NOTATIONS ET FORMULAIRE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "NOTATIONS ET FORMULAIRE"

Transcription

1 Uversté PARIS DESCARTES Lcece de Psychologe L1 ADP1- Resp : Mrelle LAGARRIGUE page 1/5 PROTOCOLE SUR U ECHA TILLO NOTATIONS ET FORMULAIRE Esemble des sujets de l échatllo S { s 1 ; s ;.; s } (1) Varable aléatore S X () Modalté observée de X pour u sujet : x (3) Protocole: esemble des observatos {(s 1, x 1 );(s, x );.;(s, x )} (4) Protocole équpodéré: les observatos e sot pas regroupées, x.a u pods absolu 1 Protocole podéré: dstrbuto d effectfs, la valeur x est observée fos (pods absolu ) PROTOCOLE U IVARIE CATEGORISE (varable à modaltés) Effectf observé pour modalté (5) Fréquece de la modalté : f / (6) PROTOCOLE U IVARIE UMERIQUE DO E PAR I TERVALLES Varable doée par tervalles : Ampltude de l tervalle [a ; b] : b a (7) Desté d u tervalle : desté effectf / ampltude (8) PROTOCOLE U IVARIES UMERIQUES DISCRETS PO DERES OU O Rag du quatle q α d ordre α (ue proporto α de sujets a u score q α ) Rag α + ½ (9) Médae :α ½ q 1 1 er quartle α ¼ q 3 3 ème quartle α ¾: Pods relatf ou fréquece de la valeur x 1 p e équpodéré (sére de valeurs) souvet oté auss 1 f (10) p e podéré (dstrbuto d effectfs) souvet oté auss f (11) Moyee d'u protocole m x p x p x + p x I 1 1 (1) Etedue Max M (13) Ecart ter quartle EIQ q 3 q 1 (14) EAM EAM p x m (15) I p x

2 Uversté PARIS DESCARTES Lcece de Psychologe L1 ADP1- Resp : Mrelle LAGARRIGUE page /5 Cotrbuto absolue de à la varace Cta p (x m) (16) Varace «varace populato») Var Cta p ( x m) (17) I I Cotrbuto relatve à la Varace Ctr Cta / Var (18) Ecart-type ("Ecart-type populato") Var (19) ECART A LA MOYE E, ECART CE TRE-REDUIT Ecart à la moyee de l'dvdu (varable cetrée) E x m (0) Ecart-rédut de l dvdu (varable cetrée-rédute) z x m (1) COMBI ATOIRE Coeffcets bomaux p! p!( C p p)! Cp par la calculette () PROBABILITES Probablté fréquetste: A) Nombre de cas favorables / Nombre de cas possbles (3) Probablté codtoelle A B) A/ B) (4) B) Evèemets dépedats A B) A) x B) (5) C'est-à-dre A/B) A) (6)

3 Uversté PARIS DESCARTES Lcece de Psychologe L1 ADP1- Resp : Mrelle LAGARRIGUE page 3/5 TEST DE TYPICALITE DISTRIBUTIO S D ECHA TILLO AGE Dstrbuto d échatlloage d'ue moyee (DEM) Proprétés POPULATIO DE REFERE CE Effectf Moyee Ecart-type N µ Echatllo observé m Ety DEM (varable M) Eff (M) Moy (M) Ety (M) Moyee: Moy( M) µ (7) (Théorème des 3 moyees: "La moyee de la dstrbuto d'échatlloage de la statstque Moyee est égale à la moyee parete") Ecart-type ( f): M ) 1 (8) Ecart-type ( f ou pett) M) (erreur-type de la moyee) (9) Forme Théorème de la Lmte Cetrale Pour ue dstrbuto de référece quelcoque, la forme de la dstrbuto d'échatlloage de la moyee se rapproche de la forme ormale lorsque croît, et cela d'autat plus que la dstrbuto de référece est symétrque et est proche d'ue dstrbuto ormale. Dstrbuto d'échatlloage d'ue proporto (ou fréquece) (DEF) Proprétés POPULATIO DE REFERE CE Effectf Proporto Moyee Ecart-type N ϕ Echatllo observé f DEF (varable F) Eff (F) F Moy(F) Ety (F) Moyee: Moy ( F ) ϕ (30) Ecart-type ( f): F) ϕ (1 ϕ) 1 (31) Ecart-type ( f ou pett) ϕ (1 ϕ) F) (3) Forme La proporto F de l échatllo, sut approxmatvemet ue lo ormale de moyee ϕ et d écart type F).

4 Uversté PARIS DESCARTES Lcece de Psychologe L1 ADP1- Resp : Mrelle LAGARRIGUE page 4/5 TEST Z - I FERE CE SUR U E MOYE E ( CO U) M) (33) zobs m obs µ M ) (34) TEST Z - I FERE CE SUR U E FREQUE CE (OU PROPORTIO ) Ety F zobs ϕ f obs Ety ϕ ( 1 ϕ) F (35) (36) ESTIMATIO PO CTUELLE VARIA CE ET ECART-TYPE CORRIGES otatos de la DEM POPULATIO PARE TE Effectf Moyee Varace Ecart-type N µ ² Echatllo observé m Var Ety DEM (varable M) Eff (M) Moy (M) Ety (M) Estmateur sas bas de µ la moyee parete :m la moyee de l'échatllo (moyee emprque) Estmateur sas bas de la varace de la populato parete: la varace corrgée: s (37) Var 1 où Var est la varace de l'échatllo (38) d'où l'écart-type corrgé s Ety où Ety est l'écart-type de l'échatllo (39) 1 I FERE CE SUR U E MOYE E ( I CO U) O estme par l écart-type corrgé s de l échatllo S 300 o utlse le test Z S <300 o utlse u test de Studet avec comme degré de lberté ddl ν -1 s Ety ( M ) (40) tobs m obs µ M ) (41)

5 Uversté PARIS DESCARTES Lcece de Psychologe L1 ADP1- Resp : Mrelle LAGARRIGUE page 5/5 ESTIMATIO PAR I TERVALLE DE CO FIA CE DE LA MOYE E µ [RESP. DE LA PROPORTIO φ] DE LA POPULATIO PARE TE otatos de la DEM [resp. de la DEF] Exemple: Dre que l'o attrbue au fat que µ [resp. φ] appartee à [0,56 ; 0,64] le veau de coface 1 α 0,95 95% sgfe : que pour ces valeurs de µ [resp. φ], l'échatllo est typque au seul blatéral α 0,05, que l hypothèse ulle selo laquelle µ [resp φ] est das cet tervalle e serat pas rejetée, que le test (Z ou t selo les cas) de cette hypothèse ulle serat o sgfcatf Itervalle de coface au seul α blatéral de la moyee µ, ( cou) / désge la valeur de z au seul ulatéral α/ [m - z α/. / ; m + z α/. / ] (4) Itervalle de coface au seul α blatéral de la proporto φ / désge la valeur de z au seul ulatéral α/ f (1 f ) f (1 f ) zα / ; f + zα / ] (43) [ f Itervalle de coface au seul α blatéral de la moyee µ, ( cou estmé par s), désge la valeur de t au seul ulatéral α/, degré de lberté -1 [m - t α/, -1. s/ ; m + t α/, -1. s/ ] (44) I FERE CE SUR U E REPARTITIO DE FREQUE CES (OU PROPORTIO S) Dstrbuto d effectfs observés : ( ) sur u esemble à K modaltés Effectf total 1àK K (45) Fréqueces observées Dstrbuto de fréqueces théorques: Effectfs théorques: ( ) 1 àk (46) ϕ (47) ˆ ϕ (48) Test : ( ˆ ) ( obs théo àk ˆ théo ² ) obs 1 χ (49) Degré de lberté: ddl K - 1 (50)

LOI NORMALE ET LOIS DERIVEES

LOI NORMALE ET LOIS DERIVEES Prcpes et Méthodes de la Bostatstque Chaptre 5 LOI NORMALE ET LOIS DERIVEES A-LA LOI NORMALE Présetato La dstrbuto ormale, dte ecore de Laplace-Gauss, est pour des rasos qu apparaîtrot plus lo, la plus

Plus en détail

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 page1/6 CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 Dosser "Défcece" 1) = 30 pour les groupes. Les classes sot d'ampltudes dfféretes doc...utlser la desté (rappel : desté = effectf/ampltude). Durée

Plus en détail

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats.

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats. rbre de déombremet et arbre de probablté Pla du documet. O présete tout d'abord la règle du produt pour les arbres de déombremet avec, e cas partculer, le cardal d'u produt cartése d'esembles fs.. O présete

Plus en détail

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position?

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position? Paramètres descrptfs Cours VETE043- Aée académque 06-07 Commet représeter les varables aléatores (doées)? Représetato sythétque Tables de fréqueces Représetato graphque Dagrammes de fréqueces Paramètres

Plus en détail

Alain MORINEAU

Alain MORINEAU www.deeov.com Ala MORINEAU Cet artcle est ue reprse et u extrat de l artcle «Note sur la Caractérsato Statstque d'ue Classe et les Valeurs-tests», publé das la revue Bullet Techque du Cetre de Statstque

Plus en détail

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X Estimatios Problématique. A partir d'observatios faites sur u échatillo, o se propose de tirer des coclusios sur la populatio toute etière. Aisi cotrairemet à la logique déductive, qui va du gééral au

Plus en détail

Loi de Fisher. Test de Fisher. Exemple. Solution. ANOVA à un facteur. df = (29, 28) df = (19, 6) df = (6, 6)

Loi de Fisher. Test de Fisher. Exemple. Solution. ANOVA à un facteur. df = (29, 28) df = (19, 6) df = (6, 6) ! amlle de dtrbuto. Lo de her! Chaque membre de la famlle et détermé par deux paramètre: le ombre de degré de lberté du umérateur et le ombre de degré de lberté du déomateur.! et cotue et potve.! et potvemet

Plus en détail

Serie statistique double

Serie statistique double Sere statstque double Dstrbutos margales Actvté U relevé statstque des talles (e cm) et des pods Y (e kg) d u échatllo de 00 élèves a perms de costrure le tableau suvat : Y [0, 5[ [5, 50[ [50, 55[ [55,

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles L Meto Iformatque UE Probabltés Chaptre 3 : Varables aléatores réelles Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer, Serge Solovev Sot (, A, P) Ω et X : Ω R ue varable aléatore. I. Varable

Plus en détail

PROBABILITÉS ET STATISTIQUE POUR L ENSEIGNEMENT SECONDAIRE

PROBABILITÉS ET STATISTIQUE POUR L ENSEIGNEMENT SECONDAIRE PROILITÉS ET STTISTIQUE POUR L ENSEIGNEMENT SECONDIRE Ce documet a été rédgé à l occaso d u stage de formato cotue de professeurs de mathématques de trosème et secode e décembre 009 à Toulouse, sute à

Plus en détail

Résumé de statistique I

Résumé de statistique I Résumé de statstque I Etude de doées statstques : Ce qu ous téresse lorsqu o a des doées statstque ou ue dstrbuto de celles-c : Le cetre : o o Moyee : mesures o robustes Médae : mesures robustes La dsperso

Plus en détail

I. Moyenne, variance et écart-type d une série statistique

I. Moyenne, variance et écart-type d une série statistique I Moyee, varace et écart-type d ue sére statstque Sére statstque dscrète : Eemple d ue sére statstque dscrète : Preos le cas d ue classe de élèves qu réalset u devor oté sur 5 La sére statstque dscrète

Plus en détail

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!!

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!! Cours : Statstques I. Itroducto Classe de ère S O a vu que our caractérser ue sére statstque, o utlse des : - aramètres de tedace cetrale : - la moyee ; - la médae. Ils ermettet d dquer la «osto» de la

Plus en détail

2.1 Variable aléatoire Fonction de répartition Fonction de masse et de densité...2

2.1 Variable aléatoire Fonction de répartition Fonction de masse et de densité...2 - Varables aléatores et dstrbutos - Chaptre : Varables aléatores et dstrbutos. Varable aléatore.... Focto de répartto....3 Focto de masse et de desté....4 Dstrbuto cojote de varables aléatores...5.4. Dstrbuto

Plus en détail

Cours 11 Une variable numérique : dispersion et variance

Cours 11 Une variable numérique : dispersion et variance Cours 11 Ue variable umérique : dispersio et variace Ce cours est cosacré à la variace et à l'écart-type ; o commece par faire u rappel sur la variace comme idice de dispersio, mesure de l'éparpillemet

Plus en détail

Chapitre 1 : Statistique descriptive univariée

Chapitre 1 : Statistique descriptive univariée Biostatistiques Licece Chapitre : Statistique descriptive uivariée Itroductio Statistique : esemble de méthodes scietifiques destiées à la collecte, la présetatio et l aalyse de doées. Jeux de doées Applicatio

Plus en détail

Statistiques inférentielles

Statistiques inférentielles Statistiques iféretielles LI323 Hugues Richard (otes de cours: Pierre-Heri Wuillemi) Uiversité Pierre et Marie Curie (UPMC) Laboratoire géomique des microorgaismes (LGM) Itroductio Soit ue populatio de

Plus en détail

CORRIGE DES EXERCICES : Exercices de révision

CORRIGE DES EXERCICES : Exercices de révision U.F.R. S.P.S.E. Licece de psychologie L5 PLPSTA03 Tests d'hypothèses statistiques UNIVERSITE PARIS X NANTERRE CORRIGE DES EXERCICES : Exercices de révisio Exercice 8. P{filles de 0 as}, X ombre de boes

Plus en détail

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations Pla du cours 2 RFIDEC cours 2 : Échatillos, estimatios poctuelles Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Lois des grads ombres 2 Théorème cetral-limite 3 Estimatio poctuelle à partir d échatillos

Plus en détail

ANALYSE DE RESULTATS EXPERIMENTAUX Sommaire

ANALYSE DE RESULTATS EXPERIMENTAUX Sommaire ANALYSE DE RESULTATS EXPERIMENTAUX ------------ Sommare. ANALYSE DE RESULTATS DE PLUSIEURS MESURES D UNE MÊME GRANDEUR :..... LE PROBLÈME :..... QUELQUES NOTIONS INDISPENSABLES DE STATISTIQUE...... Populato

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 00 SBN : 978---54754- Commet calculer ue tolérace ertelle 75 Nous avos doc u toléracemet par tervalle sur les exgeces foctoelles

Plus en détail

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez Mesure de la laso etre deux varables qualtatves Kh deux Equête : Êtes-vous «pas du tout d accord»

Plus en détail

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18 1 U commerçat a relevé le motat des dépeses e euros de chaque clet au cours d ue semae. Motat des dépeses Clets [0 ; 50[ 72 x x - x ) - x )² -x ) ² [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200

Plus en détail

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen Aexe. Estmato d u quatle o-paramétrque par la méthode de Haze La probablté cumulée emprque d ue doée au se d u échatllo est pas u cocept parfatemet déf : pluseurs estmatos sot possbles ; l e est de même

Plus en détail

Quelques éléments de statistiques

Quelques éléments de statistiques Quelques élémets de statstques Avat-propos Ces quelques élémets coceret essetellemet les statstques au programme das l esegemet secodare. Ils preet appu sur les documets utlsés par M. ARTIGUES, IA-IPR

Plus en détail

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2 Exercce Lba 6 4 pots O cosdère u solde ADECBF costtué de deux pyramdes detques ayat pour base commue le carré ABCD de cetre I. Ue représetato e perspectve de ce solde est doée e aexe (à redre avec la cope).

Plus en détail

CORRIGE DES EXERCICES : Distributions d'échantillonnage - Intervalles de variation

CORRIGE DES EXERCICES : Distributions d'échantillonnage - Intervalles de variation U.F.R. S.P.S.E. Licece de psychologie L3 PLPSTA0 Bases de la statistique iféretielle UNIVERSITE PARIS X NANTERRE CORRIGE DES EXERCICES : Distributios d'échatilloage - Itervalles de variatio Exercice 1

Plus en détail

Résumé de statistique inductive

Résumé de statistique inductive Uiversité de Bourgoge Faculté de Médecie et de Pharmacie Résumé de statistique iductive NB : les iformatios coteues das ce polycopié e fot e aucu cas office de référece pour le cocours, il s agit uiquemet

Plus en détail

STATISTIQUES A UNE VARIABLE

STATISTIQUES A UNE VARIABLE Cours et exercces de mathématques ) Itroducto et vocabulare STATISTIQUES A UNE VARIABLE La statstque est la scece qu cosste à réur des doées chffrées, à les aalyser, à les commeter et à les crtquer Ue

Plus en détail

MÉTHODES STATISTIQUES EXAMEN FINAL HIVER 2007 Date : Dimanche 29 avril de 14h00 à 17h00

MÉTHODES STATISTIQUES EXAMEN FINAL HIVER 2007 Date : Dimanche 29 avril de 14h00 à 17h00 MAT 080 MÉTHODES STATISTIQUES EXAME IAL HIVER 007 Date : Dimache 9 avril de 14h00 à 17h00 ISTRUCTIOS Détachez la feuille-réposes à la fi de ce cahier et iscrivez-y immédiatemet votre om, votre code permaet

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

C.1- Lois discrètes- Loi uniforme

C.1- Lois discrètes- Loi uniforme C- Lois usuelles C.1- Lois discrètes- Loi uiforme Loi d ue variable aléatoire X preat ses valeurs das {1,,} avec la même probabilité: 1 P ( X = x ) = x {1,,... } Ex : E=«lacer d u dé régulier» X=uméro

Plus en détail

Intervalles de confiance

Intervalles de confiance Itervalles de cofiace H4 H4 Itervalles de cofiace Vocabulaire : u correspod à ue fiabilité (ou cofiace) de 95 %, u correspod à ue fiabilité (ou cofiace) de 99 % 0 ) Echatillo o exhaustif La théorie des

Plus en détail

T. D. n o 2 Intervalles de confiance-correction

T. D. n o 2 Intervalles de confiance-correction T. D. o 2 Itervalles de cofiace-correctio Exercice 1. Les billes métalliques 1. Nous calculos la moyee µ 10 de l échatillo : µ 10 = 20. Calculos la variace corrigée puis l écart-type corrigé de l échatillo

Plus en détail

Méthodes stochastiques de calcul de stabilité des pentes

Méthodes stochastiques de calcul de stabilité des pentes Républque Algéree Démocratque et Populare Mstère de l Esegemet Supéreur et de la Recherche Scetfque UNIVERSITE MOULOUD MAMMERI - TIZI OUZOU - Faculté du Gée de la costructo Départemet de Gée Cvl MÉMOIRE

Plus en détail

Estimation par intervalle de confiance

Estimation par intervalle de confiance 62 CHAPITRE 12 Estimatio par itervalle de cofiace 1. Estimatio de la moyee par itervalle de cofiace 1.1. Calcul de la marge d erreur. O veut maiteat faire ue estimatio par itervalle de cofiace de la moyee

Plus en détail

SOMMAIRE. Généralités :...2

SOMMAIRE. Généralités :...2 SOMMAIRE Gééraltés :... I. Déftos :... II. Apport de la statstque au écoomstes :... III. Les lmtes de la méthode statstque :... IV. Le vocabulare utlsé e statstque :...3 V. Quelques symboles mathématques

Plus en détail

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE UE4 : Bostatstques Chaptre 8 Corrélato et régresso léare smple José LABARERE Aée uverstare 20/202 Uversté Joseph Fourer de Greoble - Tous drots réservés. Pla I. Corrélato et régresso léare II. Coeffcet

Plus en détail

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ Pla du cours 3 RFIDEC cours 3 : Itervalles de cofiace, tests d hypothèses, loi du χ Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Itervalles de cofiace Tests d hypothèses 3 La loi du χ Itervalles

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression L Meto Iformatque UE Probabltés Chaptre 4 : Smulato - Régresso Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer I- Smulato de varables aléatores. Itroducto Das certaes expéreces «réelles», où le

Plus en détail

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires UE 4 Evaluato des méthodes d aalyse applquées au sceces de la ve et de la saté Statstque Varables aléatores Frédérc Mauy - 27 septembre et 3 octobre 2013 1 Pla du cours 1. Varable aléatore 1. Défto 2.

Plus en détail

MÉTHODES STATISTIQUES

MÉTHODES STATISTIQUES MAT 080 XAM IAL AUTOM 005 ate : imache 8 décembre 005, de h00 à 7h00 ISTRUCTIOS MÉTHOS STATISTIQUS. étachez la feuille-réposes à la fi de ce cahier et iscrivez-y immédiatemet votre om, votre code permaet

Plus en détail

Corrigé Fiche 6 Septembre 2016

Corrigé Fiche 6 Septembre 2016 Corrigé Fiche 6 Septembre 2016 1. Estimatio de la moyee, variace coue, cas gaussie O dispose d u -échatillo X 1,..., X i.i.d. tel que X i suit ue loi ormale N µ, σ 2 ). L objectif est d estimer µ. Supposos

Plus en détail

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00 MAT 2080 MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimache 15 mars 2009 de 14h00 à 17h00 INSTRUCTIONS 1. Détachez la feuille-réposes à la fi de ce cahier et iscrivez-y immédiatemet votre om,

Plus en détail

Analyse Statistique des Données de Lifetest

Analyse Statistique des Données de Lifetest Aalyse Statstque des Doées de Lfetest Evas Gouo Laboratore de Statstque Applquée de l Uversté de Bretage-Sud Pla Gééraltés Les modèles paramétrques Essas accélérés : modèle d accélérato Exemple Step-Stress

Plus en détail

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm I. DEFINITION ANALYSE DES ENQUETES CAS-TEMOINS AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séres o apparées) Dr F. Séguret Départemet d Iformato Médale, Épdémologe et Bostatstques U facteur F est ue

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

est la fréquence empirique des succès lors des 10 premières expériences.

est la fréquence empirique des succès lors des 10 premières expériences. Pierre Veuillez Statistiques iféretielle Sources, et pour e savoir plus : http://www.math-ifo.uiv-paris5.fr/smel 1 Problématique : Exemple ue ure cotiet des boules rouges et blaches dot o e coaît pas la

Plus en détail

Estimation par intervalle de conance

Estimation par intervalle de conance SQ20 - ch7 Page 1/6 Estimatio par itervalle de coace Pricipe de costructio : Das le chapitre précédet, ous avos déi les estimateurs, et l'estimatio poctuelle d'u paramètre θ. Soit : X ue variable aléatoire

Plus en détail

La statistique et les statistiques

La statistique et les statistiques Psy004 Secto : La statstque et les statstques Pla du cours: 0.0: Beveue 0.: Les catégores du savor 0.: Survol de la psychologe 0.3: Le pla de cours 0.4: Les assstats.0: La physque: scece exacte?.: Scece

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 003 EPREUVE SPECIFIQUE FILIERE MP MAHEMAIQUES 1 Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la plus grade mportace à la clarté, à la précso et à la cocso de la

Plus en détail

1 ère partie : STATISTIQUE DESCRIPTIVE

1 ère partie : STATISTIQUE DESCRIPTIVE ère parte : STATISTIQUE DESCRIPTIVE CHAPITRE : COLLECTE DE L INFORMATION, TABLEAUX ET GRAPHIQUES. I. Défto et vocabulare Défto : la statstque est ue méthode scetfque qu cosste à réur des doées chffrées

Plus en détail

Master Eseec Statistique pour l expertise - partie2

Master Eseec Statistique pour l expertise - partie2 Master Eseec Statistique pour l expertise - partie2 Christia Laverge Uiversité Paul Valéry - Motpellier 3 http://moodle-miap.uiv-motp3.fr http://www.uiv-motp3.fr/miap/es (UPV) Eseec 1 / 57 Lois limites

Plus en détail

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an BTS BLANC Ma 0 Epreuve : Mathématques Géérales et Applquées Flère : DA / ARLE Durée: heures NB : Chaque parte dot être tratée sur des copes dfféretes I- MATHEMATIQUES GENERALES Exercce a b Sot le Sot la

Plus en détail

Estimation Intervalle de Confiance

Estimation Intervalle de Confiance Estimatio Itervalle de Cofiace Pr Roch Giorgi roch.giorgi@uiv-amu.fr SESSTIM, Faculté de Médecie, Aix-Marseille Uiversité, Marseille, Frace http://sesstim-orspaca.org Itroductio Coaître des valeurs de

Plus en détail

MODULE : STATISTIQUES ROYAUME DU MAROC OFPPT RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES SECTEUR : TERTIAIRE

MODULE : STATISTIQUES ROYAUME DU MAROC OFPPT RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES SECTEUR : TERTIAIRE OFPPT ROYAUME DU MAROC مكتب التكوين المهني وإنعاش الشغل Offce de la Formato Professoelle et de la Promoto du Traval DIRECTION RECHERCHE ET INGENIERIE DE FORMATION RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES

Plus en détail

1. Notion de «série statistique» 2. VRAI ou FAUX. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P.

1. Notion de «série statistique» 2. VRAI ou FAUX. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P. 351-355) Page 1 1. Notio de «série statistique» Il s agit d ue série de doées recueillies auprès des différetes uités statistiques d u

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

III ESPERANCE MATHEMATIQUE

III ESPERANCE MATHEMATIQUE /9 ésumé de ours e alul des probabltés (JJ bellager III ESPEAE MATHEMATIQUE I.Défto et alul de l espérae mathématque d ue VA La défto la plus géérale de l espérae d u VA : (do à valeurs postves ou ulles

Plus en détail

Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie. A. Arfaoui

Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie. A. Arfaoui Mnstère de la Jeunesse et des Sports Insttut Royal de Formaton des Cadres Département des Scences de la Ve A. Arfaou Défntons La statstque est l ensemble des méthodes et technques permettant de trater

Plus en détail

Chapitre 4 : RÉGRESSION

Chapitre 4 : RÉGRESSION Chaptre 4 : RÉGRESSION 4. Régresso léare smple 4.. Équato de la régresso 4.. Estmato par les modres carrés 4..3 Coeffcet de détermato 4..4 Iférece sur les coeffcets 4..5 Prévso et aalyse des résdus Régresso

Plus en détail

2. Statistique descriptive

2. Statistique descriptive - -. Statstque descrptve. Statstque descrptve «Ctoyes! Cessez de crore yeu fermés les statstces! Appreez à jauger» «Les corrélatos qu vous motret que plus l y a de médecs plus o meurt jeue!». Quelques

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Chaptre 9 Corrélaton et régresson lnéare 1. La corrélaton lnéare Chap 9. 1. La corrélaton lnéare. La régresson lnéare 1.1) Défntons L étude statstque d'une populaton peut porter smultanément sur pluseurs

Plus en détail

Utilisation en modélisation. Régression linéaire

Utilisation en modélisation. Régression linéaire Utilisatio e modélisatio Régressio liéaire La régressio est l ue des otios basiques de la statistique et de l aalyse des doées. Gééralemet, le problème cosiste à décrire la dépedace etre deux variables

Plus en détail

CHAPITRE 4 Paramètres d'une série statistique

CHAPITRE 4 Paramètres d'une série statistique Cours de Mathématiques Classe de secode Statistiques CHAPITRE 4 Paramètres d'ue série statistique A) Diverses sortes de séries statistiques 1) Défiitio Ue série statistiques est u esemble de ombres, représetat

Plus en détail

Aide Mémoire de Statistique

Aide Mémoire de Statistique Aide Mémoire de Statistique (E, E, P) modèle statistique (E, E, P) modèle probabiliste E probabilité, o coaît la loi P et o fait des calculs E statistique, o e coaît pas la loi (seulemet ue famille de

Plus en détail

Variables j.. p. Xij

Variables j.. p. Xij L alyse e Composates Prcpales (CP) O possède u tableau rectaulare de mesure dot les coloes sot des varables quattatves (mesuratos, taux, statos clmatques) et dot les les représetet des dvdus statstques

Plus en détail

Test de validité et d'hypothèse

Test de validité et d'hypothèse Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des

Plus en détail

RADIOPROTECTION CIRKUS. Sommaire

RADIOPROTECTION CIRKUS. Sommaire RADIOPROTECTION CIRKUS Documet techque Radoprotecto Crkus 89 D boulevard du Fer 74000 Aecy www.rpcrkus.org - cotact@rpcrkus.org Assocato lo 1901 créée le 9 mars 010 W91300355 - Eregstrée à la préfecture

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

10ème cours Une variable numérique : indices de localisation

10ème cours Une variable numérique : indices de localisation 10ème cours Ue variable umérique : idices de localisatio Das ce cours, o fait u rappel sur les idices de localisatio, médiae, quatiles et moyee, et o étudie la faço de les utiliser pour comparer les distributios

Plus en détail

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail

VI. Statistique descriptive.

VI. Statistique descriptive. VI. Statstque descrptve. 1. Avat - propos : le sge sommatore. Soet x 1, x,...x : réels x 1 + x +...+ x = x Remarquos : Proprétés. 1 x = x j j1 1. x = x + x 1 p 1. kx = k x 1 1 p1 3. ( x y ) = x + y 1 Exercces.

Plus en détail

EXERCICES de Statistiques

EXERCICES de Statistiques EXERCICES de Statistiques Aette Corpart lycée Jea Zay de Thiers EXERCICES sur la LOI NORMALE La variable aléatoire X suit la loi ormale N ( 12 ; 4 ). Calculer les probabilités suivates : P ( X 15 ) ; P

Plus en détail

6 Tests du Khi-deux d indépendance et d homogénéité

6 Tests du Khi-deux d indépendance et d homogénéité 6 Tests du Khi-deux d idépedace et d homogééité Exercice 61 Test du Khi-deux d idépedace - Cotexte Deux variables qualitatives mesurées simultaémet sur ue populatio P : cadidats Variable X : «Résultat

Plus en détail

I. Séries de données et représentation graphique

I. Séries de données et représentation graphique Chaitre Statistiques : I. Séries de doées et rerésetatio grahique. Vocabulaire Ue série statistique traite de doées de différets tyes : effectifs, ourcetages, idices, Le caractère quatitatif étudié eut

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

ANOVA Analyse de la Variance

ANOVA Analyse de la Variance Chapitre 8 ANOVA Aalyse de la Variace. Obectif de la méthode Chap 8.. Obectif de la méthode. Approche ituitive 3. Décompositio de la variace 4. ANOVA: le test et le modèle statistique sous-acet O s itéresse

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 0-03 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5. Pricipe des tests 6.a. Méthodologie

Plus en détail

Variables aléatoires, Estimation ponctuelle, Principes généraux sur les tests

Variables aléatoires, Estimation ponctuelle, Principes généraux sur les tests Variables aléatoires, Estimatio poctuelle, Pricipes gééraux sur les tests Mémo 215-216 1 Rappels sur les variables aléatoires Défiitio 1.1 (Loi de Beroulli B(π)) C est ue ue variable aléatoire discrète

Plus en détail

Plan du cours. Rappels de probabilité. Axiomes des probabilités. Définition de la probabilité

Plan du cours. Rappels de probabilité. Axiomes des probabilités. Définition de la probabilité Pla du cours Rappels de probabilité Défiitios Axiomes Variable aléatoire Foctio de répartitio Momets R. Flamary, R. Herault, A. Rakotomamojy 9 octobre 4 Exemples de lois Loi uiforme Loi ormale Loi uiforme

Plus en détail

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3 3- Lois de distributio discrètes -1 Chapitre 3 : Lois de distributio discrètes 3.1 Loi de Berouilli...1 3. Loi Biomiale...1 3.3 Loi géométrique... 3.4 Loi de Pascal (loi égative biomiale)...3 3.5 Loi hypergéométrique...4

Plus en détail

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles,

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles, CONCOURS EMIA Sceces CONCOURS 0 EPREUVE DE MATHEMATIQUES Corrgé o offcel rédgé par Jea-Gullaume CUAZ, esegat au Lycée Mltare de Sat-Cyr, jgcuaz@hotmalcom Eercce ) Par assocatvté de l tersecto des évéemets,

Plus en détail

Notes de Cours : STATISTIQUES. Christine Kazantsev http ://www-ljk.imag.fr/membres/frederique.leblanc/

Notes de Cours : STATISTIQUES. Christine Kazantsev http ://www-ljk.imag.fr/membres/frederique.leblanc/ Notes de Cours : STATISTIQUES Frédérique Leblac Christie Kazatsev http ://www-ljk.imag.fr/membres/frederique.leblac/ 27 octobre 2009 1 Chapitre 1 Itroductio O souhaite étudier u caractère X sur ue populatio

Plus en détail

Effet de la variabilité des paramètres de sol sur le comportement des ouvrages de géotechnique

Effet de la variabilité des paramètres de sol sur le comportement des ouvrages de géotechnique Républque Algéree Démocratque et Populare Mstère de l Esegemet Supéreur et de la Recherche Scetfque UNIVERSITE MOULOUD MAMMERI - TIZI OUZOU - Faculté du Gée de la costructo Départemet de Gée Cvl MÉMOIRE

Plus en détail

Université Lumière Lyon 2 L3-Economie & Gestion

Université Lumière Lyon 2 L3-Economie & Gestion Uiversité Lumière Lyo L3-Ecoomie & Gestio UFR de Scieces Ecoomiques et de Gestio Statistique Iféretielle - Support de cours 1 Estimatio poctuelle & Itervalle de cofiace Rafik Abdesselam Courriel : rafik.abdesselam@uiv-lyo.fr

Plus en détail

2

2 1 2 2 2 2 2 2 2 (0) 0 = (0) + (0) 1 + + (0) (1 + ) 2 + (0) (1 + ) 3... ( ) 1 1/(1 + ) 0 = (0) + (0) (1 + ) = (0) + (0) 1 1/(1 + ) 0 = (0) + (0) =1 2 (1) 1 = + (1) 1 + + (1) (1 + ) 2 + (1) (1 + ) 3... 1

Plus en détail

SERIE S EPREUVE DE MATHEMATIQUES. Durée : 4h Coefficient : 7 ou 9

SERIE S EPREUVE DE MATHEMATIQUES. Durée : 4h Coefficient : 7 ou 9 BACCALAUREAT BLANC 2014 LYCEE DES ILES SOUS LE VENT SERIE S EPREUVE DE MATHEMATIQUES Durée : 4h Coefficiet : 7 ou 9 La calculatrice est autorisée, mais est pas échageable de cadidat e cadidat. La qualité

Plus en détail

Analyse de la variance à deux facteurs : dispositif équilibré

Analyse de la variance à deux facteurs : dispositif équilibré Analyse des données - Méthodes explicatives (STA102) Analyse de la variance à deux facteurs : dispositif équilibré Giorgio Russolillo Departement IMATH CNAM giorgio.russolillo@cnam.fr Introduction Giorgio

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

il s'agit de saisir une estimation optimale d'une grandeur à laquelle on suppose une existence objective.

il s'agit de saisir une estimation optimale d'une grandeur à laquelle on suppose une existence objective. Tratemet des certtudes de mesure I. PROBLEMATIQUE. Quad o veut détermer ue gradeur et que l'o effectue pluseurs mesures (smultaées avec des apparellages équvalets, ou répétées das des codtos semblables

Plus en détail

Chapitre II : Notion de mesure : Définition : 3 Remarques : 3 Définition : 3 Définition : 3 Définition : 3 Exemple : 4 Définition : 4 2.

Chapitre II : Notion de mesure : Définition : 3 Remarques : 3 Définition : 3 Définition : 3 Définition : 3 Exemple : 4 Définition : 4 2. Chaptre II : Noto de mesure 3 2. : Défto : 3 Remarques : 3 Défto : 3 Défto : 3 Défto : 3 Exemple : 4 Défto : 4 2.2 : Proprétés : 4 Proprété : 4 Proprété 2 : 4 Proprété 3 : 4 Proprété 4 : 4 Proprété 5 :

Plus en détail

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1 1 ère S1 Contrôle du lund 19 novembre 01 (45 mnutes) Compléter le tableau c-dessous donnant la dstrbuton de fréquences pour cet échantllon (calculs au broullon, fréquences sous forme décmale) : Prénom

Plus en détail

ANALYSE DES CORRESPONDANCES SIMPLES

ANALYSE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez MESURE DE LIAISON ENTRE DEUX VARIABLES QUALITATIVES KHI-DEUX Mesure de la laso etre deux varables qualtatves

Plus en détail