 On donne ci-dessous le chronogramme de la ension aux bornes de la charge u C.( 1 V / div ) La fréquence du signal u issue du ransformaeur es de 5 Hz. De plus, on donne E

Plus en détail

Temporisation par bascules monostables

Temporisation par bascules monostables Temporisaion par bascules Monosables TSTI 00-0 Chrisian Loverde Temporisaion par bascules monosables Rappels :. Charge d un condensaeur à ension consane i R C Débu de la charge u C (0)= 0 V u C A la fin

Plus en détail

Série d exercices Bobine et dipôle RL

Série d exercices Bobine et dipôle RL xercice 1 : Série d exercices Bobine e dipôle R On réalise un circui élecrique comporan une bobine d inducance e de résisance r, un conduceur ohmique de résisance R, un généraeur de ension de f.é.m. e

Plus en détail

Première STG Chapitre 4 : taux d'évolution. page n

Première STG Chapitre 4 : taux d'évolution. page n Première STG Chapire 4 : aux d'évoluion. page n 1 On peu lire dans un journal : " Le prix de la able basse, qui es passé de 500 à 502, n'a praiquemen pas bougé. " e plus loin : " Hausse impressionnane

Plus en détail

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures niversié de Paris X Nanerre École Docorale MP DA conomie Inernaionale, Modélisaion e Analyse des Poliiques Économiques Année 2004-2005 XAMN FINAL Économie Monéaire Inernaionale 27 janvier 2005 2 heures

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

Problème d'examen (Représentation triangulaire, ACP et élections)

Problème d'examen (Représentation triangulaire, ACP et élections) ISFA 2 année 2-21 Problème d'examen (Représenaion riangulaire, ACP e élecions) D. Chessel Les exercices (17-2) son indépendans du problème (1-16). 1. Quesions On considère la marice A à n = 14 lignes e

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Année universitaire Exercice 1. Travaux Dirigés numéro 4 SERIES TEMPORELLES

Année universitaire Exercice 1. Travaux Dirigés numéro 4 SERIES TEMPORELLES U Année universiaire 2-2 Travaux Dirigés numéro 4 SERIES TEMPORELLES 1 Exercice 1 Nous avons simulé les séries suivanes, où es un brui aléaoire, s une série d effes saisonniers, une endance linéaire e

Plus en détail

I. Mesure de température et chaîne de transmission optique

I. Mesure de température et chaîne de transmission optique IRSCPA BTS INFORMATIQUE INDUSTRIELLE Session 1998 Epreuve de : Physique Appliquée Durée : 3 heures Coefficien :3 Les amplificaeurs opéraionnels son ous considérés comme idéaux. Un formulaire es fourni

Plus en détail

Cinétique de l oxydation du sulfite de cuivre

Cinétique de l oxydation du sulfite de cuivre Cinéique de l oxydaion du sulfie de cuivre Grégory Vial 11 avril 2006 Résumé On s inéresse à l oxydaion du sulfie de cuivre : il s agi d une réacion d auocaalyse don l éude cinéique condui à un problème

Plus en détail

Echantillonnage d un signal : principe et conditions à satisfaire.

Echantillonnage d un signal : principe et conditions à satisfaire. Page 1 Echanillonnage d un signal : principe e condiions à saisfaire. I. Inroducion. L acquisiion d une grandeur analogique par l inermédiaire d une care d acquisiion possédan plusieurs enrées analogiques

Plus en détail

VIII Les gaz, partie F

VIII Les gaz, partie F VIII Les gaz, parie F Exercices de niveau A Le premier exercice de niveau A s appuie sur une analyse dimensionnelle vue dans le cours pour esimer une durée de diffusion. Le deuxième aide à apprendre l

Plus en détail

Traitement Numérique du Signal. Signaux physiques et modèles théoriques

Traitement Numérique du Signal. Signaux physiques et modèles théoriques Traiemen Numérique du Signal James L. Crowley Deuxième Année ENSIMAG deuxieme semesre 2008/2009 Séance : 6 février 2009 Signaux physiques e modèles héoriques Signal e Informaion...2 Représenaion analogique

Plus en détail

CALCUL DES CENTILES ET DES VALEURS DU Z POUR LA TAILLE-POUR L'ÂGE, LE POIDS-POUR-L'ÂGE ET L'IMC-POUR-L'ÂGE

CALCUL DES CENTILES ET DES VALEURS DU Z POUR LA TAILLE-POUR L'ÂGE, LE POIDS-POUR-L'ÂGE ET L'IMC-POUR-L'ÂGE CALCUL DES CENTILES ET DES VALEURS DU Z POUR LA TAILLE-POUR L'ÂGE, LE POIDS-POUR-L'ÂGE ET L'IMC-POUR-L'ÂGE La méhode uilisée pour consruire les références 2007 de l'oms s'es appuyée sur le modèle GAMLSS

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

M1 Economie : "colle" d économie industrielle

M1 Economie : colle d économie industrielle M Economie : "colle" d économie indusrielle Armel JACQUES novembre 0 Les calcularices son auorisées ; en revanche les appareils permean de communiquer (éléphone porable ou aures) son inerdis. Concurrence

Plus en détail

Jean-Louis CAYATTE

Jean-Louis CAYATTE Jean-Louis CAYATTE hp://jlcayae.free.fr/ jlcayae@free.fr Chapire 4 La durée du chômage Quand on parle de la durée du chômage, si l on n y prend pas garde, on confond facilemen la durée moyenne du chômage

Plus en détail

Figure 1. Enregistrements et spectres fréquentiels des deux émetteurs sonores

Figure 1. Enregistrements et spectres fréquentiels des deux émetteurs sonores Classe de Terminale S Physique Thème abordé : Ondes sonores Poin Cours Exercice Pour ou l exercice, on considère la célérié v du son dans l air, à 2 C, égale à 34 m.s. Les rois paries de l exercice son

Plus en détail

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht)

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht) Corrigé des exercices de l examen du 3 janvier 7 (Les N de page fon référence au livre «Physique» de E. Hech) Q1. Deux charges poncuelles de +5 µc e +1 µc se rouven sur l axe des x aux poins des coordonnées

Plus en détail

Textures. François Faure. 2 Coordonnées de texture Modes de répétition Le problème des surfaces courbes... 5

Textures. François Faure. 2 Coordonnées de texture Modes de répétition Le problème des surfaces courbes... 5 Texures François Faure Résumé Table des maières 1 Inroducion 2 2 Coordonnées de exure 3 2.1 Modes de répéiion............................... 3 2.2 Le problème des surfaces courbes.......................

Plus en détail

Chapitre n 10 LES RÉACTIONS D ESTÉRIFICATION ET D HYDROLYSE

Chapitre n 10 LES RÉACTIONS D ESTÉRIFICATION ET D HYDROLYSE Chapire n LES RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE T ale S I- Les esers )Formule générale Un eser comprend deux chaînes carbonées R e R séparées par la foncion eser : Rq. : Si les chaînes carbonées son

Plus en détail

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION ANALYSE DES SYSTÈMES ASSERVIS 7. Caracérisaion des sysèmes asservis 7.. Srucure des sysèmes asservis Un sysème asservi linéaire peu se représener par le schéma 7.. On y rerouve, une chaîne d acion qui

Plus en détail

Les fonctions logiques & l algèbre de Boole

Les fonctions logiques & l algèbre de Boole Les foncions logiques & l algèbre de Boole 1 - Algèbre de Boole Hisorique : Georges BOOLE, philosophe e mahémaicien anglais, publia en 1854 un essai sur les raisonnemens logiques poran sur les proposiions

Plus en détail

Un modèle de propagation d un nuage de fumée

Un modèle de propagation d un nuage de fumée Un modèle de propagaion d un nuage de fumée Gabriel Caloz & Grégory Vial 9 février 26 Résumé L obe de ce documen es de présener à l aide d ouils élémenaires le problème de ranspor dans R. Une modélisaion

Plus en détail

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites Chapire 5 Modèles d Inensié Les deux approches dans la modélisaion de risque de crédi approche srucurel e approche d inensié ne son pas compaibles : dans les modèles d inensié, l exisence de l inensié

Plus en détail

Ce document a été numérisé par le Canopé de l académie de Bordeaux pour la Base nationale des sujets d Examens de l enseignement professionnel.

Ce document a été numérisé par le Canopé de l académie de Bordeaux pour la Base nationale des sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le Canopé de l académie de Bordeaux pour la Base nationale des sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

REPONSE DES CIRCUITS A UN ECHELON DE TENSION

REPONSE DES CIRCUITS A UN ECHELON DE TENSION LTOINTIQU Duperray Lycée FBUISSON PTSI PONS DS IUITS A UN HLON D TNSION Dans les circuis élecriques, les régimes on oujours un débu Nous allons éudier commen à parir des condiions iniiales, les courans

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Les indices de prix du bois. Méthodologie

Les indices de prix du bois. Méthodologie Les indices de prix du bois Méhodologie Le Minisère de l agriculure, de l alimenaion, de la pêche, de la ruralié e de l aménagemen du errioire (MAARAT) a décidé de mere en place un indice d'évoluion du

Plus en détail

F2SMH. Biomécanique L1 UE11 TOULOUSE. Julien DUCLAY. Pôle Sport - Bureau 301

F2SMH. Biomécanique L1 UE11 TOULOUSE. Julien DUCLAY. Pôle Sport - Bureau 301 FSMH TOULOUSE Biomécanique L1 UE11 Suppor de cours Amaranini Waier Duclay Laurens Julien DUCLAY julien.duclay@univ-lse3.fr Pôle Spor - Bureau 31 z (m) Exemple 1 : équaions horaires O ez Chue libre vericale

Plus en détail

CORRECTION des EXERCICES de RADIOACTIVITE

CORRECTION des EXERCICES de RADIOACTIVITE CORRECTIO des EXERCICES de RDIOCTIVITE.1. Désinégraion du carbone 14. On donne Les numéros aomiques suivans : Z 6 pour le carbone (C) e Z 7 pour l azoe (). Pourquoi les noyaux de symboles 1 6 C e 13 6

Plus en détail

2 t +t+ et. et on applique le principe de superposition , où (C 1,C 2 ) R 2. tet, où (C 1,C 2 ) R i = i 16 e2it =Re 1/??

2 t +t+ et. et on applique le principe de superposition , où (C 1,C 2 ) R 2. tet, où (C 1,C 2 ) R i = i 16 e2it =Re 1/?? PCSI-PCSI DNSn 4 Corrigé 4-5 Eercice ENTRAINEMENT PERSONNEL R R Déerminer les soluions y: de chacune des équaions différenielles suivanes : y(). y +y +y=++e Soluion. (E c ): r +r+=, soluions complees,

Plus en détail

Exercices : Série 1 Corrigés

Exercices : Série 1 Corrigés Exercices : Série 1 Corrigés 1 Durée nécessaire pour doubler le PIB par habian Déniions : y 0 : PIB par ravailleur au débu y T : PIB par ravailleur après T années g : aux de croissance [%] r : aux de croissance

Plus en détail

RELATIONS FONCTIONNELLES. I Généralités

RELATIONS FONCTIONNELLES. I Généralités Universié d'angers : LSEN relaions foncionnelles p. Parie A : Proporionnalié RELATIONS FONCTIONNELLES I Généraliés / Définiion : Soien deux suies de nombres réels : (x ;x ;x ;x 4 ) e (y ;y ;y ;y 4 ). Ces

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Sur le graphique fourni ci-dessous, on a tracé une partie de la courbe représentative (C ) de la fonction g définie sur par : g (x) =

Sur le graphique fourni ci-dessous, on a tracé une partie de la courbe représentative (C ) de la fonction g définie sur par : g (x) = METROPOLE SEPTEMBRE 11 EXERCICE 1 5 poins Commun à ous ls candidas Un magasin vnd ds mours élcriqus ous idniqus. Un éud saisiqu du srvic après-vn a prmis d éablir qu la probabilié qu un mour omb n pann

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 5 Ce sujet comporte 7 pages numérotées de 1 à 7 Ce sujet nécessite l utilisation d une feuille de

Plus en détail

Correction Bac Blanc de juin : Liban 31 mai 2010 TES

Correction Bac Blanc de juin : Liban 31 mai 2010 TES Correction Bac Blanc de juin : Liban 31 mai 2010 Modalités : Durée de l épreuve : 3 heures ; Calculatrice autorisée ; Répondre sur votre copies) et non sur le présent sujet, sauf l annexe à remettre ;

Plus en détail

Mathématiques Financières

Mathématiques Financières Mahémaiques Financières ------------------------------------------------------- 4 ème parie - Marchés financiers en emps coninu & modélisaion des acions Universié de Picardie Jules Verne Amiens Jean-Paul

Plus en détail

Banking de permis d émission dans l ET-ETS et valeur d option

Banking de permis d émission dans l ET-ETS et valeur d option Banking de permis d émission dans l E-E e valeur d opion G CO2 Benoî PELUCHON ur un marché de permis d émission le «banking» es la possibilié d uiliser des permis émis pour une période donné, mais non-uilisé,

Plus en détail

Recueil d exercices d analyse pour une remise à niveau

Recueil d exercices d analyse pour une remise à niveau Recueil d exercices d analyse pour une remise à niveau Suies e Séries numériques Exercice (Cesaro e sinus iéré). Théorème de Cesaro Soi (u n ) n une suie réelle convergene de limie l. Monrer que la suie

Plus en détail

Cas du circuit RL. I. Un exemple d application d un circuit RL : un composant du système d alimentation en gazole d une Logan.

Cas du circuit RL. I. Un exemple d application d un circuit RL : un composant du système d alimentation en gazole d une Logan. Cas du circui I. Un exemple d applicaion d un circui : un composan du sysème d alimenaion en gazole d une ogan. xrai du suje IBAN 2006 a Dacia ogan, conçue par le consruceur français enaul es produie au

Plus en détail

) 2) Les prix unitaires de chaque matériau sont représentés pour le premier semestre par la matrice P 1 :

) 2) Les prix unitaires de chaque matériau sont représentés pour le premier semestre par la matrice P 1 : Exercice 1 Opéraions sur les marices Pour la réalisaion de ses chaniers, une enreprise de gros-œuvre du bâimen achèe, auprès de deux fournisseurs A e B, le béon (en m 3, les briques (en nombre de palees

Plus en détail

Baccalauréat ES Polynésie 13 septembre 2012

Baccalauréat ES Polynésie 13 septembre 2012 Baccalauréat ES Polynésie 13 septembre 01 EXERCICE 1 Commun à tous les candidats 4 points Le tableau ci-dessous représente l évolution de l indice du PIB de la Chine de 1985 à 005, base 100 en 1985 année

Plus en détail

INTÉGRALES DÉPENDANT DE

INTÉGRALES DÉPENDANT DE 7 décembre 8 7 décembre 8 INTÉGRALES DÉPENDANT DE PARAMÈTRES Table des maières JPB 7 décembre 8 I Rappels e noaions Noaions 3 Rappels 3. Sur les foncions d une variable................. 3 II Inerversion

Plus en détail

( ) = 20 + 10 e x. x x x 1 2. lim 10e = 0. 2. Étudier les variations de la fonction f et dresser son tableau de variations.

( ) = 20 + 10 e x. x x x 1 2. lim 10e = 0. 2. Étudier les variations de la fonction f et dresser son tableau de variations. Corrigé Parie A La foncion f es définie sur l inervalle [ ; + [ par f ( ) ( ) = + e On noe C la courbe représenaive de la foncion f dans un repère orhonomal ( Oi,, j) cm) (unié graphique Éudier la limie

Plus en détail

Terminale ES - Travailler en autonomie - Pondichéry Avril 2016

Terminale ES - Travailler en autonomie - Pondichéry Avril 2016 Terminale ES - Travailler en autonomie - Pondichéry Avril 216 Exercice 1 4 points Commun à tous les candidats Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des quatre questions

Plus en détail

TP N 2 ACQUISITION ET CONVERSION D UNE GRANDEUR PHYSIQUE

TP N 2 ACQUISITION ET CONVERSION D UNE GRANDEUR PHYSIQUE TP N 2 ACQUISITION ET CONVERSION D UNE GRANDEUR PHYSIQUE SAVOIR : PRE-REQUIS AOP en régime linéaire. Oscillaeur à base de circuis R-C. Codage binaire OBJECTIFS SAVOIR : Valider par le calcul e la mesure,

Plus en détail

Baccalauréat technologique. Épreuve : Mathématiques

Baccalauréat technologique. Épreuve : Mathématiques MTGME Baccalauréat technologique Épreuve : Mathématiques Série SCIENCES ET TECHNOLOGIES DE L GESTION SESSION 20 Spécialités : Mercatique (coefficient : ) Comptabilité et finance d entreprise (coefficient

Plus en détail

Commande du plafonnier d'un véhicule. CO8.sin1. Rechercher et choisir une solution logicielle ou matérielle au regard de la définition d'un système.

Commande du plafonnier d'un véhicule. CO8.sin1. Rechercher et choisir une solution logicielle ou matérielle au regard de la définition d'un système. STI2D SIN V. Commande du plafonnier d'un véhicule. CO8.sin. Rechercher e choisir une soluion logicielle ou maérielle au regard de la définiion d'un sysème. BP / Clavier Sans conac IR / ILS A conac FC Capeur

Plus en détail

Calcul Analytique et Numérique de la Résistance de Prise de Terre

Calcul Analytique et Numérique de la Résistance de Prise de Terre Quarième Conférence Inernaionale sur le Génie Elecrique CIGE 10, 03-04 Novembre 2010, Universié de Bechar, Calcul Analyique e Numérique de la Résisance de Prise de Terre S. Flazi e A. Benomar, Déparemen

Plus en détail

Première E.S. Lycée Desfontaines Melle. Pourcentages

Première E.S. Lycée Desfontaines Melle. Pourcentages Première E.S. Lycée Desfonaines Melle I. Inroducion Pourcenages Définiion : On considère deux quaniés Q e Q de même naure, exprimées dans la même unié. Dire que Q es égale à % de Q revien à dire que Q

Plus en détail

FONCTIONS NUMÉRIQUES

FONCTIONS NUMÉRIQUES ICHE DE PRÉSETATI ICHE DE PRÉSETATI ICHE DE PRÉSETATI BJECTI(S) Définir une foncion numérique sur un inervalle Êre capable à l'issue des ravaux de : EXPLICITATI respecer l'inervalle de définiion disinguer

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

Baccalauréat ES France 15 juin 2006

Baccalauréat ES France 15 juin 2006 Baccalauréat ES France 15 juin 2006 EXERCICE 1 3 points Commun tous les candidats Soit f une fonction définie et dérivable sur l intervalle [ 3 ; + [, croissante sur les intervalles [ 3 ; 1] et [2 ; +

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Les Qualisar+

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

Réponse d un dipôle RC à un échelon de tension

Réponse d un dipôle RC à un échelon de tension 1- Le dipôle C es une associaion en série d un condensaeur e d un conduceur ohmique ( ou résisor) : I- Inroducion 2- L échelon de ension : es le passage insanané d une ension de la valeur à une valeur

Plus en détail

2 mars calculatrice autorisée

2 mars calculatrice autorisée DS type Baccalauréat T(L)/ES 2 mars 202 - calculatrice autorisée EXERCICE Durée : 3 heures 5 points Le tableau suivant donne l évolution du chiffre d affaires du commerce équitable en France, exprimé en

Plus en détail

ETUDE DE LA FONCTION ACQUERIR (CAPTEUR & CONDITIONNEUR DU SIGNAL)

ETUDE DE LA FONCTION ACQUERIR (CAPTEUR & CONDITIONNEUR DU SIGNAL) ETUDE DE LA FONCTION ACQUERIR (CAPTEUR & CONDITIONNEUR DU SIGNAL) ACQUISITION DE LA POSITION DU CYCLE La posiion du cycle es délivrée par un capeur à effe Hall linéaire déecan 3 posiions disinces de la

Plus en détail

Facteur d accélération associé à une loi normale ou lognormale

Facteur d accélération associé à une loi normale ou lognormale TP N 39 Faceur d accéléraion associé à une loi normale ou lognormale Uilisés pour diminuer la durée e le coû des essais, les faceurs d accéléraion (Arrhenius, Peck, Basquin, Norris-Landzberg ) son ous

Plus en détail

FIABILITE. Eléments de cours CONCEPTION - RÉALISATION FIABILITÉ DE CONDUITE FIABILITÉ PRÉVISIONNELLE FIABILITÉ FIABILITÉ D'EXPLOITATION

FIABILITE. Eléments de cours CONCEPTION - RÉALISATION FIABILITÉ DE CONDUITE FIABILITÉ PRÉVISIONNELLE FIABILITÉ FIABILITÉ D'EXPLOITATION Ce chapire es le premier, d une série de rois, consacré à ce que l on appelle en mainenance le concep «FMD» ; c es à dire, MAINTENABILITE e DISPONIBILITE. Les objecifs de ce chapire seron de déerminer

Plus en détail

BACCALAUREAT BLANC. Session Durée de l'épreuve : 3 heures Coefficient : 3

BACCALAUREAT BLANC. Session Durée de l'épreuve : 3 heures Coefficient : 3 BACCALAUREAT BLANC Session 2014 Série : STMG Épreuve : Mathématiques Durée de l'épreuve : 3 heures Coefficient : 3 MATERIEL AUTORISE OU NON AUTORISE : Calculatrice autorisée Aucun échange de matériel autorisé

Plus en détail

ISFA 2 année 6 février heures. 1. Rang d'une matrice de corrélation

ISFA 2 année 6 février heures. 1. Rang d'une matrice de corrélation ISFA année 6 février 00 - heures Toues les analyses en composanes principales considérées son ici du ype ACP normée, encore appelée aussi ACP sur marice de corrélaion. Répondre dans la place imparie, brièvemen,

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance

Plus en détail

SECONDE PARTIE - ELECTRONIQUE -

SECONDE PARTIE - ELECTRONIQUE - ENS de Cachan Concours d enrée en 3 ème année pour la préparaion à l agrégaion de Génie Elecrique Session 2001 SECONDE PARTIE - ELECTRONIUE - Ce problème se propose d éudier le foncionnemen de l élecronique

Plus en détail

CHAPITRE 5 Fonction linéaire. Proportionnalité. Fonction affine.

CHAPITRE 5 Fonction linéaire. Proportionnalité. Fonction affine. CHAPITRE 5 Foncion linéaire. Proporionnalié. Foncion affine. (Voir : 4 ème, chapire 5 ; 3 ème, chapires 3, 13.) I) Foncion linéaire A) Définiion a désigne un nombre relaif connu e fié. Définiions : La

Plus en détail

Fonction définie par une intégrale

Fonction définie par une intégrale [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Foncion définie par une inégrale Eude de foncions définies par une inégrale Exercice [ 53 ] [correcion] Soi f : x d + x 3 + 3 a) Monrer que f es définie

Plus en détail

TD 4 : correction. L3 Intégration Exercice 1. Fonctions presque nulles. On considère la suite d ensembles mesurables A n = x R f(x) 1.

TD 4 : correction. L3 Intégration Exercice 1. Fonctions presque nulles. On considère la suite d ensembles mesurables A n = x R f(x) 1. L3 Inégraion 1 212-213 TD 4 : correcion Eercice 1. Foncions presque nulles } On considère la suie d ensembles mesurables A n = Rf( 1. n Par hypohèse, ils son ous de mesure nulle : = f dλ 1 A n n µ(a n.

Plus en détail

LA THEORIE DE L'ECHANTILLONNAGE : LE THEOREME DE SHANNON

LA THEORIE DE L'ECHANTILLONNAGE : LE THEOREME DE SHANNON LA HEORIE DE L'ECHANILLONNAGE : LE HEOREME DE SHANNON 5 0 5 0 5 oue communicaion se fai par l inermédiaire de signaux, qui peuven êre acousiques (parole, e sons en général), élecromagnéiques (radio), élecriques

Plus en détail

TD N 5 : Systèmes linéaires Les outils mathématiques

TD N 5 : Systèmes linéaires Les outils mathématiques Sysèmes Elecronique DUT APP 06 / 07 TD N 5 : Sysèmes linéaires Les ouils mahémaiques Chap. : Inroducion aux SA S.POUJOULY @poujouly hp://poujouly.ne Elémens de correcion Exercice n 3 : Modélisaion d'un

Plus en détail

Fonctions numériques Proportionnalité

Fonctions numériques Proportionnalité Foncions numériques Proporionnalié I Foncions numériques 1 ) Définiion e noaions Définir une foncion f qui à x associe y c es donner une formule mahémaique qui perme pour oue valeur donnée de x soi de

Plus en détail

Intégrales Généralisées

Intégrales Généralisées Inégrales Généralisées Eercice. Monrer la convergence e calculer la valeur des inégrales : I = 3 e d ; I = + d ln() ; I 3 = ( + ) d Allez à : Correcion eercice Eercice. Les inégrales généralisées suivanes

Plus en détail

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté CHAPITRE II Oscillaions libres amories Sysème à un degré de liberé 011-01 CHAPITRE II Oscillaions libres amories : Sysèmes à un degré de liberé Inroducion : Le pendule élasique comme le pendule pesan,

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3.

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3. Mahémaiques 05-06 Colle n o 5 Limies Lcée Charlemagne PCSI Eercice Eercice 5 Soi(u n) n 0 R N elle que les suies (u n) n 0, (u n+) n 0 e (u 3n) n 0 convergen Prouver que(u n) n 0 converge Eercice On considère

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

BAC BLANC TES Session 2006 MATHEMATIQUES Lycée Pierre Corneille Durée de l épreuve 3h. Exercice 2 (5 points) Commun à tous les candidats

BAC BLANC TES Session 2006 MATHEMATIQUES Lycée Pierre Corneille Durée de l épreuve 3h. Exercice 2 (5 points) Commun à tous les candidats BAC BLANC TES Session 006 MATHEMATIQUES Lycée Pierre Corneille Durée de l épreuve 3h Exercice QCM (3 points) A faire sur la feuille annexe Exercice (5 points) Une résidence de vacances propose deux types

Plus en détail

Diode, thyristor : le redressement

Diode, thyristor : le redressement PAIE 11 FONCIONS 47, hyrisor : le redressemen La conversion d énergie appelée redressemen perme d obenir un couran unidirecionnel à parir d un couran alernaif sinusoïdal ne diode peu assurer cee foncion

Plus en détail