Première STMG progression Séquence : Proportion d une sous population dans une population.

Dimension: px
Commencer à balayer dès la page:

Download "Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population."

Transcription

1 Première STMG progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter la relation entre effectifs et proportion Le couple médiane et écart inter-quartile ; diagramme en boîte. 4 Information chiffrée : taux d évolution, variation globale et relative. 4 BO : objectifs de la partie information chiffrée BO : capacités attendues BO : commentaires Suites et fonctions : fonction polynôme de degré 2 et résolution d équation du second degré. 4 BO : objectifs de la partie suites et fonctions BO : capacités attendues BO : commentaires Information chiffrée : intersection et réunion des sous-populations. 5 BO : objectifs de la partie information chiffrée BO : capacités attendues BO : commentaires Suites et fonctions :générer une suite, représentation graphique. 6 BO : objectifs de la partie suites et fonctions BO : capacités attendues BO : commentaires Statistique et probabilités : schéma de Bernoulli. 8 BO : objectifs de la partie statistique et probabilités BO : contenus, capacités attendues et commentaires Première STMG progression. - 1

2 Première STMG progression. - 2 Suites et fonctions : suite arithmétique. 9 BO : objectifs de la partie suites et fonctions BO : contenus, capacités attendues et commentaires Information chiffrée : évolutions successives ou réciproque. 10 BO : objectifs de la partie information chiffrée BO : contenus, capacités attendues et commentaires Statistique et probabilité : couple moyenne et écart-type. 10 BO : objectifs de la partie statistique et probabilité BO : contenus, capacités attendues et commentaires Suites et fonctions : dérivation des fonctions polynomiales de degré BO : objectifs de la partie statistique et probabilité BO : contenus, capacités attendues et commentaires Statistique et probabilité : variable aléatoire et loi binomiale. 12 BO : objectifs de la partie statistique et probabilité BO : contenus, capacités attendues et commentaires Suites et fonctions : dérivation des fonctions polynomiales de degré BO : objectifs de la partie statistique et probabilité BO : contenus, capacités attendues et commentaires Première STMG progression. - 2

3 Première STMG progression. - 3 Fil rouge. Progression STMG. Le fil rouge de ma progression sera l utilisation des TICE. Ils sont la plupart du temps intégrés dans les thèmes parallèles mais également dans le thème central. D autant plus que le programme spécifie d aborder l un des aspects tice : Feuilles automatisées de calcul. Axes du programme. 1. Information chiffrée 2. Suites et fonctions 3. Statistiques et probabilités Séquence : Proportion d une sous population dans une population. Information chiffrée Différencier l expression d une proportion de celle d une variation relative. Conforter les méthodes déjà rencontrées à l aide de situations variées relevant par exemple d un contexte d économie-gestion ou du traitement d informations chiffrées fournies par les médias. Acquérir une pratique aisée de techniques élémentaires de calcul sur les pourcentages. Développer une attitude critique vis-à-vis des informations chiffrées. Information chiffrée : connaître et exploiter la relation entre effectifs et proportion. Commentaires BO : Exemples : taux d activité, taux de chômage, part de marché, cote de popularité. Première STMG progression. - 3

4 Première STMG progression. - 4 Le couple médiane et écart inter-quartile ; diagramme en boîte. Information chiffrée : taux d évolution, variation globale et relative. BO : objectifs de la partie information chiffrée. Différencier l expression d une proportion de celle d une variation relative. Conforter les méthodes déjà rencontrées à l aide de situations variées relevant par exemple d un contexte d économie-gestion ou du traitement d informations chiffrées fournies par les médias. Acquérir une pratique aisée de techniques élémentaires de calcul sur les pourcentages. Développer une attitude critique vis-à-vis des informations chiffrées. BO : capacités attendues. Connaître et exploiter les relations t = y2 y1 y 1 et y 2 = (1 + t)y 1. Distinguer si un pourcentage exprime une proportion ou une évolution. BO : commentaires. Exemples qu il faut rencontrer : taux de croissance annuel du PIB, taux d inflation, taux de TVA, taux d intérêt. On peut utiliser les indices pour traduire des variations. Et on peut à cette occasion parler des «points de pourcentage». Suites et fonctions : fonction polynôme de degré 2 et résolution d équation du second degré. BO : objectifs de la partie suites et fonctions. Approfondir la connaissance des fonctions polynômes de degré deux, et enrichir l ensemble des fonctions mobilisables en vue de la résolution de problèmes. Utiliser suites et fonctions dans le cadre de résolutions de problèmes, en lien avec les enseignements technologiques. Première STMG progression. - 4

5 Première STMG progression. - 5 Utiliser de façon complémentaire les différents outils de calcul et de représentation (à la main, à la calculatrice, au tableur...) et l algorithmique. BO : capacités attendues. Résoudre une équation ou une inéquation du second degré. Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Équation du second degré, discriminant. BO : commentaires. On évitera toute technicité excessive. Il s agit de consolider et d étendre les connaissances acquises en seconde sur les fonctions du second degré. La mise sous forme canonique n est pas un attendu du programme. 1. Rappels sur les polynômes du second degré : Représenter graphiquement une fonction avec la calculatrice. Dresser le tableau de variation à partir de la représentation graphique. Déterminer un extremum à partir du tableau de variation. Déterminer un extremum à partir de la représentation graphique. Forme développée du trinôme (définition). Dresser le tableau de variation à partir de la forme canonique. Résoudre graphiquement une équation ou une inéquation (dans le cadre d un problème). 2. Résoudre algébriquement une équation. Information chiffrée : intersection et réunion des sous-populations. BO : objectifs de la partie information chiffrée. Différencier l expression d une proportion de celle d une variation relative. Conforter les méthodes déjà rencontrées à l aide de situations variées relevant par exemple d un contexte d économie-gestion ou du traitement d informations chiffrées fournies par les médias. Acquérir une pratique aisée de techniques élémentaires de calcul sur les pourcentages. Développer une attitude critique vis-à-vis des informations chiffrées. Première STMG progression. - 5

6 Première STMG progression. - 6 BO : capacités attendues. Pour deux sous-populations A et B d une population E, relier les proportions de A, de B, de A B et de A B. BO : commentaires. On peut étendre l étude à plusieurs sous-populations disjointes deux à deux. Observer que pour une partition la somme des fréquences vaut 1. Entrée sur les tableaux croisés (connus depuis le collège). Identifier les populations et sous populations. Rappels sur les proportions. Réunion. Intersection. Disjoint. Refaire sur un schéma le raisonnement de calcul des proportions pour intersection non vides (refaire le schéma pour chaque utilisation de la formule). Formule liant les proportions de A, B,... Suites et fonctions :générer une suite, représentation graphique. BO : objectifs de la partie suites et fonctions. Découvrir la notion de suite numérique et différents modes de génération. Utiliser suites et fonctions dans le cadre de résolutions de problèmes, en lien avec les enseignements technologiques. Utiliser de façon complémentaire les différents outils de calcul et de représentation (à la main, à la calculatrice, au tableur...) et l algorithmique. BO : capacités attendues. Modéliser et étudier une situation simple à l aide de suite Mettre en œuvre un algorithme ou utiliser un tableur pour obtenir une liste de termes d une suite, Mettre en œuvre un algorithme ou utiliser un tableur pour calculer un terme de rang donné. Réaliser et exploiter une représentation graphique des termes d une suite. Première STMG progression. - 6

7 Première STMG progression. - 7 BO : commentaires. Important de varier les outils et les approches. Tableur et algorithme permettent étude et représentation des suites définies par récurrence (calcul des termes et variations). Suite récurrente. Suite avec formule explicite Tableur calculer les différents termes de la suite. Tableur calculer un terme précis de la suite. Tableur afficher la représentation graphique. Ti82 calculer les différents termes de la suite. Ti82 calculer un terme précis de la suite. Ti82 afficher la représentation graphique. Première STMG progression. - 7

8 Première STMG progression. - 8 Statistique et probabilités : schéma de Bernoulli. BO : objectifs de la partie statistique et probabilités. Dans le domaine des probabilités, découvrir et utiliser un premier exemple de loi discrète : la loi binomiale. Utiliser cette notion pour poursuivre la formation dans le domaine de l échantillonnage. BO : contenus, capacités attendues et commentaires. Schéma de Bernoulli. Représenter un schéma de Bernoulli par un arbre pondéré. Pour la répétition d expériences identiques et indépendantes, la probabilité d une liste de résultats est le produit des probabilités de chaque résultat. La notion de probabilité conditionnelle est hors programme. Simuler un schéma de Bernoulli à l aide d un tableur ou d un algorithme. Épreuve de Bernoulli. Rappel de vocabulaire probabiliste (univers, probabilité, événements certain et impossible, arbre pondéré). Épreuve de paramètre p, succès, échec. Simuler une épreuve de Bernoulli avec la calculatrice (et ou tableur). Exemple de schéma de Bernoulli avec un arbre à 2 niveaux (activité page 138 Nathan technique). Calculer une probabilité sur un arbre probabiliste. Indépendance d événements (contre-exemple). Définition générale d un schéma de Bernoulli. Simuler un schéma de Bernoulli avec un tableur. Première STMG progression. - 8

9 Première STMG progression. - 9 Suites et fonctions : suite arithmétique. BO : objectifs de la partie suites et fonctions. Découvrir la notion de suite numérique et différents modes de génération. Connaître la définition par récurrence des suites arithmétiques et géométriques. Utiliser suites et fonctions dans le cadre de résolutions de problèmes, en lien avec les enseignement technologiques. Utiliser de façon complémentaire les différents outils de calcul et de représentation (à la main, à la calculatrice, au tableur...) et l algorithmique. BO : contenus, capacités attendues et commentaires. Définition par récurrence des suites arithmétiques et des suites géométriques. Il est important de varier les outils et les approches. Modéliser et étudier une situation simple à l aide de suites. Mettre en œuvre un algorithme ou utiliser un tableur pour obtenir une liste de termes d une suite, calculer un terme de rang donné. Réaliser et exploiter une représentation graphique des termes d une suite. Déterminer le sens de variation des suites arithmétiques et des suites géométriques, à l aide de la raison. L utilisation du tableur et la mise en œuvre d algorithmes sont l occasion d étudier et de représenter en particulier des suites définies par une relation de récurrence (calcul des termes, variations). L expression du terme général d une suite arithmétique ou géométrique est au programme de terminale afin de privilégier l approche algorithmique en première. Situation problème mettant en œuvre une suite arithmétique définie par récurrence : rappel du vocabulaire de suites, utilisation du tableur pour construire les termes successifs de la suite, représentation graphique au tableur pour répondre à une question. Cours : définition par récurrence d une suite arithmétique. Exercice : démontrer qu une suite est arithmétique. Exercice mettant en évidence les différentes variations possibles d une suite arithmétique et recherche du Cours sens de variation d une suite arithmétique en fonction de la raison. Exercice déterminer le sens de variation d une suite arithmétique. Exercice problème avec la calculatrice. Première STMG progression. - 9

10 Première STMG progression Information chiffrée : évolutions successives ou réciproque. BO : objectifs de la partie information chiffrée. Différencier l expression d une proportion de celle d une variation relative. Conforter les méthodes déjà rencontrées à l aide de situations variées relevant par exemple d un contexte d économie-gestion ou du traitement d informations chiffrées fournies par les médias. Acquérir une pratique aisée de techniques élémentaires de calcul sur les pourcentages. Développer une attitude critique vis-à-vis des informations chiffrées. BO : contenus, capacités attendues et commentaires. Évolutions successives. Connaissant deux taux d évolution successifs, déterminer le taux d évolution global. Évolution réciproque. Connaissant un taux d évolution, déterminer le taux d évolution réciproque. Les situations d évolutions successives conduisent les élèves à s approprier le coefficient multiplicateur comme outil efficace de résolution de problèmes. Il s agit uniquement de traiter des exemples numériques, notamment de capitalisation ou d actualisation. Exercice exemple avec des évolutions successives. Vrai faux sur une affirmation de journaliste. Vidéo à débattre. Mise en évidence de la leçon comment calculer simplement les évolutions successives? CM Exercice d application avec un tableau façon terminale. Évolution réciproque. Exercice de mise en évidence. Exercice d application (capitalisation introduction au suite géométrique, actualisation.) Statistique et probabilité : couple moyenne et écart-type. BO : objectifs de la partie statistique et probabilité. Première STMG progression. - 10

11 Première STMG progression Approfondir, par l introduction de l écart type, le travail entrepris en statistique au collège et en seconde. Résumer une série statistique par les couples moyenne/écart type et médiane/écart interquartile et interpréter ces résultats. BO : contenus, capacités attendues et commentaires. Utiliser de façon appropriée les deux couples usuels qui permettent de résumer une série statistique : (moyenne, écart-type) et (médiane, écart interquartile). L expression de l écart type n est pas un attendu du programme. Sa détermination est faite avec le tableur ou la calculatrice. Des travaux réalisés à l aide d un logiciel permettent de faire observer des exemples d effets de structure lors du calcul de moyennes. Rédiger l interprétation d un résultat ou l analyse d un graphique. Étudier une série statistique ou mener une comparaison pertinente de deux séries statistiques à l aide d un tableur ou d une calculatrice. Séance de rappels : indicateurs de position et de dispersion déjà connus et introduction du nouvel indicateur de dispersion l écart-type. Comment le calculer à la calculatrice. Cours. Calculs avec la calculatrice, et pourcentage de valeurs dans [x 2σ ; x + 2σ]. Calculs de moyenne pour une série présentée par classes. Utiliser le résumer statistique pour comparer des séries. Calculs avec un tableur. Calculs avec la calculatrice, et pourcentage de valeurs dans [x σ ; x + σ] visualisation graphique. Suites et fonctions : dérivation des fonctions polynomiales de degré 2. BO : objectifs de la partie statistique et probabilité. Approfondir la connaissance des fonctions polynômes de degré deux, et enrichir l ensemble des fonctions mobilisables en vue de la résolution de problèmes. Utiliser la fonction dérivée des fonctions polynômes de degré 2 ou 3, comme fonction déduite de la fonction étudiée. Utiliser de façon complémentaire les différents outils de calcul et de représentation (à la main, à la calculatrice, au tableur...) et l algorithmique. Première STMG progression. - 11

12 Première STMG progression BO : contenus, capacités attendues et commentaires. Déterminer l expression de la fonction dérivée d une fonction polynôme du second degré. La fonction dérivée, pour le degré 2 comme le degré 3, est définie par son expression formelle obtenue à partir de la fonction étudiée. Aucun développement théorique sur son existence n est attendu. Application : étude des variations de la fonction. On admet le lien entre le signe de la fonction dérivée et les variations de la fonction étudiée. Utiliser le signe de la fonction dérivée pour retrouver les variations du trinôme et pour déterminer son extremum. Dérivée d une fonction polynomiale de degré 2. Lien entre le signe de la fonction dérivée et les variations de la fonction étudiée. Séance de manipulation de la calculatrice pour l analyse fonctionnelle. Étude du signe d une fonction affine : exercice à prévoir. Application au second degré : tableau de variation et extremum. Problème d application et de mise en œuvre pour le second degré. Statistique et probabilité : variable aléatoire et loi binomiale. BO : objectifs de la partie statistique et probabilité. Dans le domaine des probabilités, découvrir et utiliser un premier exemple de loi discrète : la loi binomiale. BO : contenus, capacités attendues et commentaires. Variable aléatoire associée au nombre de succès dans un schéma de Bernoulli. Connaître et utiliser les notations ; {X = k}, {X < k}, P (X = k), P (X < k). Aucun développement théorique à propos de la notion de variable aléatoire n est attendu. Loi binomiale B(n, p). Reconnaître des situations relevant de la loi binomiale et en identifier les paramètres. La notion de factorielle, les coefficients binomiaux et l expression générale de P (X = k) ne sont pas des attendus du programme. Pour introduire la loi binomiale, la représentation à l aide d un arbre est privilégiée : il s agit ici d installer une représentation mentale efficace. Pour n 4, on peut ainsi dénombrer les chemins de l arbre réalisant k succès pour n répétitions et calculer la probabilité d obtenir k succès. On peut simuler la loi binomiale avec un algorithme. Première STMG progression. - 12

13 Première STMG progression Séance de rappels : indicateurs de position et de dispersion déjà connus et introduction du nouvel indicateur de dispersion l écart-type. Comment le calculer à la calculatrice. Cours. Calculs avec la calculatrice, et pourcentage de valeurs dans [x 2σ ; x + 2σ]. Calculs de moyenne pour une série présentée par classes. Utiliser le résumer statistique pour comparer des séries. Calculs avec un tableur. Calculs avec la calculatrice, et pourcentage de valeurs dans [x σ ; x + σ] visualisation graphique. Suites et fonctions : dérivation des fonctions polynomiales de degré 3. BO : objectifs de la partie statistique et probabilité. Approfondir la connaissance des fonctions polynômes de degré deux, et enrichir l ensemble des fonctions mobilisables en vue de la résolution de problèmes. Utiliser la fonction dérivée des fonctions polynômes de degré 2 ou 3, comme fonction déduite de la fonction étudiée. Utiliser de façon complémentaire les différents outils de calcul et de représentation (à la main, à la calculatrice, au tableur...) et l algorithmique. BO : contenus, capacités attendues et commentaires. Déterminer l expression de la fonction dérivée d une fonction polynôme du second degré. La fonction dérivée, pour le degré 2 comme le degré 3, est définie par son expression formelle obtenue à partir de la fonction étudiée. Aucun développement théorique sur son existence n est attendu. On pourra commencer par conjecturer les variations d une fonction polynôme de degré 3 à l aide de la calculatrice graphique ou du tableur. Application : étude des variations de la fonction. On admet le lien entre le signe de la fonction dérivée et les variations de la fonction étudiée. (a) Utiliser le signe de la fonction dérivée pour retrouver les variations du trinôme et pour déterminer son extremum. (b) Dans le cadre d une résolution de problème, utiliser le signe de la fonction dérivée pour déterminer les variations d une fonction polynomiale de degré 3. Cette partie du programme se prête particulièrement à l étude de situations issues des autres disciplines (résolutions graphiques ou numériques d équations et d inéquations, problèmes d optimisation...) Première STMG progression. - 13

14 Première STMG progression Opérateur de dérivation et fonctions polynomiales. Lien entre le signe de la fonction dérivée et les variations de la fonction étudiée. Séance de manipulation de la calculatrice pour l analyse fonctionnelle. Étude du signe d une fonction affine : exercice à prévoir. Application au second degré. Utilisation de l outil dans des problèmes (avec degré 3). Première STMG progression. - 14

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Les devoirs en Première STMG

Les devoirs en Première STMG Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2 Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

Classe de première L

Classe de première L Classe de première L Orientations générales Pour bon nombre d élèves qui s orientent en série L, la classe de première sera une fin d étude en mathématiques au lycée. On a donc voulu ici assurer à tous

Plus en détail

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : dutarte@club-internet.fr La maquette

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

Les formations de remise à niveau(!) l'entrée des licences scientifiques. Patrick Frétigné CIIU

Les formations de remise à niveau(!) l'entrée des licences scientifiques. Patrick Frétigné CIIU Les formations de remise à niveau(!) pour les bacheliers «non-s» à l'entrée des licences scientifiques. Patrick Frétigné CIIU Cinq exemples Nantes Clermont Ferrand Lorraine Rennes 1 Rouen Nantes REUSCIT

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Synthèse «Le Plus Grand Produit»

Synthèse «Le Plus Grand Produit» Introduction et Objectifs Synthèse «Le Plus Grand Produit» Le document suivant est extrait d un ensemble de ressources plus vastes construites par un groupe de recherche INRP-IREM-IUFM-LEPS. La problématique

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières FONDEMENTS MATHÉMATIQUES 12 E ANNÉE Mathématiques financières A1. Résoudre des problèmes comportant des intérêts composés dans la prise de décisions financières. [C, L, RP, T, V] Résultat d apprentissage

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

U102 Devoir sur les suites (TST2S)

U102 Devoir sur les suites (TST2S) LES SUITES - DEVOIR 1 EXERCICE 1 L'objectif de cet exercice est de comparer l'évolution des économies de deux personnes au cours d'une année. Pierre possède 500 euros d'économies le 1 er janvier. Il décide

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

SOUS TITRAGE DE LA WEBÉMISSION DU PROGRAMME DE MATHÉMATIQUES 11 e ET 12 e ANNÉE

SOUS TITRAGE DE LA WEBÉMISSION DU PROGRAMME DE MATHÉMATIQUES 11 e ET 12 e ANNÉE SOUS TITRAGE DE LA WEBÉMISSION DU PROGRAMME DE MATHÉMATIQUES 11 e ET 12 e ANNÉE Table de matières INTRODUCTION 2 ITINÉRAIRE MEL3E/MEL4E 6 ITINÉRAIRE MBF3C/MAP4C 9 ITINÉRAIRE MCF3M/MCT4C 12 ITINÉRAIRE MCR3U/MHF4U

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Indications pour une progression au CM1 et au CM2

Indications pour une progression au CM1 et au CM2 Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières Interrogation 1 : Indice et taux d évolution........................... 2 Devoir maison 1 : Taux d évolution................................ 4 Devoir maison 1

Plus en détail

Sciences de Gestion Spécialité : SYSTÈMES D INFORMATION DE GESTION

Sciences de Gestion Spécialité : SYSTÈMES D INFORMATION DE GESTION Sciences de Gestion Spécialité : SYSTÈMES D INFORMATION DE GESTION Classe de terminale de la série Sciences et Technologie du Management et de la Gestion Préambule Présentation Les technologies de l information

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

1. Vocabulaire : Introduction au tableau élémentaire

1. Vocabulaire : Introduction au tableau élémentaire L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Ressources pour le lycée général et technologique

Ressources pour le lycée général et technologique éduscol Ressources pour le lycée général et technologique Ressources pour la classe de terminale générale et technologique Exercices de mathématiques Classes de terminale S, ES, STI2D, STMG Ces documents

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen

Plus en détail

Sommaire. Textes officiels... 5. Horaires... 7. Enseignement de détermination... 9. Présentation... 9. Programme... 10

Sommaire. Textes officiels... 5. Horaires... 7. Enseignement de détermination... 9. Présentation... 9. Programme... 10 Sommaire Textes officiels... 5 Horaires... 7 Enseignement de détermination... 9 Présentation... 9 Programme... 10 Indications complémentaires... 11 collection Lycée voie générale et technologique série

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Taux d évolution moyen.

Taux d évolution moyen. Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.

Plus en détail

Formation Excel, Niveau initiation, module 1 DUREE DE LA FORMATION OBJECTIFS DE LA FORMATION

Formation Excel, Niveau initiation, module 1 DUREE DE LA FORMATION OBJECTIFS DE LA FORMATION Niveau initiation, module 1 Acquérir une philosophie de travail dans un tableur, Acquérir les bons réfl exes tableur, Familiarisation avec le vocabulaire, Créer, Enregistrer et présenter un tableau. Notions

Plus en détail

TP N 57. Déploiement et renouvellement d une constellation de satellites

TP N 57. Déploiement et renouvellement d une constellation de satellites TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les

Plus en détail

Corrigé des TD 1 à 5

Corrigé des TD 1 à 5 Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

INFORMATIQUE : LOGICIELS TABLEUR ET GESTIONNAIRE DE BASES DE DONNEES

INFORMATIQUE : LOGICIELS TABLEUR ET GESTIONNAIRE DE BASES DE DONNEES MINISTERE DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENRALE DE L ENSEIGNEMENT ET DE LA RECHERCHE SCIENTIFIQUE ENSEIGNEMENT DE PROMOTION SOCIALE DE REGIME 1 DOSSIER PEDAGOGIQUE UNITE DE FORMATION INFORMATIQUE

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/

Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/ Calculabilité Cours 3 : Problèmes non-calculables http://www.irisa.fr/lande/pichardie/l3/log/ Problèmes et classes de décidabilité Problèmes et classes de décidabilité Nous nous intéressons aux problèmes

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

Calculer avec Sage. Revision : 417 du 1 er juillet 2010

Calculer avec Sage. Revision : 417 du 1 er juillet 2010 Calculer avec Sage Alexandre Casamayou Guillaume Connan Thierry Dumont Laurent Fousse François Maltey Matthias Meulien Marc Mezzarobba Clément Pernet Nicolas Thiéry Paul Zimmermann Revision : 417 du 1

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Programme de la formation. Écrit : 72hdepréparation aux épreuves d admissibilité au CRPE

Programme de la formation. Écrit : 72hdepréparation aux épreuves d admissibilité au CRPE Programme de la formation Écrit : 72hdepréparation aux épreuves d admissibilité au CRPE o 36 h pour la préparation à l'épreuve écrite de français Cette préparation comprend : - un travail sur la discipline

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voies : Mathématiques, physique et sciences de l'ingénieur (MPSI) Physique, chimie et sciences de l ingénieur (PCSI) Physique,

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

F1C1/ Analyse. El Hadji Malick DIA

F1C1/ Analyse. El Hadji Malick DIA F1C1/ Analyse Présenté par : El Hadji Malick DIA dia.elmalick1@gmail.com Description sommaire du cours Porte sur l analyse réelle propose des outils de travail sur des éléments de topologie élémentaire

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Ressources pour la classe de seconde

Ressources pour la classe de seconde Mathématiques Lycée Ressources pour la classe de seconde - Fonctions - Ce document peut être utilisé librement dans le cadre des enseignements et de la formation des enseignants. Toute reproduction, même

Plus en détail

Comparer l intérêt simple et l intérêt composé

Comparer l intérêt simple et l intérêt composé Comparer l intérêt simple et l intérêt composé Niveau 11 Dans la présente leçon, les élèves compareront divers instruments d épargne et de placement en calculant l intérêt simple et l intérêt composé.

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

UE5 Mise en situation professionnelle M1 et M2. Note de cadrage Master MEEF enseignement Mention second degré

UE5 Mise en situation professionnelle M1 et M2. Note de cadrage Master MEEF enseignement Mention second degré UE5 Mise en situation professionnelle M1 et M2 Note de cadrage Master MEEF enseignement Mention second degré ESPE Lille Nord de France Année 2014-2015 Cette note de cadrage a pour but d aider les collègues

Plus en détail

O b s e r v a t o i r e E V A P M. Taxonomie R. Gras - développée

O b s e r v a t o i r e E V A P M. Taxonomie R. Gras - développée O b s e r v a t o i r e E V A P M É q u i p e d e R e c h e r c h e a s s o c i é e à l ' I N R P Taxonomie R. Gras - développée Grille d'analyse des objectifs du domaine mathématique et de leurs relations

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Master CCI. Compétences Complémentaires en Informatique. Livret de l étudiant

Master CCI. Compétences Complémentaires en Informatique. Livret de l étudiant Master CCI Compétences Complémentaires en Informatique Livret de l étudiant 2014 2015 Master CCI Le Master CCI (Compétences Complémentaires en Informatique) permet à des étudiants de niveau M1 ou M2 dans

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique, chimie et sciences de l ingénieur (PCSI) Discipline : Mathématiques Première année Classe préparatoire

Plus en détail

MATHÉMATIQUES. Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN

MATHÉMATIQUES. Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN MATHÉMATIQUES Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN Mars 2001 MATHÉMATIQUES Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN Mars 2001 Direction

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

Les finalités du B2i. Médiapôle d Argenteuil. Philippe da Silva

Les finalités du B2i. Médiapôle d Argenteuil. Philippe da Silva Les finalités du B2i Les TIC font désormais partie du paysage économique, social, culturel et éducatif. Elles sont largement utilisées tout au long de la vie professionnelle et privée. «Il appartient à

Plus en détail

Domaine Santé. Plan d études cadre Modules complémentaires santé. HES-SO, les 5 et 6 mai 2011. 1 PEC Modules complémentaires santé

Domaine Santé. Plan d études cadre Modules complémentaires santé. HES-SO, les 5 et 6 mai 2011. 1 PEC Modules complémentaires santé Domaine Santé Plan d études cadre Modules complémentaires santé HES-SO, les 5 et 6 mai 2011 1 PEC Modules complémentaires santé Plan d études cadre Modules complémentaires santé 1. Finalité des modules

Plus en détail

Proposition de programmes de calculs en mise en train

Proposition de programmes de calculs en mise en train Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.

Plus en détail

ELEMENTS DE BUREAUTIQUE

ELEMENTS DE BUREAUTIQUE MINISTERE DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENERALE DE L ENSEIGNEMENTET DE LA RECHERCHE SCIENTIFIQUE ENSEIGNEMENT DE PROMOTION SOCIALE DE REGIME 1 DOSSIER PEDAGOGIQUE UNITE DE FORMATION ELEMENTS

Plus en détail

Exemples de différenciations pédagogiques en classe. Elémentaires Collèges. Ordinaires & ASH

Exemples de différenciations pédagogiques en classe. Elémentaires Collèges. Ordinaires & ASH Exemples de différenciations pédagogiques en classe. Elémentaires Collèges Ordinaires & ASH PRESENTATION ESPRIT DES OUTILS PRESENTES L objectif de cette plaquette est de proposer des tours de mains aux

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Statistiques 0,14 0,11

Statistiques 0,14 0,11 Statistiques Rappels de vocabulaire : "Je suis pêcheur et je désire avoir des informations sur la taille des truites d'une rivière. Je décide de mesurer les truites obtenues au cours des trois dernières

Plus en détail

S3CP. Socle commun de connaissances et de compétences professionnelles

S3CP. Socle commun de connaissances et de compétences professionnelles S3CP Socle commun de connaissances et de compétences professionnelles Référentiel Le présent socle décrit un ensemble de connaissances et compétences devant être apprécié dans un contexte professionnel.

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier

Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier Statistiques Appliquées à l Expérimentation en Sciences Humaines Christophe Lalanne, Sébastien Georges, Christophe Pallier Table des matières 1 Méthodologie expérimentale et recueil des données 6 1.1 Introduction.......................................

Plus en détail

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité 1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :

Plus en détail

Statistiques avec la graph 35+

Statistiques avec la graph 35+ Statistiques avec la graph 35+ Enoncé : Dans une entreprise, on a dénombré 59 femmes et 130 hommes fumeurs. L entreprise souhaite proposer à ses employés plusieurs méthodes pour diminuer, voire arrêter,

Plus en détail