Statistiques de Base. Chapitre 1. Analyse combinatoire. Ce cours est basé sur les notes de cours de D. Mouchiroud Lyon 1

Dimension: px
Commencer à balayer dès la page:

Download "Statistiques de Base. Chapitre 1. Analyse combinatoire. Ce cours est basé sur les notes de cours de D. Mouchiroud Lyon 1"

Transcription

1 Statistiques de Base haitre. Aalyse combiatoire e cours est basé sur les otes de cours de D. Mouchiroud Lyo

2 Itroductio L aalyse combiatoire est ue brache des mathématiques qui étudie commet comter les objets. Elle fourit des méthodes de déombremets articulièremet utiles e théorie des robabilités. Les robabilités dites combiatoires utiliset costammet les formules de l aalyse combiatoire déveloées das ce chaitre. U exemle des alicatios itéressates de cette derière est la démostratio du déveloemet du biôme de Newto utilisé das le calcul des robabilités d ue loi biomiale.

3 Arragemets Défiitio: État doé u esemble E de objets, o aelle arragemets de objets toutes suites ordoées de objets ris armi les objets. Le ombre d arragemets de objets ris armi est oté : A Remarque : O a écessairemet et, N* Si <, alors A 0 Deux arragemets de objets sot doc disticts s ils diffèret ar la ature des objets qui les comoset ou ar leur ordre das la suite.

4 Exemles ) Ue séquece d ADN est costituée d u echaîemet de 4 ucléotides [A Adéie), ytosie), G Guaie) et T Thymie)]. Il existe différets arragemets ossibles de deux ucléotides ou diucléotides avec et 4. ) Le ombre de mots de lettres avec ou sas sigificatio) formés avec les 6 lettres de l alhabet corresod au ombre d arragemets ossibles avec et 6. 3) Le tiercé das l ordre lors d ue course de 0 chevaux costitue u des arragemets ossibles avec 3 et 0. Das les exemles récédets, l ordre des élémets das la suite est essetiel. Aisi our le deuxième exemle, le mot NIHE est différet du mot HIEN.

5 Arragemets avec réétitios Lorsqu'u objet eut être observé lusieurs fois das u arragemet, le ombre d arragemet avec réétitio de objets ris armi, est alors : A,

6 E effet: Pour le remier objet tiré, il existe maières de choisir l objet armi. Pour le secod objet tiré, il existe égalemet choix car le remier objet fait de ouveau arti des objets. O arle de tirage avec remise. Aisi our les objets tirés, il y aura x x x..x fois) arragemets ossibles, soit A fois

7 Exemle ocerat l exemle de la séquece d ADN, le ombre de diucléotides attedus si l o fait l hyothèse qu ue base eut être observée lusieurs fois das la séquece ce qui corresod effectivemet à la réalité) est doc : diucléotides ossibles A4 4 4{ 4 6 fois Les 6 diucléotides idetifiables das ue séquece d ADN sot : AA A AG AT A G T GA G GG GT TA T TG TT

8 Arragemets sas réétitios Lorsque chaque objet e eut être observé qu ue seule fois das u arragemet, le ombre d arragemets sas réétitio de objets ris armi est alors : A!, )!

9 E effet : Pour le remier objet tiré, il y a maières de rager l objet armi. Pour le secod objet tiré, il existe lus que - maières de rager l objet car le remier objet e eut lus être ris e comte. O arle de tirage sas remise. Aisi our les objets tirés armi, si, il y aura: )!!... )... d'où... )... ) ))... ) doc ))... ) ) A A A

10 Rael Si N*, o aelle factorielle, otée!, le roduit des remiers etiers :! 3... )... e ricie 0!'est as défii, 0! et ar covetio : Dès que déasse la dizaie,! se comte e millios. Il est bo de coaître la formule d aroximatio suivate «formule de Stirlig») :! π, lorsque. e

11 Exemle ocerat l exemle de la séquece d ADN, le ombre de diucléotides attedu das ue séquece si l o fait l hyothèse qu ue base est observée qu ue seule fois est doc : 4! A )! diucléotides ossibles Sous cette cotraite, les diucléotides ossibles sot : AA A AG AT A G T GA G GG GT TA T TG TT

12 Permutatios sas réétitio Etat doé u esemble E de objets, o aelle ermutatios de objets disticts toutes suites ordoées de objets ou tout arragemet à de ces objets. Le ombre de ermutatios de objets est oté : P!

13 Remarque: La ermutatio de objets costitue u cas articulier d arragemet sas réétitio de objets ris armi lorsque. Aisi le ombre de ermutatios de obets est :! A -)!! Exemle : Le ombre de maières de lacer 8 covives autour d ue table est : P 8 8! ossibilités

14 Permutatios avec réétitio Das le cas où il existerait k réétitios d u même objet armi les objets, le ombre de ermutatios ossibles des objets doit être raorté aux ombres de ermutatios des k objets idetiques. Le ombre de ermutatios de objets est alors: P! k! ar, les ermutatios de k objets idetiques sot toutes idetiques et e comtet que our ue seule ermutatio.

15 Exemle osidéros le mot «ELLULE». Le ombre de mots ossibles avec ou sas sigificatio) que l o eut écrire e ermutat ces 7 lettres est : P 7!!3! 7 40 mots ossibles e cosidérat deux groues de lettres idetiques : L 3 fois) et E fois).

16 ombiaisos Défiitio: Si l o rered l exemle de la séquece d ADN, à la différece des arragemets où les diucléotides A et A formaiet deux arragemets disticts, ces deriers e formerot qu ue seule combiaiso. Pour les combiaisos, o e arle lus de suite i de série uisque la otio d ordre des objets est lus rise e comte. O arle alors de tirages avec ou sas remise.

17 ombiaisos sas remise Etat doé u esemble E de objets, o aelle combiaisos de objets tout esemble de objets ris armi les objets sas remise. Le ombre de combiaisos de objets ris armi est oté :!!-)!

18 eci corresod ombre d arragemets ossibles sas réétitios A! -)! divisé ar le ombre de ermutatios ossibles P!

19 Remarque : A la otatio o réfère arfois la otatio modere Les ombres et costituet les coefficiets biomiaux.

20 Exemle Das le cadre de l exemle de la séquece d ADN, le ombre de diucléotides attedus sas teir comte de l ordre des bases das la séquece hyothèse justifiée das le cas de l ADN o codat) est doc : 4! 4 3 4! 4 )! 6 diucléotides Les 6 diucléotides ossibles sous cette hyothèse sot: A AG AT G T GT A GA TA G T TG

21 ombiaisos avec remise Le ombre de combiaisos de objet armi avec remise est : )!!- )!

22 E effet : Soit la costitutio de mots de 3 lettres à artir d u alhabet à lettres avec remise, o distigue 3 cas ossibles: ) ) o a : E utilisat la formule de Pascal d où au total: ombre de mots de 3 lettres idetiques et ue lettre redodate ombre de mots de lettres différetes ombre de mots de 3 lettres différetes et sas ordre

23 Proriétés des combiaisos -) )!!! 3) )!! )!! ) 0!-)!! omme o a

24 Symétrie E effet., )!!!! )!! ))! )!!

25 Formule de Pascal,

26 )!! )! )!! )! ) )!! )! )!! )! )!! )! )!! )! ))! )! )! E effet

27 Triagle de Pascal

28 Formule du biôme de Newto La formule du biôme de Newto corresod à la décomositio des différets termes de la uissace ième du biôme ab). ) b a b ab b a b a a b a

29 Elever a b) à la uissace reviet à biômes idetiques a b). multilier Le résultat est ue somme où chaque élémet est le roduit de facteurs de tye a ou b choisi chacu das u biôme différet. Les termes sot aisi de la forme a b. hacu de ces termes est obteu autat de fois qu il existe de faços de choisir les élémets a armi les, c est à dire le ombre de combiaisos.

30 ardial Si l o ose a b, la formule du biôme de Newto doe ) 0 état le ombre de arties formées de élémets das u esemble E coteat objets ou élémets). Le ombre formé de élémets. 0 est doc le ombre de arties d'u esemble

31 O déduit doc que: carde) cardpe)) où carde) est le cardial de E ou le ombre d'élémets de PE) est l'esemble de toutes les arties de E cardpe)) est le ombre de artie de E. E)

Analyse combinatoire

Analyse combinatoire Mathématiques : Outils our la Biologie Deug SV1 UCBL D. Mouchiroud (10/10/2002) Chaitre 1 Aalyse combiatoire Sommaire 1. Itroductio 2 2. Arragemets..2 2.1. Itroductio..2 2.2. Arragemets avec réétitios

Plus en détail

Cours Dénombrement Analyse combinatoire 1 / 11 A Chevalley

Cours Dénombrement Analyse combinatoire 1 / 11 A Chevalley 2016 Déombremet, aalyse combiatoire leth Chevalley 1. Rael sur les esembles : 1.1. Défiitio Soiet E, des esembles x sigifie «x est u élémet de» ou «x aartiet à». O désige ar l esemble vide qui a aucu élémet.

Plus en détail

INTRODUCTION A L ANALYSE COMBINATOIRE.

INTRODUCTION A L ANALYSE COMBINATOIRE. INTRODUCTION A L ANALYSE COMBINATOIRE. I- ENSEMBLES FINIS ET CARDINAL D UN ENSEMBLE FINI. ) Produit cartésie d esembles fiis. Défiitio. Soit E et F deux esembles fiis et o vides. O aelle roduit cartésie

Plus en détail

Ensembles et dénombrement

Ensembles et dénombrement CHAPITRE 2 Esembles et déombremet 21 Théorie des esembles 211 Déitios Déitio 1 Soiet u 1, u 2,, u des objets mathématiques O forme alors l'esemble E {u 1, u 2,, u } O dit alors que chaque u i (our 1 i

Plus en détail

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition :

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition : Probabilités : coditioemet et idéedace Termiale S Déombremet. Pricie O raelle que le cardial d u esemble fii E, oté Card(E), rerésete so ombre d élémets. Si E 0,0 alors Card(E). Notre but est de détermier

Plus en détail

LEÇON N 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binôme. Applications.

LEÇON N 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binôme. Applications. LEÇON N : Coefficiets biomiaux, déombremet des combiaisos, formule du biôme Alicatios Pré-requis : Cardial d u esemble fii, arragemets ; Raisoemet ar récurrece 1 Défiitios et roriétés Défiitio 1 : Soit

Plus en détail

I - ENSEMBLES FINIS ET CARDINAL

I - ENSEMBLES FINIS ET CARDINAL Séciales PSI LYCÉE BUFFON COURS Probabilités 1 Déombremet I - ENSEMBLES FINIS ET CARDINAL 1 DÉFINITION DÉFINITION 1 U esemble E o vide est dit fii s il existe u etier aturel o ul et ue bijectio de 1, sur

Plus en détail

Espaces probabilisés finis et dénombrement

Espaces probabilisés finis et dénombrement CNAM MULHOUSE. Ramm Algebra Ceter Formatio Igéieur Iformatique Mathématiques: PROBABILITES Cours Michel GOZE Chaitre 3 Esaces robabilisés fiis et déombremet 1. Problèmes de déombremet 1.1. Arragemets.

Plus en détail

Série d'exercices *** 3 ème M Lycée Secondaire Ali Zouaoui Dénombrement " Hajeb Laayoun "

Série d'exercices *** 3 ème M Lycée Secondaire Ali Zouaoui Dénombrement  Hajeb Laayoun Série d'exercices *** 3 ème M Lycée Secodaire Ali Zouaoui Déombremet " Hajeb Laayou " I / -ulet : Défiitio : Soit E u esemble o vide et * ;O aelle -ulet d élémet de E toute écriture de la forme : a a a

Plus en détail

Leçon 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binome. Applications.

Leçon 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binome. Applications. Leço 3 : Coefficiets biomiaux, déombremet des combiaisos, formule du biome. Alicatios. Prérequis : Nombres de listes, arragemets. Pricies de la somme et de la multilicatio. Cadre : O cosidèrera das la

Plus en détail

Moulay El Mehdi Falloul. Théorie des probabilités et de la statistique

Moulay El Mehdi Falloul. Théorie des probabilités et de la statistique Moulay El Mehdi Falloul Théorie des robabilités et de la statistique Itroductio La Probabilité et les statistiques sot deux discilies des mathématiques associées et idéedats à la fois. L aalyse statistique

Plus en détail

Dénombrement et probabilités ( révisions de 6 ème) Combien de nombres à 5 chiffres peut-on écrire à l aide des trois chiffres 1,2,3?

Dénombrement et probabilités ( révisions de 6 ème) Combien de nombres à 5 chiffres peut-on écrire à l aide des trois chiffres 1,2,3? I. Déombremet :. Exemles : Exemle : Déombremet et robabilités ( révisios de 6 ème) ombie de ombres à 5 chiffres eut-o écrire à l aide des trois chiffres,,? Ecrire u ombre à 5 chiffres à l aide des trois

Plus en détail

Dénombrement - Analyse combinatoire

Dénombrement - Analyse combinatoire S4 Maths 2011-2012 Probabilités 1 Déombremet - Aalyse combiatoire Uiversité de Picardie Jules Vere 2011-2012 UFR des Scieces Licece metio Mathématiques - Semestre 4 Probabilités 1 Déombremet - Aalyse combiatoire

Plus en détail

Licence 1 Mathématiques

Licence 1 Mathématiques Licece Mathématiques 204 205 Algèbre et Arithmétique Feuille o 3 : combiatoire. Exercices à savoir faire.. Réuio, itersectio, artitio. Exercice Au mois de javier, Aatole a ris ses reas de midi au Restau

Plus en détail

Corrigé du Devoir Libre n 2

Corrigé du Devoir Libre n 2 Corrigé du Devoir Libre Exercice 1 : Aagrammes 1. Combie les mots suivats ossèdet-ils d aagramme : a. BRETON U aagramme du mot BRETON est u réarragemet des lettres qui comoset ce mot. Par exemle NORBET

Plus en détail

COMBINATOIRE & DÉNOMBREMENT

COMBINATOIRE & DÉNOMBREMENT COMBINATOIRE & DÉNOMBREMENT Pour mieux aréheder ce chaitre, il est recommadé de lire celui sur la théorie de esembles. Das tout ce qui suit, ous oteros! le roduit 3..., ce roduit s'aelle "factorielle ".

Plus en détail

Les symboles somme et produit

Les symboles somme et produit DERNIÈRE IMPRESSION LE 7 février 07 à 5:4 Les symboles somme et roduit Table des matières Le symbole somme Σ Défiitio Liéarité et chagemet d idice 3 3 Sommes télescoiques 4 4 Sommes à coaître 5 5 Sommes

Plus en détail

Onzième Aventure DÉNOMBREMENTS A - PERMUTATIONS

Onzième Aventure DÉNOMBREMENTS A - PERMUTATIONS Ozième Aveture DÉNOMBREMENTS A - PERMUTATIONS Le Père Noël a offert à ma etite cousie Josette u jeu de cubes où sot iscrits les lettres de l alhabet. Très édagogue, je lui doe d abord les trois cubes A,

Plus en détail

LEÇON N 2 : Dénombrement.

LEÇON N 2 : Dénombrement. LEÇON N : Déombremet Pré-requis : Vocabulaire esembliste ; Raisoemet ar récurrece ; Défiitio : U esemble E est dit fii et de cardial, soit s il est vide et alors 0, soit si N et s il existe ue bijectio

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

DERNIÈRE IMPRESSION LE 27 février 2017 à 16:47. Dénombrement. En utilisant la notation factorielle, donner une autre écriture des nombres suivants

DERNIÈRE IMPRESSION LE 27 février 2017 à 16:47. Dénombrement. En utilisant la notation factorielle, donner une autre écriture des nombres suivants DERNIÈRE IMPRESSION LE 7 février 07 à 6:47 Déombremet Calcul sur les factorielles EXERCICE Simlifier les écritures sas utiliser la calculette. )! 0! ) 7! 5! 3) 6! 5! 5! 4) 6 4! 5! 5) 7! 5! 0! 6) 7) 8)

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

- diagramme de Caroll. Exemple 1 : On lance 2 dés. 2 e dé 1 er dé

- diagramme de Caroll. Exemple 1 : On lance 2 dés. 2 e dé 1 er dé TS Le déombremet est l art de compter (Il y e a souvet aux cocours) (cardial d u esemble fii : ombre de ses élémets Exemple : si E est u esemble fii à élémets, o dit que le cardial de E est égal à et o

Plus en détail

aa ab ac ab ac avec ordre ba bb bc ba bc ca cb cc ca cb sans ordre aa ab ac ab ac bc bb bc cc

aa ab ac ab ac avec ordre ba bb bc ba bc ca cb cc ca cb sans ordre aa ab ac ab ac bc bb bc cc Chaitre I ANALYSE COMBINATOIRE Exemle itroductif Le but de ce chaitre est d'aredre à déombrer des esembles das des coditios variées. La comréhesio de ce chaitre et des exercices qui s' y raortet costitue

Plus en détail

Exercices. Dénombrement 1 5! 42 6! 3! 3! 9! 5! 4! 9! 6! 3! 2) En utilisant la notation factorielle, donner une autre écriture des nombres suivants

Exercices. Dénombrement 1 5! 42 6! 3! 3! 9! 5! 4! 9! 6! 3! 2) En utilisant la notation factorielle, donner une autre écriture des nombres suivants Exercices Déombremet Exercice Calcul sur les factorielles ) Simlifier les écritures sas utiliser la calculette. a)! 0! b) 7! 5! c) 6! 5! 5! d) 6 4! 5! e) 7! 5! 0! f) 5! 4 7! g) 6! 3! 3! h) 9! 5! 4! i)

Plus en détail

IUT de Saint-Etienne - département Techniques de Commercialisation M. Ferraris Promotion /05/2015

IUT de Saint-Etienne - département Techniques de Commercialisation M. Ferraris Promotion /05/2015 IUT de Sait-Etiee - déartemet Techiques de Commercialisatio M. Ferraris Promotio 2014-2016 28/05/2015 Semestre 2 - MATHEMATIQUES DEVOIR 2 durée : 2 heures coefficiet 2/3 La calculatrice grahique est autorisée.

Plus en détail

3 Révisions : Dénombrement BCPST 2 - Lycée F1

3 Révisions : Dénombrement BCPST 2 - Lycée F1 FEUILLE 3 Révisios : Déombremet BCPST - Lycée F1 Modèles de base Cocrètemet Exercice 1: [Idicatios] [Correctio] Modéliser Soiet, N Raelez le cardial des esembles suivats : 1 1; a {(i 1,, i 1; les i sot

Plus en détail

4 Loi binomiale. 4.1 Loi de Bernoulli. 4.2 Loi binomiale. Leçon n o

4 Loi binomiale. 4.1 Loi de Bernoulli. 4.2 Loi binomiale. Leçon n o Leço o 4 Loi biomiale 9 Niveau Première S + SUP (Covergece) Prérequis Variable aléatoire, esérace, variace, théorème limite cetral, loi de Poisso Référeces [11], [12], [13], [14] 41 Loi de Beroulli Défiitio

Plus en détail

Chapitre 1. Dénombrement

Chapitre 1. Dénombrement Chapitre Déombremet Itroductio Lorsque l o compte les objets d ue collectio, o attribue à la collectio so cardial, c est à dire le ombre d objets qu elle cotiet. Par exemple u Picasso, u Rembrat et u Degas

Plus en détail

Enoncés. Soit n un entier naturel non nul et E un ensemble à n éléments. En utilisant des raisonnements combinatoires:

Enoncés. Soit n un entier naturel non nul et E un ensemble à n éléments. En utilisant des raisonnements combinatoires: Le raisoemet combiatoire Eocés Exercice. Das cet exercice, o evisage des codages biaires (successios de et de ). Pour tout N *, o ote U le ombre de codages biaires à chiffres se termiat par et e comportat

Plus en détail

XIV. Analyse combinatoire Binôme de Newton

XIV. Analyse combinatoire Binôme de Newton . Itroductio. XIV. Aalyse combiatoire Biôme de Newto But : déombrer des esembles fiis das des cas élémetaires. Quelques situatios de déombremet :. De combie de maières eut-o remlir u bulleti de tiercé

Plus en détail

2. Espace de probabilité fini équilibré

2. Espace de probabilité fini équilibré 36 2. Esace de robabilité fii équilibré Esace de robabilités fii équilibré (résumé)...37 Esace de robabilités fii équilibré (défiitio)...38 Le modèle de Maxwell-Boltzma...39 Les ragemets de objets discerables

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence Chapitre 1 Déombremet Objectifs du chapitre 1. A travers l axiomatisatio de Peao de N, rappeller les pricipes de récurrece forte et faible. 2. Défiir la otio de cardial et les opératios sur les cardiaux.

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

I. Séries de données et représentation graphique

I. Séries de données et représentation graphique Chaitre Statistiques : I. Séries de doées et rerésetatio grahique. Vocabulaire Ue série statistique traite de doées de différets tyes : effectifs, ourcetages, idices, Le caractère quatitatif étudié eut

Plus en détail

Par Marcel Mountsiesse

Par Marcel Mountsiesse Article 36 Démostratio directe du derier théorème de Fermat Par Marcel Moutsiesse Résumé : Das ce travail, ous ous roosos de rouver ar ue méthode élémetaire l imossibilité de l équatio de Fermat das *

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

Exercices de dénombrement

Exercices de dénombrement DOMAINE : Combiatoire AUTEUR : Atoie TAVENEAUX NIVEAU : Itermédiaire STAGE : Grésillo 0 CONTENU : Exercices Exercices de déombremet Exercice Combie y a-t-il de sous-esembles d u esemble de cardial? Exercice

Plus en détail

DÉNOMBREMENT - COMBINATOIRE - LOIS DE PROBABILITÉS DISCRÈTES

DÉNOMBREMENT - COMBINATOIRE - LOIS DE PROBABILITÉS DISCRÈTES DÉNOMBREMENT - COMBINATOIRE - LOIS DE PROBABILITÉS DISCRÈTES Das tout ce qui suit, ous oteros! le roduit 3..., ce roduit s'aelle "factorielle ". O coviet que! =. Exercices sur les factorielles : Démotrer

Plus en détail

DJ - FAMILLES DE POLYNOMES

DJ - FAMILLES DE POLYNOMES DJ - FAMILLES DE POLYNOMES I Ue famille remarquable de polyômes Pour tout etier positif, o ote Γ le polyôme Γ (X X(X 1 (X + 1!, et γ! Γ Les polyômes Γ formet ue base de R[X] O a tout d abord les formules

Plus en détail

Coefficients binomiaux

Coefficients binomiaux [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Coefficiets biomiaux Exercice 1 [ 02081 ] [correctio] Motrer que our tout N et tout Z 1 1 Exercice 5 [ 02085 ] [correctio] [Formule de Chu-Vadermode]

Plus en détail

Combinatoire. Domaine : Combinatoire. Auteur : Joon Kwon Niveau : Débutants Stage : Montpellier 2014 Contenu : Exercices

Combinatoire. Domaine : Combinatoire. Auteur : Joon Kwon Niveau : Débutants Stage : Montpellier 2014 Contenu : Exercices Domaie : Combiatoire Auteur : Joo Kwo Niveau : Débutats Stage : Motpellier 2014 Coteu : Exercices Combiatoire Exercices Exercice 1 O souhaite rager sur ue étagère livres de mathématiques (disticts), m

Plus en détail

Ensembles et dénombrement

Ensembles et dénombrement Esembles et déombremet O Itroductio historique à la cardialité des esembles 0.1 Quelle défiitio de l ifii? La otio d esemble, au ses actuel du terme, a été formalisé que très récemmet, début XXiè siècle,

Plus en détail

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011 Déombremet ECE Lycée Carot 0 ovembre 2011 Itroductio La combiatoire, sciece du déombremet, sert comme so om l idique à comter Il e s agit bie etedu as de reveir au stade du CP et d aredre à comter sur

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles?

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles? B1 ESH Exercices de déombremet Corrigé Exercice 1 A la catie du lycée, o a le choix etre 3 etrées, 2 plats et 4 desserts. Combie de meus (composés d'ue etrée, d'u plat et d'u dessert) sot possibles? Soit

Plus en détail

Dénombrement Site MathsTICE de Adama Traoré Lycée Technique Bamako

Dénombrement Site MathsTICE de Adama Traoré Lycée Technique Bamako Déombremet Site MathsTIE de Adama Traoré Lycée Techique Bamako A) Parties d u esemble : Soit la représetatio sagittale des esembles E, A et B E 9 8 4 6 0 3 A B ) Existe-t-il des élémets de A qui e sot

Plus en détail

a) Après avoir fait deux pas, quelle est la probabilité qu elle soit : En A? En B? En C? En D?

a) Après avoir fait deux pas, quelle est la probabilité qu elle soit : En A? En B? En C? En D? ANTILLES-GUYANE Série S Setembre 2000 Exercice. Ue fourmi se délace sur les arêtes de la yramide ABCDS. Deuis u sommet quelcoque, elle se dirige au hasard (o suose qu il y a équirobabilité) vers u sommet

Plus en détail

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale www.mathselige.com STI2D - P2 - LOI IOMIALE COURS (/5) Le travail sur les séries statistiques et les probabilités meé e classe de secode se poursuit avec la mise e place de ouveaux outils. Les scieces

Plus en détail

BD - COEFFICIENTS BINOMIAUX

BD - COEFFICIENTS BINOMIAUX BD - COEFFICIENTS BINOMIAUX O ose ( C!!(! si 0 0 or les atres coles ( de Z 2 Doc (2 (3 0 ( 0 ( ( 0 (4 (5 ( ( 2 2 2 ( ( ( ( 0 ( 0 0 Formles élémetaires (6 (7 (8 (9 (0 ( ( ( 0 ( ( 0 BD 2 Les trois formles

Plus en détail

Chapitre 6 Tests statistiques paramétriques usuels

Chapitre 6 Tests statistiques paramétriques usuels . Itroductio Chaitre 6 Tests statistiques aramétriques usuels Cha 6.. Itroductio. Tests aramétriques usuels à artir d u échatillo 3. Notio de uissace de test 4. Tests de comaraiso O est souvet ameés à

Plus en détail

Construire des polygones connaissant les milieux des côtés.

Construire des polygones connaissant les milieux des côtés. Costruire des olygoes coaissat les milieux des côtés Costruire u triagle ABC dot les milieux des côtés soiet trois oits doés I J K deux à deux disticts Aalyse : La symétrie cetrale de cetre le milieu d

Plus en détail

Chapitre 14 : Ensembles-Dénombrement

Chapitre 14 : Ensembles-Dénombrement PCSI Préaratio des Khôlles 0-04 Chaitre 4 : Esembles-Déombremet Exercice tye SoitE u esemble, eta,b deux arties dee, o désire motrer que sia BA B alorsab. Le rouver avec les foctios idicatrices. Le rouver

Plus en détail

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) :

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) : Filière E Deis Pasquigo Résumé du cours : 1. Esembles fiis Déombremet Défiitios E et F sot équiotets si il existe ue bijectio de E sur F. E est déombrable si E est équiotet à N. E est u esemble fii si

Plus en détail

Partie I - Préliminaires

Partie I - Préliminaires SESSION 25 Cocours commu Cetrale MATHÉMATIQUES. FILIERE PC Partie I - Prélimiaires I.A - I.A. Soit N. Pour N, Puisque la série de terme gééral +... + + 2. coverge, il e est de même de la série de terme

Plus en détail

COUPLES VARIABLES ALEATOIRES DISCRETES

COUPLES VARIABLES ALEATOIRES DISCRETES COUPLES VARIABLES ALEATOIRES DISCRETES EERCICE : U sac cotiet six jetos, u ortat le uméro, deux ortet le uméro et trois ortet le uméro Ces jetos sot idiscerables au toucher. Deux jetos sot rélevés de ce

Plus en détail

Calcul matriciel et applications

Calcul matriciel et applications Clcul mtriciel et lictios I Défiitio d ue mtrice, somme de mtrices et roduit r u réel 1 Défiitio d ue mtrice Ue mtrice A de dimesios coloes Pour 1 i m et 1 j lige et de l j-ième coloe m, vec m et deux

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

Synthèse de cours PanaMaths Introduction au calcul matriciel

Synthèse de cours PanaMaths Introduction au calcul matriciel Sythèse de cours PaaMaths Itroductio au calcul matriciel Défiitios Notio de matrice O appelle «matrice de dimesio p» ou «de type (, p )» u tableau de ombres réels comportat liges et p coloes ( et p sot

Plus en détail

LFA / 1ère S mathématiques-cours Mme MAINGUY STATISTIQUES

LFA / 1ère S mathématiques-cours Mme MAINGUY STATISTIQUES LFA / ère S mathématiques-cours Mme MAINGUY 04-05 Ch.3 COURS STATISTIQUES I. Raels de Secode a / vocabulaire Toute étude statistique s'auie sur des doées. O distigue deu tyes de doées : les doées discrètes

Plus en détail

Les Algorithmes arithmétiques

Les Algorithmes arithmétiques Chaitre5 : Les s arithmétiques Les s arithmétiques I. Calcul PGCD 1) Méthode de différece 0-Def F gcd (a,b : etier) : etier Tat que a b faire Si a>b alors a a-b Sio b b-a Fisi Fitatque 2-gcd a 3-Fi 2)

Plus en détail

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p.

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p. MATHÉMATIQUES I Objectifs O se roose, das ce qui suit, de détermier l esemble des solutios d ue équatio différetielle liéaire à coefficiets costats lorsqu elle est homogèe, uis lorsque celle-ci admet u

Plus en détail

Synthèse de cours (Terminale S) Lois de probabilité

Synthèse de cours (Terminale S) Lois de probabilité Sythèse de cours (Termiale S) Lois de robabilité Elémets de déombremet Factorielle d u etier aturel Soit u etier aturel. Si est o ul, o aelle «factorielle» ou «factorielle de», l etier, oté!, égal au roduit

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

Chap. A 2 : entiers, récurrences, formules sommatoires

Chap. A 2 : entiers, récurrences, formules sommatoires MPSI 1 Semaie, du 8 setembre au Octobre 015 Cha A : etiers, récurreces, formules sommatoires Toute l arithmétique est la coséquece de l acte de comter J Stillwell, les mathématiques et leur histoire I

Plus en détail

Somme de puissances de nombres entiers successifs et nombres de Bernoulli

Somme de puissances de nombres entiers successifs et nombres de Bernoulli 1 Somme de uissaces de ombres etiers successifs et ombres de Beroulli O ose : 1 S ( ) 1... ( 1) k = + + + + =. Il s agit de la somme des etiers successifs de à 1, tous à la même uissace. Par exemle : S

Plus en détail

TD 4 : Variables aléatoires discrètes

TD 4 : Variables aléatoires discrètes MA40 : Probabilités TD 4 : Variables aléatoires discrètes Exercice Soit N u etier aturel supérieur ou égal à.. Motrer les égalités suivates : N k k N N + ) N k k N N + ) N + ). Ue ure cotiet ue boule blache

Plus en détail

TS Limites de suites (1)

TS Limites de suites (1) TS Limites de suites () 000 La otio de ite de suite a été abordée e ère. O s est coteté d ue aroche ituitive à artir d exemles (aroche umérique, grahique e utilisat otammet la calculatrice et le tableur).

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 25 EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrices sot iterdites * * * NB : Le cadidat attachera la lus grade imortace à la clarté, à la récisio et à la cocisio de

Plus en détail

Chap. A 2 : entiers, récurrences, formules sommatoires

Chap. A 2 : entiers, récurrences, formules sommatoires MPSI 1 Programme de colles Semaie 2, du 29 setembre au 3 Octobre 2014 Cha. A 2 : etiers, récurreces, formules sommatoires I L esemble N et le raisoemet ar récurrece : 1) U eu de théorie sur N : O résete

Plus en détail

Partitions et involutions. Enoncé. On appelle partition en paires d'un ensemble E toute partition de E constituée uniquement de paires.

Partitions et involutions. Enoncé. On appelle partition en paires d'un ensemble E toute partition de E constituée uniquement de paires. Mathéatiques Partitios et ivolutios Déobreets Partitios et ivolutios Eocé O aelle artitio e aires d'u eseble E toute artitio de E costituée uiqueet de aires. Par exele, les esebles { } { } { } { } de l'eseble

Plus en détail

Seconde 1 Chapitre 17 : Paramètres d une série statistique. Page n

Seconde 1 Chapitre 17 : Paramètres d une série statistique. Page n Secode Chaitre 7 : Paramètres d ue série statistique. Page Aujourd'hui, aucue doée e semble échaer au statistiques. Pour gérer la comleité des situatios, o essaie souvet de résumer les séries statistiques

Plus en détail

Groupes monogènes, groupes cycliques. Exemples

Groupes monogènes, groupes cycliques. Exemples 2 Groupes moogèes, groupes cycliques. Exemples Les otios de base sur les groupes sot supposées coues. E particulier, les esembles et groupes quotiets sot supposés cous. Pour des rappels, o pourra cosulter

Plus en détail

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web : 3 ème sciences

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web :  3 ème sciences Séries d exercices Deomremet 3 ème scieces Maths au lycee *** Ali AKIR Site We : htt://maths-akir.midilogs.com/ EXERCICE N Soit E l esemle des etiers tels que. Pour tout etier, o ote ar M ( ) l esemle

Plus en détail

Table des matières. PCSI( ) Calcul algébrique Lycée Baimbridge

Table des matières. PCSI( ) Calcul algébrique Lycée Baimbridge PCSI(013-014) Calcul algébriue Lycée Baimbridge Table des matières Itroductio... I- Sommes et produits...3 1- Défiitios...3 - Propriétés...3 3- Chagemet d'idice...4 4- Sommes et produits télescopiues...5

Plus en détail

Exercices sur entiers naturels et dénombrement

Exercices sur entiers naturels et dénombrement Exercices sur etiers aturels et déombremet Soit f ue alicatio de das telle que, our tout etier aturel, o ait : f f O ose f ) Démotrer que f et f ) Démotrer que, our tout etier aturel, o a : f et ) boutir

Plus en détail

Opérations sur les variables aléatoires Lois limites

Opérations sur les variables aléatoires Lois limites Opératios sur les variables aléatoires Lois limites A. Idépedace de deux variables aléatoires. Exemple 1. Pour améliorer le stockage d u produit u supermarché fait ue étude sur la vete de packs de 6 bouteilles

Plus en détail

Probabilités générales

Probabilités générales Chapitre 4 termiale s Probabilités géérales Les probabilités (rappels) : ) Quelques otios de vocabulaire : Nous allos étudier selo quelle mesure u fait proveat du hasard peut être prévisible a) Ue expériece

Plus en détail

Mathématiques Colle n o 22 Combinatoire. Probabilités. Lycée Charlemagne PCSI. Exercice 10. Exercice 7.

Mathématiques Colle n o 22 Combinatoire. Probabilités. Lycée Charlemagne PCSI. Exercice 10. Exercice 7. Mathématiques 205-206 Colle o 22 Combiatoire. Probabilités Lycée Charlemage PCSI Exercice. Exercice 5. O dispose de différets vêtemets : quatre slips, trois patalos, deux tee-shirts et ciq paires de chaussures.

Plus en détail

Dénombrement. 3 ème Maths Mai I. Arrangements :

Dénombrement. 3 ème Maths Mai I. Arrangements : Déomremet ème Mths Mi A. LAATAOUI I. Arrgemets : Activité rértoire : Seize équies de footll rticiet à u chmiot. hque équie recotre toutes les utres e deux mtches : u «Aller» u «RETOUR». omie de mtches

Plus en détail

DÉVELOPPEMENTS LIMITÉS 5

DÉVELOPPEMENTS LIMITÉS 5 DÉVELOPPEMENTS LIMITÉS 5 A. Défiitios Soit f ue foctio umérique de la variable réelle défiie sur u itervalle I coteat et u etier aturel. O dit que f admet u déveloemet limité à l'ordre au voisiage de s'il

Plus en détail

Module 6: Les Emprunts Obligataires

Module 6: Les Emprunts Obligataires Module 6: Les Emruts Obligataires Table des matières Uité 1 - Théorie géérale... 3 I - Itroductio... 3 1 ) Notatios... 3 2 ) Les différets modes de remboursemet... 4 II - Termiologie et otatios... 5 1

Plus en détail

Devoir de Mathématiques numéro 1

Devoir de Mathématiques numéro 1 Lycée La Prat's Classe de PT Pour le Vedredi setembre Devoir de Mathématiques uméro Correctio Eercice CAPES itere 7) Partie Majoratios, mioratios, ecadremets) ) ch ) + et sh ) ) Pour ces deu foctios, le

Plus en détail

Probabilité conditionnelle 4 ème Sciences Avril 2010

Probabilité conditionnelle 4 ème Sciences Avril 2010 Probabilité coditioelle 4 ème Scieces vril 200 LTOUI Raels { e e e } Ω=, 2,, est l uivers des ossibles (esemble des évetualités) associé à ue éreuve, exériece, u jeu, Exemles : Lacer d ue ièce de moaie

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Déombremets Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice IT * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

Fiche N 8 : Matrices.

Fiche N 8 : Matrices. Lycée Paul Gaugui CPGE-EC1 Aée 014/015 Fiche N 8 : atrices Gééralités sur les matrices atrices : Défiitios O appelle matrice à liges et p coloes tout tableau rectagulaire de ombres réels à liges et p coloes

Plus en détail

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions.

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions. Probabilités, MATH 44 Feuille de travaux dirigés. Solutios. 1 Exercices Exercice 1. O jette trois dés o pipés. 1. Calculer la probabilité d obteir au mois u 1.. Que vaut la probabilité d obteir au mois

Plus en détail

ENSEMBLE DE NOMBRES TD N 1 - CORRIGE

ENSEMBLE DE NOMBRES TD N 1 - CORRIGE ENSEMBLE DE NOMBRES TD N - CORRIGE Exercice A 8 7 B 7 7 - C 0 7 0 0 0 - Exercice ) ³ 8 ) 7 0 88 7 0 ) ) 00 00 0 7 77 7 x Exercice Le déomiateur commu est x 7 x 9 8 8 7 98 ; ; ; ; 7 9 9 L ordre croissat

Plus en détail

Domaines d'utilité: Lois de Probabilités pour une variable aléatoire (création d'une loi) Calcul de dénombrement et de probabilités associées

Domaines d'utilité: Lois de Probabilités pour une variable aléatoire (création d'une loi) Calcul de dénombrement et de probabilités associées NOM:... PRENOM:... Date:... Classe:... Section:... Domaines d'utilité: Lois de Probabilités our une variable aléatoire (création d'une loi) Calcul de dénombrement et de robabilités associées Objectifs:

Plus en détail

Chapitre A1 - Nombres - récurrences - Sommes. Table des matières

Chapitre A1 - Nombres - récurrences - Sommes. Table des matières Chapitre A1 - Nombres - récurreces - Sommes Table des matières 1 Esembles de ombres 2 1.1 Déitios................................................... 2 1.2 Itervalles d'etiers..............................................

Plus en détail

Synthèse de cours PanaMaths Tribus

Synthèse de cours PanaMaths Tribus Sythèse de cours PaaMaths Tribus Das ce documet, pour tout esemble E et toute partie A de E, ous oteros A le complémetaire de A das E. Défiitios et premières propriétés Défiitios Soit E u esemble. E Soit

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

COURS MPSI A.4. DENOMBREMENTS ET PROBABILITES R. FERRÉOL 16/17

COURS MPSI A.4. DENOMBREMENTS ET PROBABILITES R. FERRÉOL 16/17 I) Déombremets classiques. 1) Collectios formées de d élémets issus d u esemble E ayat élémets. avec réétitios ossibles sas réétitio avec ordre oms : liste de logueur d élémets de E liste d élémets de

Plus en détail

est la probabilité cherchée est donc :

est la probabilité cherchée est donc : Lycée Secodaire Ali Zouaoui Probabilités 4 Sc-T Loi iomiale: Ue ure cotiet des boules blaches et des boules oires.la - robabilité de tirer ue boule blache au hasard est égale à ; q Aée Scolaire 007/008

Plus en détail

est appelé nombre de Catalan d indice n. 2n 1 2n 1 2n 1 n pour n 1. [ S ]

est appelé nombre de Catalan d indice n. 2n 1 2n 1 2n 1 n pour n 1. [ S ] Éocé O rappelle que si 0 p, le symbole esemble à élémets. Par covetio o pose Pour tout de N, C = (2)!! ( + 1)! désige le ombre de parties à p élémets das u p = 0 si p < 0 ou p >. p est appelé ombre de

Plus en détail

CH5 Algèbre : Suites numériques

CH5 Algèbre : Suites numériques ème Scieces CH5 Algèbre : Suites umériques Décembre 9 A LAATAOUI I Présetatio des suites umériques : Défiitio d ue suite : Ue suite (u ) est ue foctio défiie sur l'esemble N qui à tout etier aturel associe

Plus en détail

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web : 3 ème Maths

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web :  3 ème Maths Séries d exercices Deomremet 3 ème Maths Maths au lycee *** Ali AKIR Site We : htt://maths-akir.midilogs.com/ EXERCICE N Soit E l esemle des etiers tels ue. Pour tout etier, o ote ar M ( ) l esemle M(

Plus en détail

Les symboles Σ et Π. Le binôme de Newton

Les symboles Σ et Π. Le binôme de Newton Les symboles Σ et Π Le biôme de Newto Nous cosacros ici u log chaitre au symbole Σ et au symbole Π A terme, la maîtrise de ce symbole est ue cométece essetielle à acquérir et ous esos qu il faut y cosacrer

Plus en détail