Correction DEVOIR COMMUN TS (3 heures)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Correction DEVOIR COMMUN TS (3 heures)"

Transcription

1 Corrcto DVOIR COMMUN TS hrs) rcc 6 pots) O cosdèr plsrs sacs d blls S, S, S,, S, tls q : L prmr sac S cott blls jas t vrts ; Chac ds sac svats S, S,, S, cott blls jas t vrts L bt d ct rcc st d étdr l évolto ds trags sccssfs, ffctés d la maèr svat : O tr a hasard bll das l sac S ; O plac la bll tré d S das l sac S, ps o tr a hasard bll das S ; O plac la bll tré d S das l sac S, ps o tr a hasard bll das S ; t as d st Por tot tr, o ot l évémt «la bll tré das l sac S st vrt» o ot p ) p Ms évdc d rlato d récrrc a D après l éocé, dor ls valrs d p ), p ) t ) p dédr la valr d ) p Por chaq trag d bll das l sac S cl-c cott blls, l trag s ffctat a hasard l y a éqprobablté tr ls évémts élémtars p ), fft l sac S cott blls vrts favorabls à l évèmt p ), fft sachat q la bll tré das S st vrt, l sac S cott blls vrts favorabls à l évèmt p ), fft sachat q la bll tré das S st ja, l sac S cott blls vrts favorabls à l évèmt j p dédr d après la forml ds probabltés totals avc p P ) p p ) p ) p ) p ) p ) 6 6 p ) b A l ad d arbr podéré, prmr p ) focto d ) p dédr rlato tr p t p P ) ) P p ) p ) ) ) ) p p p p P ) ) P ) j p dédr por tot tr, la rlato : p p

2 td d st O cosdèr la st ) déf par : a Démotrr q por tot o a Sot la proposto : «t, por tot», motros par récrrc q ll st vra, por Italsato : la proposto st vra por, fft, doc Hérédté : j sppos la proposto vra a rag : motros q ll st alors vra a rag avc j obts : doc Coclso : la proposto st vra por, ll st hérédtar doc ll st vra por la st ) st majoré par b Démotrr q la st ) st crossat avc doc t as por o a :, la st ) st crossat c Jstfr q la st ) st covrgt t détrmr sa lmt La st ) st crossat t majoré doc ll covrg vrs l avc l comm par passag à la lmt l l l l as lm volto ds probabltés p ) a A l ad ds résltats précédts, détrmr l évolto ds probabltés ) p ) p avc p t p p p doc d après la qsto la st p ) st crossat t majoré par, ll covrg vrs s «st grad ombr, la probablté d trr bol vrt das l sac S st» b A l ad d votr calclatrc, détrmr ls valrs d l tr por lsqlls o a l égalté, p ),? à la calclatrc, j trov p 6, t p7, comm la st p ) st crossat t majoré par por 7 o a l égalté,99 99 p ),

3 rcc 7 pots) Ls tros qstos sot dépdats O cosdèr la focto f déf sr l smbl R par f ) a b) c, où a, b t c sot tros réls q l o s propos d détrmr das la prmèr qsto La corb C rpréstatv d f das l pla rapporté à rpèr orthoormal st rprésté c-cotr La corb C pass par l pot A ; ), ll admt la drot D comm tagt c pot L pot ; ) appartt à la drot D La corb C admt égalmt tagt horotal a pot d abscss Das ctt qsto, tot trac d rchrch, mêm complèt, sra prs compt das l évalato - A l ad ds formatos doés das l éocé t d graphq, détrmr ls valrs d a, b t c La corb C pass par A ; ) doc ) La drot D st tagt A doc ) avc f ' ) a a b) a a b) f j obts l éqato : a b c y ya f ' A j obts l éqato : a b La corb admt tagt horotal a pot d abscss j obts l éqato : a b a b doc f ' as ls tros réls a, b t c vérft l systèm : d où f ) ) a b c a b c a a b b b a b c a b O admt por la st d l rcc q, por tot rél, ) ) a Détrmr lm f ) lm f ) lm ) f lm car lm lm b Vérfr q, por tot rél, f ) dédr lm f ) Q pt-o dédr por la corb C? f ) ) lm lm ) lm f car lm La drot d éqato y st asymptot horotal à la corb C a vosag d c O ot f la focto dérvé d f Détrmr, por tot rél, l prsso d f ) f ' ) ) )

4 d tablr l tabla d varato d f comm f ' d où l tabla d varato d f f ' ) > o a ) f ) f Sot la part d pla sté tr la corb C, l a ds abscsss t ls drots d éqatos t O sohat calclr c l ar d la part prmé té d ars a A l ad d tégrato par parts calclr la valr act d ) d J tls tégrato par parts avc ' ) ) v ) v ' ) ) d d ) ) a b dédr la valr act, ps la valr décmal arrod a dèm, d la part L ar d la part st égal à : f ) d f ) d ) d ) d d ) a f ) d, a rcc 7 pots) L pla compl st rapporté à rpèr orthoormal drct O ; ; v ) d té graphq cm O cosdèr das l smbl ds ombrs compls, l éqato ) d co svat : 8 ) 7 8) 7 ) Part A Résolto d l éqato ) Motrr q st solto d ) ) ) ) 8 ) 7 8 ) 7 doc st solto d ) Détrmr ls réls a, b t c tls q : 8 ) 7 8) 7 ) a b c) a b a c b c 8 ) 7 8 ) 7 ) a b c) ) ) a a b a 8 par dtfcato : b 8 c b 7 8 c 7 c 7

5 Résodr l éqato ) das l smbl ds ombrs compls L éqato 8 ) 7 8) 7 ) s écrt : ) 8 7) o { ; ; } S o ) δ vérf : δ 8 8 o Part, t O appll A, t C ls pots d affs rspctvs Placr ls pots sr fgr q l o complétra das la st d l rcc C' ' S P A o C W A' C ') C ) L pot Ω st l pot d aff O appll S l mag d A par la rotato d ctr Ω t d agl d msr π Calclr l aff s d S π l écrtr compl d la rotato d ctr Ω t d agl s écrt : ' ) as : s ) Démotrr q ls pots, A, S t C appartt à mêm crcl C) dot o détrmra l ctr t l rayo Tracr C) ΩA A t Ω S Ω A psq S st l mag d A Ω ) Ω C C ) ) π Ω S Ω A Ω Ω C doc ls pots, A, S t C appartt a crcl C) d ctr Ω d aff t d rayo

6 A tot pot M d aff, o assoc l pot M d aff : ' a Détrmr ls affs ds pots A, t C assocés rspctvmt a pots A, t C A' ' C' A ) 9) ) A 9 ) ) ) C ) ) ) C b Vérfr q A, t C appartt à crcl C ) d ctr P, d aff Détrmr so rayo t tracr C ) A' PA' ) P' ' C' PC' ) PA' P' PC' doc ls pots A, t C appartt a crcl C ') d ctr P d aff t d rayo c Por tot ombr compl, prmr ' focto d ' ) d Sot M pot d aff appartat a crcl C) Démotrr q ' Sot M pot d aff appartat a crcl ) par st : ' C alors dédr à ql smbl appartt ls pots M assocés a pots M d crcl C) C) C ) M ' M' ' Ls pots M assocés a pots M d crcl C ) appartt a crcl C ') d ctr P d aff t d rayo

CORRECTION DU BAC 2007

CORRECTION DU BAC 2007 ORRTION U B 7 Trmal S mérqu du Nord rcc Sot (P l pla dot u équato st : + y z + = lors, d coordoés ( ; ;, st u vctur ormal d (P omm H st l projté orthogoal d sur (P, alors H t sot coléars Il st H = k H

Plus en détail

1- z 2. e ) sous la forme e i. i 3

1- z 2. e ) sous la forme e i. i 3 SERIE DE MATHEMATIQUES CLASSE : IEME SCIENCES EXPERIMENTALES THEME : NOMBRES COMPLEXES LYCEE D INDEPENDANCE OUED ELLIL ANNEE SCOLAIRE :0-0 Prof : bllassoud mohamd EXERCICE Mttr sous form algébrqus ls ombrs

Plus en détail

Partie A 1/ a) Déterminer les affixes des vecteurs AB et AD. b) Que peut-on en déduire pour les points A, B et D? AM BM

Partie A 1/ a) Déterminer les affixes des vecteurs AB et AD. b) Que peut-on en déduire pour les points A, B et D? AM BM D E V O I R S R V E I L L E MTIERE : MTHEMTIQES Esgmt sécfqu LSSE d : Trmals S S & S SLLE : PROFESSER : Mms GIHENEF GILLEVI ROXEL DTE : Mrcrd mars HERE Début : h HERE f : h MTERIEL TILISE : LLTRIE TORISEE

Plus en détail

QCM NOMBRES COMPLEXES BAC MATHS. [ d] [ b] [ c] ] θ π. Question n 002. Question n 003. Question n 004. Question n 005.

QCM NOMBRES COMPLEXES BAC MATHS. [ d] [ b] [ c] ] θ π. Question n 002. Question n 003. Question n 004. Question n 005. NOMBRES OMPLEXES BA MATHS AS [ a ] k [ b ] + k [ c ] 8k Qusto 00 Sot u tr aturl, l o [ a ] k [ b ] + k [ c ] 8k Qusto 00 Sot u tr aturl, l o sulmt s : [ a ] k [ b ] + k [ c ] 8k Qusto 00 Sot u tr aturl,

Plus en détail

SUITES ARITHMETIQUES ET GEOMETRIQUES SUITES GEOMETRIQUES

SUITES ARITHMETIQUES ET GEOMETRIQUES SUITES GEOMETRIQUES ITE ARITHMETIQE ET GEOMETRIQE EXERCICE : Voc e sére de formle mse e place das le cors : ITE ARITHMETIQE r r p q (p q r 5 ( (...... ( ITE GEOMETRIQE q 6 q q... q q q 7 q 8... q q r s r s q Voc este e sére

Plus en détail

Fiche d exercices 7 : Intégrales et primitives

Fiche d exercices 7 : Intégrales et primitives Fich d rcics 7 : Itégrals t primitivs Itégrals t propriétés Ercic O cosidèr ls foctios f ( ) + t f ( ). E utilisat la défiitio d u itégral, calculr : Ercic (a) f ( ) d (c) f ( ) (b) g ( ) d (d) g ( ) 5

Plus en détail

CORRECTION DU BAC 2007

CORRECTION DU BAC 2007 CORRECTION DU BAC 007 Trmial S Liba Exrcic ) a) l x = 0 x = ; l x > 0 x > ; l x < 0 x < (la foctio l 0 ; + ) état strictmt croissat sur ] [ l x = 0 lx = x = ; l x < 0 lx > x > ; l x 0 lx x 0 ; + ) >

Plus en détail

corrigé BAC MATHEMATIQUES - mai LIBAN

corrigé BAC MATHEMATIQUES - mai LIBAN corrigé B MTHEMTIQUES - mai - LIBN Ercic (4 poits) Qustio La propositio d) st vrai par élimiatio : la a) st fauss car ls vcturs dircturs sot pas coliéairs, b) st fauss car il y a pas d poit d itrsctio

Plus en détail

Exercices de révision pour le bac

Exercices de révision pour le bac TS Erccs d révso pour l bac Sot f la focto déf sur l trvall [ ; + [ par f O do c-dssous la rpréstato graphqu d f das l pla mu d u rpèr orthoormé j O O,, j ) Détrmr par l calcul la lmt d f + O pourra écrr

Plus en détail

Nombres complexes (3) (Argument, écriture trigonométrique, écriture exponentielle)

Nombres complexes (3) (Argument, écriture trigonométrique, écriture exponentielle) TS Nombrs complxs (3) (Argumt, écrtur trgoométrqu, écrtur xpotll) II. Form trgoométrqu 1 ) Démostrato I. Argumt d u ombr complx o ul M() 1 ) Défto Rpérag cartés Rpérag polar st u ombr complx o ul. M st

Plus en détail

Exercices sur les nombres complexes

Exercices sur les nombres complexes Exrccs sur ls ombrs complxs Détrmr u équato du scod dgré dot ls racs sot t Sot A, B, C tros pots dux à dux dstcts du pla complx d affxs rspctvs a, b, c Démotrr qu ABC st équlatéral s t sulmt s c a c a

Plus en détail

Article PanaMaths Irrationalité de e

Article PanaMaths Irrationalité de e Articl PaaMaths Irratioalité d Itrodctio L ombr, bas ds logarithms épéris, st bi co ds élèvs d trmial. Das ctt ot d lctr, o commc par établir c ombr st la limit d la sit ( d trm gééral =... = (pls tard,

Plus en détail

La loi des grands nombres

La loi des grands nombres La loi ds grads ombrs Espérac mathématiq d la valr absol (iégalité d Markov)... La loi ds grads ombrs (iégalité d Biaymé-Tchbychv)... 3 Ls Grads ombrs à l aid d Biaymé-Tchbychv... 4 L Théorèm d MOIVRE-LAPLACE...

Plus en détail

Mathématiques Logarithmes et exponentielles Terminal e C Exercice 1

Mathématiques Logarithmes et exponentielles Terminal e C Exercice 1 Mathématiqus Logarithms t potills Trmial C Ercic Résoudr das IR ls équatios : l 4 ; l - ; l ; l + l 5 - Ercic Démotrr qu pour tout rél, o a : l ( + ) + l ( + - ) Ercic Résoudr das IR l'équatio l + l (

Plus en détail

TS Exercices sur les nombres complexes (3)

TS Exercices sur les nombres complexes (3) TS Exrccs sur ls ombrs complxs () Détrmr u écrtur trgoométrqu ds ombrs complxs suvats : ; 7 ; 5 ; ; 5 ; Écrr sous form trgoométrqu ls ombrs complxs suvats : cos s ; cos s ; cos s O pos cos s 5 5 ) Écrr

Plus en détail

Chapitre n 10 : Intégration Exercices BAC

Chapitre n 10 : Intégration Exercices BAC Chapitr : Itégratio Ercics BAC Ercic : Polyési Sptmr - 6 poits Ercic : La Réuio 6 poits 3 Ercic 3 : Ctrs Etragrs 6 poits 4 Ercic 4 : Frac 7 poits 5 Ercic 5 : Asi 5 poits 7 Ercic 6 : Podichéry Avril : 6

Plus en détail

Terminale S Pondichéry, Avril 2009 Sujets de Bac

Terminale S Pondichéry, Avril 2009 Sujets de Bac D PINEL, Sit Mathmitc : http://mathmitcfrfr/idphp Trmial S Podichéry, Avril 009 Sujts d Bac D PINEL, Sit Mathmitc : http://mathmitcfrfr/idphp Trmial S Podichéry, Avril 009 Sujts d Bac D PINEL, Sit Mathmitc

Plus en détail

{ } Sujet I, éléments de correction. EXERCICE I (3 points) u = La suite u est définie par u 0 = 2 et pour tout entier naturel n, un+ 1 =.

{ } Sujet I, éléments de correction. EXERCICE I (3 points) u = La suite u est définie par u 0 = 2 et pour tout entier naturel n, un+ 1 =. Sjet I, élémets de correctio EXERCICE I ( poits) La site est défiie par 0 = et por tot etier atrel, + = 0 = ; =, 7 ; =, 7 ; =, 6666 ; =, 0 ; la site e semble pas être mootoe, elle paraît coverger vers

Plus en détail

Suite du devoir au dos. NOM : TS Devoir n 6 1 er février Exercice 1. Sur 7 points 1 ) Question R.O.C. (Restitution organisée de connaissances) :

Suite du devoir au dos. NOM : TS Devoir n 6 1 er février Exercice 1. Sur 7 points 1 ) Question R.O.C. (Restitution organisée de connaissances) : NOM : TS Dvoir 6 r févrir 206 Ercic. Sur 7 poits ) Qustio R.O.C. (Rstitutio orgaisé d coaissacs) : O suppos cou l résultat suivat : lim. Démotrr qu l lim 0 2 ) O cosidèr la foctio g dot o do ci-cotr la

Plus en détail

( ) ( 2) = x +. La fonction est la somme d une fonction linéaire (dérivable pour tout réel) et de la. 2x². 1 :lim. Bac blanc n 1 TS : correction :

( ) ( 2) = x +. La fonction est la somme d une fonction linéaire (dérivable pour tout réel) et de la. 2x². 1 :lim. Bac blanc n 1 TS : correction : Bc lc TS : corrcto : E : octo st l somm d octo lér dérl por tot rél t d l octo rs dérl s doc st dérl sr ] ; [ mértr st polôm s scod dgré q por rcs rélls : t sl post st l scod t : s O ott doc l tl st :

Plus en détail

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée.

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée. Lycée Ib Khaldou Devor de cotrôle ème Maths Radès ( heure) Mr ABIDI Fard Mathématques Mercred 9 Novembre 0 Exercce : ( pots) Répodre par Vra au Faux aux questos propostos suvates Aucue justfcato est demadée

Plus en détail

FONCTION EXPONENTIELLE 4 ème MATHEMATIQUES. Exercice 1. Soit f la fonction définie sur IR par : f (x) = e. d) Montrer que x IR on a : f (x) 1

FONCTION EXPONENTIELLE 4 ème MATHEMATIQUES. Exercice 1. Soit f la fonction définie sur IR par : f (x) = e. d) Montrer que x IR on a : f (x) 1 FONCTION EXPONENTIELLE 4 èm MATHEMATIQUES Ercic A) Soit g la foctio défii sur IR par : g() + ( ) ) Motrr qu IR o a : g () ( ) ) Etudir l ss d variatio d g Calculr g () 3) E déduir qu IR o a : g () > B)

Plus en détail

Correction Bac ES Centres étrangers juin 2010

Correction Bac ES Centres étrangers juin 2010 Corrctio Bac ES Ctrs étragrs jui 00 EXERCICE (5 poits) Commu à tous ls cadidats ) L ombr rél 3x st égal à : c) x 3 E fft, 3x = x 3 = x 3. Rmarqu : 3x = 3x t l xprssio 3x s simplifi pas. ) L équatio l(x

Plus en détail

Eléments de correction du BAC Amérique du Nord -30 mai 2013

Eléments de correction du BAC Amérique du Nord -30 mai 2013 Elémts d corrctio du BAC Amériqu du Nord -3 mai 3 Ercic A, B t C sot pas aligés si t sulmt si ls vcturs AB t AC sot pas coliéairs O a AB ; ; t AC ; 5; 3 poits A, B t C sot las aligés or 5 a Comm A, B t

Plus en détail

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICE : I) ; ; r t S EXERCICES SR LES SITES NMÉRIQES Sit MathsTICE d Adama Traoré Lycé Tchiqu Bamako désigat rspctivmt l prmir trm, l ièm trm, la raiso t la somm ds prmir trms d u suit arithmétiqu,

Plus en détail

Exercices. une fonction donnée par le tableau :

Exercices. une fonction donnée par le tableau : Erccs EXERCCE : Sot ( ) u octo doé par l tablau :.5.5.75. y.6.79.99. ) Trouvr utlsat la ormul d Nwto-Côts u valur approché d l tégral d..5 ( ) ) Sachat qu ( ) comparr l résultat d ) avc la valur act. EXERCCE

Plus en détail

Août 2016 (2 heures et 30 minutes)

Août 2016 (2 heures et 30 minutes) 1 a) Soit IN 0 \ {1} Déiir : boul ouvrt d IR sous-smbl compact d Août 016 ( hurs t 0 miuts) IR (1 pt) b) Démotrr qu l produit cartési d smbls rmés d IR st u smbl rmé d IR (15 pt) c) Détrmir t rpréstr avc

Plus en détail

Licence Science de la Mer et de l Environnement. Physique Générale

Licence Science de la Mer et de l Environnement. Physique Générale Lcc Scc la Mr t l Evromt Physqu Gééral Chaptr :Optqu Géométrqu - Itroucto Qu st c qu la lumèr? U o, u partcul? Nwto psat qu c état s gras partculs. E fat la lumèr st à la fos o t partcul. Suvat ls problèms

Plus en détail

CH V : Fonction exponentielle

CH V : Fonction exponentielle TSTID CH V : Fonction ponntill A la décovrt d n novll fonction d référnc Ls calclatrics possèdnt n toch On not ctt fonction : p. L imag d n rél par la fonction ponntill st noté qi corrspond à n fonction

Plus en détail

( )2016. ( ) z i = z + 2i z z A. ( ) est perpendiculaire à l'axe des imaginaires purs, c'est - à - dire parallèle à l'axe des réels.

( )2016. ( ) z i = z + 2i z z A. ( ) est perpendiculaire à l'axe des imaginaires purs, c'est - à - dire parallèle à l'axe des réels. Mathématiqus Aé 0 07 Trmial S Corrctio du bac blac du mai Ercic : Affirmatio : VRAI car : i z z = i π i π 4 i π = i π +π 4 +π = i π +π + 4π = i π Or π = π + π doc u form potill d i z st π i z Affirmatio

Plus en détail

Corrigé de CCP 2015 Math PC

Corrigé de CCP 2015 Math PC Corrigé d CCP 5 Math PC Problèm : Aalys t probabilités Parti I : Aalys..a. Pour N, f st dérivabl sur R + t, pour t, f (t) = t t ( t).! f st doc croissat sur [; ], décroissat sur [; + [ t f () = = lim f

Plus en détail

QCM 1 : Nombres complexes

QCM 1 : Nombres complexes Mr II Fard QM 1 : Nombrs complxs QM st à tratr n début d'anné à ttr d révson sur l programm d. Pour chacun ds 1 qustons suvants un sul ds quatr réponss proposés st xact. ucun justfcaton n st dmandé. omplétr

Plus en détail

Chapitre 3 - La fonction exponentielle.doc 1/6 Chapitre 3.: La fonction exponentielle. 1

Chapitre 3 - La fonction exponentielle.doc 1/6 Chapitre 3.: La fonction exponentielle. 1 Chapitr 3 - La foctio potilldoc /6 Chapitr 3: La foctio potill I Défiitios t propriétés II L ombr t la otatio puissac III Etud d la foctio potill 3 / Ss d variatio, tagts t approimatio affi 3 / Limits

Plus en détail

TRIGONALISATION DES ENDOMORPHISMES SOUS ESPACES CARACTERISTIQUES - APPLICATIONS

TRIGONALISATION DES ENDOMORPHISMES SOUS ESPACES CARACTERISTIQUES - APPLICATIONS Tgoalsato ds domohsms sos sacs caactéstqs - lcatos TRGOLSTO DS DOMORHSMS SOUS SCS CRCTRSTQUS - LCTOS * désg K sac vctol d dmso f O ot l olyôm caactéstq d domohsm d Résltats gééax défto Sot domohsm d O

Plus en détail

des nombres complexes

des nombres complexes Esmbl ds ombrs complxs I. Form algébriqu d u ombr complx. Théorèm Il xist u smbl, oté,d ombrs applés ombrs complxs, tl qu : cotit ; st mui d u additio t d u multiplicatio pour lsqulls ls règls d calcul

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

EXERCICES ET PROBLÈMES SUR LA FONCTION EXPONENTIELLE Site MathsTICE de Adama Traoré Lycée Technique Bamako. e = 4 ; 4 ) e x+3 e x 2 = e 3

EXERCICES ET PROBLÈMES SUR LA FONCTION EXPONENTIELLE Site MathsTICE de Adama Traoré Lycée Technique Bamako. e = 4 ; 4 ) e x+3 e x 2 = e 3 EXERCICES ET PROBLÈMES SUR LA FONCTION EXPONENTIELLE Sit MathsTICE d Adama Traoré Lycé Tchiqu Bamako Ercic I résoudr das R ls équatios t iéquatios suivats : ) 5+ 3+ 3 ; ) + ; 3 ) 4 ; 4 ) +3 3 5 5 ) ; 6

Plus en détail

EXERCICES PRIMITIVES ET CALCUL INTÉGRAL Site MathsTICE de Adama Traoré Lycée Technique Bamako ; 16 )

EXERCICES PRIMITIVES ET CALCUL INTÉGRAL Site MathsTICE de Adama Traoré Lycée Technique Bamako ; 16 ) EXERCCES PRMTVES ET CALCUL NTÉGRAL Sit MathsTCE d Adama Traoré Lycé Tchiqu Bamako EXERCCE : Trouvr u primitiv d chacu ds foctios f défiis par ) f () 6 ; ) f () ) f () 9 ; ) f () 7 ) f () ( )( ) ; 6 ) f

Plus en détail

POUR PRENDRE UN BON DEPART EN TERMINALE S

POUR PRENDRE UN BON DEPART EN TERMINALE S Lycée Charles de Galle POUR PRENDRE UN BON DEPART EN TERMINALE S Foritres por le jor de la retrée : dex cahiers grad format (si possible 4x3) à petits carreax Ue calclatrice avec modle graphiqe Ue pochette

Plus en détail

Centres étrangers juin n + 2.

Centres étrangers juin n + 2. Cetres étragers ji 3 EXERCICE poits Comm à tos les cadidats O défiit, por tot etier atrel >, la site ( ) de ombres réels strictemet positifs par = Por tot etier atrel >, o pose v = a Motrer qe v = b Motrer

Plus en détail

Mise à niveau licence 1 de mathématiques. Les fonctions racine carrée, valeur absolue ou partie entière

Mise à niveau licence 1 de mathématiques. Les fonctions racine carrée, valeur absolue ou partie entière Mise à ivea licece de mathématiqes Les foctios racie carrée, valer absole o partie etière Eercice Détermier la limite de + + qad ted vers Eercice Vérifier qe ( 5) 6 5 A-t-o l'égalité 6 5 5? Eercice O sohaite

Plus en détail

(unité graphique 1 cm). 1. Résoudre, dans l'ensemble C des nombres complexes, l'équation suivante :

(unité graphique 1 cm). 1. Résoudre, dans l'ensemble C des nombres complexes, l'équation suivante : B BLN () orrecto page 8 THEME : OMPLEXES Exercce Le pla est rapporté à repère orthoormal drect O ; ; (té graphqe cm) Résodre, das l'esemble des ombres complexes, l'éqato sate : 8 6 O cosdère les pots et

Plus en détail

CIRCUIT MAGNETIQUE à Noyau de Fer

CIRCUIT MAGNETIQUE à Noyau de Fer JAERT Rolad : Profssr CPGE-TS a ycé Sat-Crcq à Pa CRCUT MAGNETQUE à Noya d Fr ) o fodamtal flx, d vctr, st cosrvatf das tot l tb d dcto. Théorèm d ampèr : la crclato d l xctato magétq H, l log d cotor

Plus en détail

Chapitre 2:Nombres complexes

Chapitre 2:Nombres complexes haptr :Nombrs complxs I Défnton t rprésntaton Défnton : Un nombr complx st un nombr d la form x+y avc x t y dux réls t un nombr magnar tl qu ² = - L nsmbl ds nombrs complxs st noté Ls règls d calcul dans

Plus en détail

ESPACES VECTORIELS FAMILLES DE VECTEURS

ESPACES VECTORIELS FAMILLES DE VECTEURS ESPACES VECTORIELS FAMILLES DE VECTEURS A. ESPACES VECTORIELS 1) Défto O aelle esace vectorel sr o esace vectorel o esace vectorel réel tot esemble E m : 1) D e lo de comosto tere, aelée addto et otée

Plus en détail

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles,

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles, CONCOURS EMIA Sceces CONCOURS 0 EPREUVE DE MATHEMATIQUES Corrgé o offcel rédgé par Jea-Gullaume CUAZ, esegat au Lycée Mltare de Sat-Cyr, jgcuaz@hotmalcom Eercce ) Par assocatvté de l tersecto des évéemets,

Plus en détail

Terminales S Exercices sur les nombres complexes Page 1 sur 6

Terminales S Exercices sur les nombres complexes Page 1 sur 6 Termales S Exercces sur les ombres complexes Page sur 6 Exercce : ) Calculer, et 5 6 7 ) E dédure, et ) Détermer les eters pour lesquels est a) u réel, b) est u magare pur, c) égal à Exercce : Ecrre sous

Plus en détail

LFA / Terminale S Cours mathématiques Mme MAINGUY Chapitre 10 LA FONCTION EXPONENTIELLE. ; h est aussi dérivable sur R et : , h x f x f x 1. sur.

LFA / Terminale S Cours mathématiques Mme MAINGUY Chapitre 10 LA FONCTION EXPONENTIELLE. ; h est aussi dérivable sur R et : , h x f x f x 1. sur. LFA / Trmial S Cours mathématiqus Mm MAINGUY Chapitr Trmial S Ch. LA FONCTION EPONENTIELLE I. La foctio potill / défiitio, istc t uicité Propriété Si f st u foctio défii t dérivabl sur R tll qu f ' f t

Plus en détail

Chapitre 3 Fonction Exponentielle.

Chapitre 3 Fonction Exponentielle. 1 / Foctio Epotill Trmial S Chapitr 3 Foctio Epotill. I. Défiitio d la foctio potill. 1. Equatio liat u foctio t sa dérivé. Défiitio 1 : O appll équatio différtill u équatio liat u foctio t sa (ou ss)

Plus en détail

Fonction Logarithmes Exercices

Fonction Logarithmes Exercices Trmial S Foctio Logarithms Ercics Itroductio d L STL Frac, Jui 006 3 STL, Frac, spt 004 4 STL, Frac, jui 005 ( poits) 3 5 ROC+costructio géo, La Réuio 007 4 6 ROC+ Étud, Atills-Guya, spt 00, 7 pts 5 7

Plus en détail

SUITES. ) définie pour tout entier naturel n par : =. Calculer les trois premiers termes de la suite. ) définie par : MATHOVORE.FR

SUITES. ) définie pour tout entier naturel n par : =. Calculer les trois premiers termes de la suite. ) définie par : MATHOVORE.FR SUITES I Calcls de termes Exercice : O cosidère la site ( ) défiie por tot etier atrel par : a) Calcler,, b) Calcler,, c) Calcler les trois premiers termes de la site 5 Exercice : O cosidère la site (

Plus en détail

Suites réelles 2. ) sur l axe des abscisses. 2) Répondre par «Vrai ou Faux» aux questions suivantes, en utilisant le graphique : a) ( ) n

Suites réelles 2. ) sur l axe des abscisses. 2) Répondre par «Vrai ou Faux» aux questions suivantes, en utilisant le graphique : a) ( ) n 4 ème aée Maths Sites réelles Septembre 9 A LAATAOUI Exercice : O cosidère la site ( ) défiie par : a) Motrer qe por tot de IN, < 4 b) Motrer qe ( ) est strictemet croissate c) E dédire qe ( ) + 4+, por

Plus en détail

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES.

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES. Vedredi 0 octobre 07. CONTRÔLE DE MATHEMATIQUES N Classe de TERM 07. E salle 06, deux heures de 8 h à 0 h : LES SUITES et PROBABILITES. La première feuille de ce devoir doit être ue feuille double. Lisez

Plus en détail

Fiche 3 : Exponentielles, logarithmes, puissances

Fiche 3 : Exponentielles, logarithmes, puissances Fich Ercics Fich 3 : Eponntills, logarithms, pissancs Opérations élémntairs t fonction ponntill on appliq ls égalités rmarqabls pis ls propriétés ds ponntills L prodit ds ponntills d d réls st égal à l

Plus en détail

Corrigé - Baccalauréat blanc TS

Corrigé - Baccalauréat blanc TS Corrigé - Baccalauréat blanc TS - 00 EXERCICE 5 points Commun à tous ls candidats Parti A : Étud d un fonction On considèr la fonction f défini sur ]0 ; + [ par f = + ln On not C la courb rprésntativ d

Plus en détail

France métropolitaine/réunion. Septembre Enseignement spécifique. Corrigé

France métropolitaine/réunion. Septembre Enseignement spécifique. Corrigé Frac métropolitai/réuio. Sptmbr 15. Esigmt spécifiqu. Corrigé EXERCICE 1 Qustio 1 D après la formul ds probabilités totals fourit p(b) = p(a) p A (B)+p ( A ) p A (B) =,6,+(1,6),3 =,1+,1 =,4. La bo répos

Plus en détail

Fonctions convexes et concaves. 7. Programmation non linéaire. Fonctions convexes et concaves. Fonctions convexes et concaves

Fonctions convexes et concaves. 7. Programmation non linéaire. Fonctions convexes et concaves. Fonctions convexes et concaves Foctos covees et cocaves IFT575 Modèles de recherche opératoelle RO 7. Proraato o léare Sot et de pots das R Le seet de drote oat ces de pots est l eseble des pots λ - λ - λ où λ ε [] Ue focto f est covee

Plus en détail

, en distinguant le cas a < e et le cas a > e.

, en distinguant le cas a < e et le cas a > e. Métropol L Réio sptmbr 00 EXERCICE 6 poits Comm à tos ls cdidts Soit f l foctio défii sr l itrvll ] 0 ; + [ pr : f (x) = x ( l x) L corb rprésttiv C d l foctio f st doé ci-dssos Prti : Étd d l foctio f

Plus en détail

3 f x, or pour x [3, [, f '( x) 0 car

3 f x, or pour x [3, [, f '( x) 0 car Foctio potill Ercics corrigés Fsic 996, rcic Soit f la foctio défii sur * par f( ) t C sa courb rpréstativ 3 3 a f st u bijctio d * sur ; 7 b La droit ( ) d équatio 3 st a d symétri d la courb C O t ll

Plus en détail

LES NOMBRES COMPLEXES Site MathsTICE de Adama Traoré Lycée Technique Bamako

LES NOMBRES COMPLEXES Site MathsTICE de Adama Traoré Lycée Technique Bamako LES NORES OPLEXES Ste thstie de dm Troré Lycée Techqe mko I Défto: Défto : Sot le ombre mgre té tel qe ² O ppelle esemble des ombres complexes, l esemble oté et déf pr : { b ( b ε R²} est ppelé l prte

Plus en détail

LFA / 1ère ES mathématiques-cours Mme MAINGUY Chapitre 7. v n

LFA / 1ère ES mathématiques-cours Mme MAINGUY Chapitre 7. v n LFA / ère ES mathématiqes-cors Mme MAINGUY Chapitre 7 Ch7 COURS Gééralités sr les sites I Défiitio Exemples exemple O cosidère la site défiie por par la relatio Calclos ; ; ; ; exemple O cosidère la site

Plus en détail

Bac Blanc Série S - Session Corrigé

Bac Blanc Série S - Session Corrigé Trmial S. Lycé Dsfotais Mll Bac Blac Séri S - Sssio 008 - Corrigé Esigmt oligatoir Duré d l épruv : 4 hurs Ls arèms ds xrcics ot été modifiés (c st fréqut lors du accalauréat). Exrcic : 5 poits Exrcic

Plus en détail

Les suites réelles. Copyright Dhaouadi Nejib Dhaouadi Nejib

Les suites réelles. Copyright Dhaouadi Nejib Dhaouadi Nejib Les sites réelles Copyright Dhaoadi Nejib 009 00 http://wwwsigmathscocc Dhaoadi Nejib http://wwwsigmathscocc Page : Sites Réelles Das ce chapitre I désige l esemble des etiers 0 ( 0 N ) I Rappels et complémets

Plus en détail

6.1. Les fonctions exponentielles x q n avec q>0

6.1. Les fonctions exponentielles x q n avec q>0 6. Foctios potills L foctio 6.. Ls foctios potills vc >0. Défiitio : st foctio défii sr. S cor rprésttiv st ot rlit pr li coti t rélièr ls poits d coordoés ( ) foctio st pplé foctio potill d s. Cs > Cs

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

Les suites numériques

Les suites numériques Les sites mériqes Objectifs : - Maîtriser la otio de covergece; cas particliers de la covergece mootoe; - Maîtriser les sites récrretes + = f( avec f mootoe; cas particlier des sites géométriqes; 3- Voir

Plus en détail

SUITES RECURRENTES - EXERCICES CORRIGES

SUITES RECURRENTES - EXERCICES CORRIGES Exercice. SUITES RECURRENTES - EXERCICES CORRIGES O cosidère la site ( ) défiie par ) Etdier la mootoie de la site ( ) ) a) Démotrer qe, por tot etier atrel, b) Qelle est la limite de la site ( )? = por

Plus en détail

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an BTS BLANC Ma 0 Epreuve : Mathématques Géérales et Applquées Flère : DA / ARLE Durée: heures NB : Chaque parte dot être tratée sur des copes dfféretes I- MATHEMATIQUES GENERALES Exercce a b Sot le Sot la

Plus en détail

SUITES AFFINES - EXERCICES CORRIGES. ), définie à partir de la suite ( u. 1. On pose vn

SUITES AFFINES - EXERCICES CORRIGES. ), définie à partir de la suite ( u. 1. On pose vn Exercice SUITES AFFINES - EXERCICES CORRIGES Das chaqe cas, motrer qe la site ( v, défiie à partir de la site ( v pis de e foctio de = = Exercice = et v = = 4 O cosidère e site ( défiie sr N par : a Motrer

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON BAC BLANC MATIERE : MATHEMATIQUES OBLIGATOIRE CLASSE de : Termale S SALLE : Grade Permaece PROFESSEUR : Mle GUIHENEUF ATE : Vedred javer 6 HEURE ébut : 8 h HEURE f : h MATERIEL UTILISE : CALCULATRICE AUTORISEE

Plus en détail

Courbes et surfaces. 1. Courbes Problèmes : étant donnés n points (de R 2 ou de R 3 ), trouver une courbe passant

Courbes et surfaces. 1. Courbes Problèmes : étant donnés n points (de R 2 ou de R 3 ), trouver une courbe passant Corbes et sraces. Corbes Problèmes : état doés pots (de R o de R ), trover e corbe passat par les pots > terpolato «près des pots» > lssage o terpolato MIM/corbes .. Iterpolato Problème P : état doés ()

Plus en détail

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats.

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats. rbre de déombremet et arbre de probablté Pla du documet. O présete tout d'abord la règle du produt pour les arbres de déombremet avec, e cas partculer, le cardal d'u produt cartése d'esembles fs.. O présete

Plus en détail

Séries chronologiques

Séries chronologiques Séres chroologques Rappel : Détermato de l équato d ue drote passat par pots. ( so équato peut se mettre sous la forme y ax + b ) ex : Détermato de l équato de la drote passat par les pots : A ( - ; -5

Plus en détail

FORMULAIRE DE MATHÉMATIQUES

FORMULAIRE DE MATHÉMATIQUES BACCALAURÉAT, SÉRIES STI tots spéltés, FIOB, STL Spéltés pysq d lortor PLPI m d lortor CLPI I. PROBABILITÉS FORMULAIRE DE MATHÉMATIQUES S A t B sot omptl s : P A B P A P B Ds l s géérl : P A B P A P B

Plus en détail

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, )

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, ) Polyése Ju 00 Sére S xercce Le pla complexe est rapporté à u repère orthoormal drect ( O; uv, ) Prérequs Parte A Resttuto orgasée de coassaces Sot u ombre complexe tel que = a+ b où a et b sot deux ombres

Plus en détail

La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie.

La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie. NOM Tle S-A/B/C DS - Mathématiqes - Ldi 26 septembre 206 La présetatio, le soi et la riger des résltats etrerot por e part importate das l évalatio de la copie Exercice : sr 8 poits Cet exercice est costité

Plus en détail

Baccalauréat S Polynésie juin 2012

Baccalauréat S Polynésie juin 2012 Baccalauréat S Polynési juin 1 EXERCICE 1 L plan st rapporté à un rpèr orthonormal On considèr ls points B 1 ; 1 t C 5 ; O ; i ; j. 5 t la droit D d équation y = x. On not f la fonction défini sur R dont

Plus en détail

Cours (Terminale) Probabilités (révisions 1 ère )

Cours (Terminale) Probabilités (révisions 1 ère ) Cours (Termale) Probabltés (révsos ère ) Quelques rappels et complémets sur les esembles Uo de deux esembles O appelle «uo de deux esembles E et F» l esemble oté E F dot les élémets sot costtués des élémets

Plus en détail

MICROECONOMIE APPROFONDIE ET CALCUL INTERTEMPOREL

MICROECONOMIE APPROFONDIE ET CALCUL INTERTEMPOREL 3èm aé r smstr II Alcatos à la gsto d ortfull. L modèl CAPM. a. Préfércs tr tmorlls t otmsato sur érods.. rdmt d actf t rsqu. msur sml du rdmt d u actf r avc d + d rx du ttr à la f d la érod cosdéré rx

Plus en détail

Probabilités générales

Probabilités générales Chapitre 4 termiale s Probabilités géérales Les probabilités (rappels) : ) Quelques otios de vocabulaire : Nous allos étudier selo quelle mesure u fait proveat du hasard peut être prévisible a) Ue expériece

Plus en détail

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES " Hajeb Laayoun "

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES  Hajeb Laayoun Sére d'exercces *** 4 ème Maths Lycée Secodare Al ouaou LES N COMPLEXES " Hajeb Laayou " I / L esemble des ombres complexes : Défto : O appelle esemble des ombres complexes, et o ote C, l esemble des ombres

Plus en détail

Session de Juin 2014 Section : Économie et gestion Épreuve : Mathématiques

Session de Juin 2014 Section : Économie et gestion Épreuve : Mathématiques Eame d baccalaréat Sessio de Ji 04 Sectio : Écoomie et gestio Épreve : Mathématiqes Sessio de cotrôle Eercice I) )a) La corbe de f passe par les poits O0,0 et B, e, d où f 0 0 et f e b) La tagete e O à

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES Sesso févrer 009 BREVET DE TECHNICIEN SUPERIEUR «COMPTABILITE ET GESTION DES ORGANISATIONS» EPREUVE DE MATHEMATIQUES Durée : heures Coeffcet : Matérel et documets autorsés : L usage des strumets de calcul

Plus en détail

Variables aléatoires (Corrigé des plus).

Variables aléatoires (Corrigé des plus). Char : arabls aléaors rccs corrgé ds ls - - arabls aléaors Corrgé ds ls o d arabl aléaor sérac arac 7 O a or l éé : «la bol ob a rag éro s lach» a éé corrsod à rr d s d bols lachs o d bols Rogs ar coablé

Plus en détail

Dans la suite de l exercice on s intéresse seulement aux puces livrées aux clients.

Dans la suite de l exercice on s intéresse seulement aux puces livrées aux clients. Exercice Ue etreprise fabriqe des pces électroiqes qi sot tilisées por des matériels assi différets qe des téléphoes portables, des lave-lige o des atomobiles. À la sortie de fabricatio, % d etre elles

Plus en détail

Nombres complexes Sessions antérieures

Nombres complexes Sessions antérieures ème aée Maths Nombres complexes Sessos atéreures Aée scolare 9 - A LAATAOUI Exercce N (SP) Das le pla complexe P rapporté à u repère orthoormé ( Ouv ; ; ) o cosdère les pots A et B d affxes respectves

Plus en détail

Proposition 1. La probabilité de A est égale à 3 7. Proposition 3 P(B) = 7. Proposition 5. Si P(X = 1) = 8 P(X = 0) alors p = 2 3.

Proposition 1. La probabilité de A est égale à 3 7. Proposition 3 P(B) = 7. Proposition 5. Si P(X = 1) = 8 P(X = 0) alors p = 2 3. Polynési sptmbr 009 EXERCICE points Commun à tous ls candidats On considèr l cub OABCDEFG d'arêt d longuur rprésnté ci-dssous. Il n'st pas dmandé d rndr l graphiqu complété avc la copi. Soint ls points

Plus en détail

Propriété Limites de suites convergentes usuelles. 1 lim 0 où k *

Propriété Limites de suites convergentes usuelles. 1 lim 0 où k * SUITES NUMERIQUES Le pricipe de récrrece Soit e propositio P dépedat d etier atrel. Por démotrer qe P est raie por tot etier 0, il sffit de motrer qe : La propositio est raie a rag 0 ; por etier qelcoqe

Plus en détail

Euler. Cette égalité est la relation d Euler.

Euler. Cette égalité est la relation d Euler. Vdoui Trmial S Chapitr 3 Du ouvlls foctios : l potill & l logarithm Rappls L tau d accroissmt d u foctio f tr a t a h st égal à : f ( a h) f ( a) h U foctio st dérivabl a si l tau d accroissmt d ctt foctio

Plus en détail

TS DS 1 Lundi 25/09/ Recopier et compléter l algorithme dessous, pour qu il affiche la plus petite valeur de n pour laquelle u 4,999

TS DS 1 Lundi 25/09/ Recopier et compléter l algorithme dessous, pour qu il affiche la plus petite valeur de n pour laquelle u 4,999 TS DS Ldi /0/07 Exercice : sr 6 poits O cosidère la site défiie par 0 0 et por tot, 3.. Démotrer, par récrrece, qe por tot,.. Etdier le ses de variatio de la site 3. Détermier la limite de la site 4. Recopier

Plus en détail

BAC BLANC de MATHEMATIQUES TS

BAC BLANC de MATHEMATIQUES TS BAC BLANC de MATHEMATIQUES TS Décembre 205 Lycée Jea Calvi - Noyo Exercice Das cet exercice, les probabilités serot arrodies a cetième. Partie A U grossiste achète d soja chez dex forissers. Il achète

Plus en détail

Premières S A et S C : pour s entraîner pour le devoir n 8

Premières S A et S C : pour s entraîner pour le devoir n 8 Premières S A et S C : por s etraîer por le devoir 8 Savoirs et savoir faire (oveax depis le DS7) : Barycetres das l espace : Démotrer qe des poits sot coplaaires à l aide de barycetres Savoir détermier

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES BACCALAURÉAT GÉNÉRAL SESSION aril 20 MATHÉMATIQUES Série S Drée de l épree : heres Coefficiet : 7 o 9 Les calclatrices électroiqes de poche sot atorisées, coformémet à la réglemetatio e iger. Le sjet est

Plus en détail

PRO 1 EXPRO010 EXPRO019

PRO 1 EXPRO010 EXPRO019 Exercces résolus de mathématques. PRO 1 EXPRO010 EXPRO019 http://www.matheux.be.tf Jacques ollot 1 avrl 03 www.matheux.be.tf - PRO 1-1 - EXPRO010W Ue ure cotet boules blaches ( 4) et 10 boules ores. O

Plus en détail

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose :

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose : T Exercices sr les limites de sites () Por tot etier atrel, o pose : O cosidère la site ( ) défiie sr N par so premier terme récrrece ( ) = + por tot etier atrel ) Démotrer par récrrece qe, por tot etier

Plus en détail

LES SUITES NUMERIQUES

LES SUITES NUMERIQUES LES SUITES NUMERIQUES I. Défiitio - Vocablaire - Notatios O appelle site mériqe tote foctio d'e partie P o ide de, das est le terme d'idice de la site. C'est l'image par de (o arait p la oter () mais est

Plus en détail

CORRIGES EXERCICES SCILAB EXERCICE 10 :

CORRIGES EXERCICES SCILAB EXERCICE 10 : CORRIGES EERCICES SCILAB EERCICE : Ls somms d Rima prm d obir valr approché d iégral I U ar méhod d approimaio d iégral, di méhod d Mo Carlo, ilis ds chiqs probabiliss L iégral I s mis sos la form E où

Plus en détail

u est une suite arithmétique

u est une suite arithmétique wwwmathseligecom SUITES ARITHMETIQUES EXERCICES A EXERCICE A O cosidère la site défiie por tot etier atrel par = a Calcler ; et b Exprimer e foctio de c Démotrer qe dot o précisera le premier terme EXERCICE

Plus en détail

TS Limites de suites (2)

TS Limites de suites (2) TS Limites de sites () bjectifs : mettre e place et tiliser des défiitios rigoreses des ites de sites I pproche de la défiitio d e site divergeat vers + ) pproche graphie a représeté graphiemet ci-dessos

Plus en détail