TD : Modèles de marchés - Mouvement brownien

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "TD 20-21 : Modèles de marchés - Mouvement brownien"

Transcription

1 Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan (P({ω}) > 0 pour ou ω Ω) e T N. On le muni d une filraion F elle que F 0 es la ribu riviale e F T = P(Ω). On considère un marché de change d échéance T N consiué d un unique acif risqué, relaif au aux de change enre les devises E(= euro) e D(=dollar). Ce aux de change es un processus (S ) {0,...,T } F-adapé sricemen posiif défini par E = S D. On noe (S 0,D ) e (S 0,E ) les acifs sans risque des devises D e E de valeurs respecives D e E en = 0. On suppose bien enendu que pour ou, S, S 0,D, S 0,E son > 0..a. Du poin de vue européen, quel es l acif négociable (i.e. risqué) noé S E? Quelle es la valeur au emps acualisée en 0 de ce acif? Même quesion du poin de vue des USA (où l acif risqué sera noé S D..b. On suppose que le marché de change es viable dans le pays de la devise D. Quelle es la raducion probabilise de cee propriéé? 2. Soi A une sous-ribu de P(Ω) e L : Ω + une v.a. elle que E P (L) =. On appelle Q la probabilié de densié L par rappor à P. Monrer que pour oue variable aléaoire X sur Ω, E Q [X/A] = E P[XL/A]. E P [L/A] 3.a. Soi P une probabilié équivalene à P sous laquelle S D es une maringale. Monrer que Q définie par dq es égalemen une probabilié équivalene à P. dp = S D T S D 0 3.b. En déduire que si le marché de change es viable aux USA, il l es égalemen en Europe. 3.c. La même conclusion es-elle valable pour la compléude? 3.d. On suppose les marchés comples. A quelle condiion sur (S ) les acifs risqués respecifs à ce marché de change dans chacun des deux pays seron-elles des maringales sous la même probabilié? 4. erouver le résula précéden en monran que si (M ) es F-adapé, sric. posiif e si (M ) e (/M ) son des maringales sous la même probabilié alors M = M 0 pour ou {0,..., T }. Soluion : Noons que comme Ω es fini, l inégrabilié ne sera jamais un problème : oue v.a. réelle es inégrable..a. Du poin de vue de chaque pays, l acif risqué es l argen placé dans l aure pays. Quand on es en Europe, un euro placé aux USA en 0 vau, au emps, S 0 S 0,D donc S 0 S 0,D /S euros, sa valeur acualisée es donc S E = S 0 S 0,D /(S S 0,E es aux USA, un dollar placé aux USA en 0 vau, au emps, (/S 0 )S 0,E (/S 0 )S 0,E S euros, sa valeur acualisée es donc S D = / S E. dollars ). Quand on euros, donc.b. Cela signifie qu il exise une mesure de probabilié sur Ω, donnan un poids non nul à ous les élémens, elle que ss cee mesure, S D es une maringale.

2 2. Soi X variable aléaoire sur Ω. Soi = E P [XL/A], S = E P [L/A]. Soi Z une v.a. A-mesurable. On a E Q (Z/S) = E P (LZ/S) = E P (SZ/S) = E P (Z) = E P (ZXL) = E Q (XZ), d où le résula. 3.a. Q (Ω) = E P ( S T D/ S 0 D ) = E P ( S T D)/ S 0 D = car sous P, S D es une maringale. De plus, comme dq > 0, Q es équivalene à P, dc à P. dp 3.b. C es une applicaion direce des deux quesions précédenes, avec un pei calcul. Supposons le marché de change es viable aux USA. Soi P une probabilié équivalene à P sous laquelle S D es une maringale. On sai que Q définie par dq = S D dp T S es égalemen 0 D une probabilié équivalene à P. Monrons que sous Q, SE es une maringale. Soi {0,..., T }. On a, par la quesion 2, E Q ( S E + F ) = E P ( S E + S D T / S D 0 F )/E P ( S D T / S D 0 F ), ce qui se simplifie, comme S D 0 es consane, en E P ( S E + S D T F )/E P ( S D T F ), puis, en condiionnan par rappor à F +, en E P ( S E + S D + F )/E P ( S D + F ) = E P ( F )/ S D = S E. 3.c. On a monré que pour oue mesure P sur Ω, si P es une mesure maringale pour le marché américain, alors Q := S T D S dp es une mesure maringale pour le marché 0 D européen. On peu démonrer facilemen la réciproque. Il en découle qu il exise une bijecion enre les mesures maringales pour les deux marchés, e que la compléude de l un es équivalene à la compléude de l aure. 3.d. Dans ce cas, par compléude, si P es une mesure maringale pour le marché américain, alors Q := S D T S D 0 dp, mesure maringale pour le marché européen, es égale à P. Donc S D T = S D 0, puis, par condiionnemen, SD es consane. la réciproque es immédiae. 4. Dans ce cas, on a = E( M T / M T ), E( M T 2 ) = E(M0 ) = M 0 (qui es consane) e E((/ M T ) 2 ) = E(/M 0 ) = /M 0, dc on a égalié ds l inégalié de Cauchy-Schwarz, donc il exise une consane a > 0 elle que M T = a/ M T, donc M T es consane égale à a, e par condiionnemen, il en va de même de M pour ou. 2. Caracérisaion du Mouvemen Brownien. Soi B un processus coninu issu de 0 (i.e. B 0 = 0) e F sa filraion naurelle. Monrer que B es un mouvemen Brownien si e seulemen si, pour ou λ, le processus complexe M λ défini par M λ := e iλb+ λ2 2 es une F-maringale. On rappelle que pour oue famille (X,..., X d, Y ) de v.a. réelles, Y indep de (X,..., X d ) ν d, µ, E(e i(<ν,x>+µy ) ) = E(e i<ν,x> )E(e iµy ). 2

3 Soluion : Si B es un mv Br, alors pour λ,, s 0, E(M λ +s F ) = E(M λ e iλ(b +s B )+ λ2 s 2 F ) = M λ E(e iλ(b +s B )+ λ2 s 2 ) = M λ. éciproquemen, supposons que pour ou λ, le processus complexe M λ défini par M λ := e iλb+ λ2 2 es une F-maringale. Alors pour ou 0 s,, pour ou λ, E(e iλ(b +s B ) ) = E(M λ +s/m λ )e λ2 s 2 = E(E(M λ +s F )/M λ )e λ2 s 2 = e λ2 s 2, donc B +s B a bien la loi N(0, s). Soi 0 s,. Monrons que B s+ B es indep. de σ(b r, 0 r ). Il suffi de monrer que pour ous d, 0 r <... < r d, B s+ B es indep. de (B r,..., B rd ). Soi d, 0 r <... < r d. Soi ν d, µ. On a E(e i( i ν ib ri +µ(b +s B )) ) = E(( i M ν i r i )M µ +s/m µ )e i ν2 i r i/2 µ 2 s/2. Comme i M ν i r i F, on obien es F -mesurable e E(M µ +s/m µ F ) =, en condiionnan par rappor à E(e i( i ν ib ri +µ(b +s B )) ) = E( i M ν i r i )e i ν2 i r i/2 µ 2 s/2, ce qui es égal à E(e i i ν ib ri)e(e µ(b +s B )) ). Ceci nous assure l indépendance de B +s B avec σ(b r, 0 r ). 3. Loi des grands nombres pour le mouvemen Brownien. On admera l inégalié de Doob pour les maringales coninues (qui peu facilemen se déduire de l inégalié vue en cours pour les inégrales discrèes) : si M es une maringale coninue, alors pour ou > 0, E( sup Ms 2 ) 4E(M 2 ). 0 s Soi B un mouvemen Brownien réel. On cherche à monrer que presque sûremen, B lim. En uilisan l inégalié de Doob e l inégalié de Markov, monrer, pour ou n 0 e ε > 0, ( ) B P max 2 n 2 n+ 2 > ε 8ε 2 2 n. n 2. En déduire que presque sûremen, il exise n 0 el que pour ou n n 0, l événemen { } B max ε 2 n 2 n+ = 0. 3

4 es réalisé, puis conclure que presque sûremen, B lim = On resrein l espace des possibles à l événemen de probabilié { } B lim = 0. En déduire que la foncion aléaoire nulle en zéro e de valeur B / en ou > 0 es bien un mouvemen Brownien. Soluion :. On a 2. On a B P ( max > ε) 2 n 2 n+ 2n = P ( max 2 n 2 n+ > ε 2 2 2n ) P ( max 0 2 n+ > ε 2 2 2n ) ( B P max 2 n 2 n+ ε 2 2 2n E(B2 2 n+) = 8ε 2 2 n. ) ( > ε P B max 2 n 2 n+ 2 > ε n donc par Borel-Canelli, presque sûremen, il exise n 0 el que pour ou n n 0, l événemen { } B max ε 2 n 2 n+ es réalisé. Ceci éan vrai pour ou ε > 0, on en dédui que presque sûremen, pour ou ε Q +, pour assez grand, B ε. 3. On sai que cee foncion es coninue. If suffi de monrer que sa covariance es la même que celle du mouvemen Brownien. 4. Loi du zéro-un de Blumenhal. I. appels. Soi (Ω, F, P ) un espace de probabiliés. On rappelle qu une sous-ribu de F es une parie de F conenan l ensemble vide e sable par passage au complémenaire e par union dénombrable, alors qu une sous-algèbre de F es une parie de F conenan l ensemble vide e sable par passage au complémenaire e par union finie. On rappelle que deux paries X, Y de F son dies indépendanes si pour ous A X, B Y, P (A B) = P (A)P (B). On rappelle aussi que si A, B son deux une sous-algèbres de F, alors A, B son indépendanes si e seulemen si les ribus qu elles engendren son indépendanes. a) Monrer qu une inersecion quelconque de sous-ribus es une sous-ribu. 4 )

5 b) Soi I un inervalle non vide de el que, ou ou I, G es une sous ribu de F elle que G G. Monrer que G := I G es une sous-algèbre de F. II. Loi du zéro-un de Blumenhal. Soi B un mouvemen Brownien e, pour ou 0, F = σ({b s ; 0 s }) e F = σ({b s ; 0 s}). On défini F 0 + := >0 F. a) Monrer que F 0 + es une sous-ribu de F e que pour ou ε > 0, b) Soi, pour ε > 0, Monrer que F 0 + = 0<<ε F. F ε := σ({b B ε ; ε }). A := ε>0 F ε es une sous-algèbre de F don la ribu engendrée es F. c) En déduire que F 0 + es indépendane de F, puis que pour ou A F 0 +, P (A) {0, }. Soluion : I. a) Bien connu. b) Chaque G conien, es sable par passage au complémenaire. Donc G aussi. De plus, pour ou A,..., A n G, il exise,..., n I el que pour ou i, A i G i. Comme pour = min i i, G es sable par union finie, on a bien A A n G. II. a) Clair par I. a) e la croissance de F. b) A es une sous-ribu de F par I. b). Soi X sa ribu engendrée. On a X F car A F. De plus, pour ou > 0, B = lim ε 0 B B ε es mesurable par rappor à X. B 0 = 0 donc es mesurable par rappor à X, donc F X. c) Pour ou ε > 0, F 0 + = 0<<ε F donc es indépendane de F ε par indépendance des accroissemens de B. On en dédui que F 0 + es indépendane de F, puis que pour ou A F 0 +, P (A) {0, } (en effe, A es indépendan de lui même, donc P (A) = P (A A) = P (A) 2 ). 5. Non dérivabilié du mouvemen brownien. Soi B un mouvemen Brownien. Monrer que p.s., B B = + e lim inf =

6 En déduire que pour ou s 0, la foncion B n es p.s. pas dérivable à droie en s. Indicaion : On pourra considérer les événemens A k = {B εk / ε k > M} pour M > 0 e une suie (ε k ) k 0 décroissan vers 0. emarque : on peu monrer que p.s., la foncion B n es dérivable en aucun poin. Soluion : On pose A k = {B εk / ε k > M}. Pour ou k, on a, par la propriéé du scaling du mouvemen brownien, P(A k ) = P(B > M) > 0. De plus, P( A k ) = lim P( A k ) P(A k ) = P(B > M). n k k n On en dédui par la loi du 0- que P( A k ) =. Cela implique que, p.s., Puis, p.s., pour ou M IN, ce qui implique puis k k k 0 B εk εk > M. B εk εk > M B εk εk = B =. En appliquan ce résula au mouvemen brownien ( B, 0), on obien la limie inférieure. On en dédui en pariculier que 0 B = + e lim inf 0 B =. En uilisan la propriéé de Markov simple en s 0 (i.e. le fai que (B s+ B s ) 0 ) es un mv Brownien), on obien 0 B s+ B s = + e lim inf 0 B s+ B s = ce qui signifie que B n es p.s. pas dérivable en s. 6. Loi de l arcsinus. Soi B un mouvemen Brownien. On défini d = inf{ : B = 0} e g = sup{ : B = 0}.. En calculan P(d ) pour >, rouver la densié de la loi de d (on rappelle que pour ou, la loi de S := sup s [0,] B s es la loi de B ). 2. On admera que le processus (X, 0) défini par X 0 = 0 e X = B / pour > 0 es un mouvemen brownien réel sandard paran de 0. Monrer que g = (d ) en loi. En déduire la densié de la loi de g (la loi de g s appelle la loi de l arcsinus). 6

7 Soluion :. Pour ou >, on a, P(d ) = P( s [, ] : B s = 0) = P( s [0, ] : B +s B = B ) = P( s [0, ] : B s = x)dµ(x), où µ es la loi de B. Noons I = inf s [0, ] B s e S = sup s [0, ] B s. Pour x 0, on a P( s [0, ] : B s = x) = P(I x) = P(S x), e pour ou x 0, Ainsi, pour ou x, P( s [0, ] : B s = x) = P(S x). P( s [0, ] : B s = x) = P(S x ). On en dédui que P(d ) = = = = P(S x )dµ(x) P( B x )dµ(x) P( B x)dµ(x) ) P ( + x2 dµ(x) B 2 = P ( + (N/N ) 2 ), où N e N son deux gaussiennes cenrées réduies indépendanes. Cela monre que d a la loi de + (N/N ) 2. Cee loi a pour densié par rappor à la mesure de Lebesgue 2. On a, p.s., πx x {x>}. g = sup{ : B = 0} = sup{/ : B / = 0} = ( inf{ : B / = 0} ) = ( inf{ : B / = 0} ) Cela implique que g a la même loi que (d ). La loi de g a donc pour densié par rappor à la mesure de Lebesgue π x( x) {0<x<}. 7

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012 Théorème de Cauchy-Lipschiz e applicaions Lefeuvre homas & Ginguené franck 30 mars 01 1 Table des maières 1 Théorème du poin fixe 3 1.1 Énoncé.......................................... 3 1. Démonsraion.....................................

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

Calcul Stochastique 2 Annie Millet

Calcul Stochastique 2 Annie Millet M - Mahémaiques Appliquées à l Économie e à la Finance Universié Paris 1 Spécialié : Modélisaion e Méhodes Mahémaiques en Économie e Finance Calcul Sochasique Annie Mille 15 14 13 1 11 1 9 8 7 6 5 4 3

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

EXERCICES DE CALCUL STOCHASTIQUE M2IF Evry. Monique Jeanblanc

EXERCICES DE CALCUL STOCHASTIQUE M2IF Evry. Monique Jeanblanc EXERCICES DE CALCUL STOCHASTIQUE M2IF Evry Monique Jeanblanc Universié d EVRY Mars 29 2 Conens 1 Rappels 7 1.1 Tribu............................................. 7 1.2 Variables gaussiennes....................................

Plus en détail

Mesures de risque dynamiques, pricing d options vanilles et EDSR quadratiques.

Mesures de risque dynamiques, pricing d options vanilles et EDSR quadratiques. Mesures de risque dynamiques, pricing d opions vanilles e EDSR quadraiques. Cyrille Guillaumie 1 Thibau Masrolia 2 Rappor echnique rendu en juin 213 1. European Securiies and Markes Auhoriy, cyrille.guillaumie@esma.europa.eu

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Corrigé CNC MP 2003, Math 1

Corrigé CNC MP 2003, Math 1 Corrigé CNC MP 3, Mah Parie I. a La foncion e es coninue sur ], α] prolongeable par coninuié en, elle es donc inégrable sur ],α] b La foncion e e es coninue sur [,+ [ e. + donc elle es inégrable sur [,

Plus en détail

TD 4 : correction. L3 Intégration Exercice 1. Fonctions presque nulles. On considère la suite d ensembles mesurables A n = x R f(x) 1.

TD 4 : correction. L3 Intégration Exercice 1. Fonctions presque nulles. On considère la suite d ensembles mesurables A n = x R f(x) 1. L3 Inégraion 1 212-213 TD 4 : correcion Eercice 1. Foncions presque nulles } On considère la suie d ensembles mesurables A n = Rf( 1. n Par hypohèse, ils son ous de mesure nulle : = f dλ 1 A n n µ(a n.

Plus en détail

Exercices de baccalauréat série S sur la loi exponentielle

Exercices de baccalauréat série S sur la loi exponentielle Eercices de baccalauréa série S sur la loi eponenielle (page de l énoncé/page du corrigé) La compagnie d'auocars (Bac série S, cenres érangers, 23) (2/) Durée de vie d'un composan élecronique (Bac série

Plus en détail

1 Le hacheur série. 30 mars 2005

1 Le hacheur série. 30 mars 2005 e hacheur série A. Campo 30 mars 2005 1 e hacheur série 1.1 Généraliés e hacheur es un disposiif permean d obenir une ension coninue de valeur moyenne réglable à parir d

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon Soluions auo-similaires e espaces de données iniiales pour l équaion de Schrödinger Fabrice Planchon Résumé. On démonre que pour des peies données iniiales dans Ḃ 1, (R3 ), l équaion de Schrödinger non

Plus en détail

Exercices d intégration et d analyse fonctionnelle

Exercices d intégration et d analyse fonctionnelle Exercices d inégraion e d analyse foncionnelle Agrégaion 29-2 Exercice : Monrez que si f : IR + IR es uniformémen coninue e que f() d converge alors f a pour limie en +. Donnez un exemple de foncion g

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites Chapire 5 Modèles d Inensié Les deux approches dans la modélisaion de risque de crédi approche srucurel e approche d inensié ne son pas compaibles : dans les modèles d inensié, l exisence de l inensié

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE UNIVERSITE DE TUNIS Faculé des sciences économiques e de gesion de Tunis MODELE DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE Ezzeddine MBAREK 2010 1 INTRODUCTION Le modèle que je propose

Plus en détail

Traitement du Signal Déterministe

Traitement du Signal Déterministe Cours e ravaux Dirigés de raiemen du Signal Déerminise Benoî Decoux (benoi.decoux@wanadoo.fr) - s - ère parie : "Noions de base e éudes emporelles" Bases du raiemen de signal Calculer l ampliude de la

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux ECO434, Ecole polyechnique, 2e année PC 5 Flux de Capiaux Inernaionaux e Déséquilibres Mondiaux Exercice 1 : Flux de capiaux dans le modèle de croissance néoclassique Le modèle es en emps coninu. On considère

Plus en détail

Le modèle de Black Scholes

Le modèle de Black Scholes Le modèle de Black Scholes Philippe Briand, Mars 3 1. Présenaion du modèle Les mahémaiciens on depuis longemps essayé de résoudre les quesions soulevées par le monde de la finance. Une des caracérisiques

Plus en détail

Groupe de travail master MASEF-Université Paris-Dauphine Optimisation d une fonction d utilité sous contraintes de risques

Groupe de travail master MASEF-Université Paris-Dauphine Optimisation d une fonction d utilité sous contraintes de risques Groupe de ravail maser MASEF-Universié Paris-Dauphine Opimisaion d une foncion d uilié sous conraines de risques Benedea Baroli Thibau Masrolia Eienne Pillin sous la direcion d Anhony Réveillac 13 sepembre

Plus en détail

Fondements mathématiques des probabilités Théorie de la mesure Correction des exercices

Fondements mathématiques des probabilités Théorie de la mesure Correction des exercices Fondemens mahémaiques des probabiliés héorie de la mesure Correcion des exercices N. Baradel 7 février 16 1 D 1 1.1 Exercice 1 : Payoffs e sraégies Dessins au ableau. 1. Exercice : Prix de call e de pu

Plus en détail

SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

SÉMINAIRE DE PROBABILITÉS (STRASBOURG) SÉMINAIRE DE PROBABILITÉS (STRASBOURG) STÉPHANE ATTAL PAUL-ANDRÉ MEYER Inerpréaion probabilise e exension des inégrales sochasiques non commuaives Séminaire de probabiliés (Srasbourg), ome 27 (1993), p

Plus en détail

Sous-évaluation des prix d options par le modèle de Black & Scholes.

Sous-évaluation des prix d options par le modèle de Black & Scholes. Sous-évaluaion des prix d opions par le modèle de Black & Scholes. Mise en évidence par une dynamique combinan mouvemen brownien e processus à saus. Marc Debersé ocobre 6 Résumé S il es bien connu que

Plus en détail

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt CCP PSI Mah 9. Eude de la foncion '... Pour > on a cos() e > donc cos(). d es C sur R e d () = sin(). d es donc croissane sur R on a donc pour : d() d() = Soi cos(). On divise par > 8 > ; cos() Remarque

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

Mathématiques Financières

Mathématiques Financières Mahémaiques Financières ------------------------------------------------------- 4 ème parie - Marchés financiers en emps coninu & modélisaion des acions Universié de Picardie Jules Verne Amiens Jean-Paul

Plus en détail

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3.

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3. Mahémaiques 05-06 Colle n o 5 Limies Lcée Charlemagne PCSI Eercice Eercice 5 Soi(u n) n 0 R N elle que les suies (u n) n 0, (u n+) n 0 e (u 3n) n 0 convergen Prouver que(u n) n 0 converge Eercice On considère

Plus en détail

TRAITEMENT DU SIGNAL

TRAITEMENT DU SIGNAL Spé y -4 Devoir n TAITMNT D SIGNAL Parie I OMPOTMNT DYNAMIQ D N LAM D QATZ On considère une lame de quarz, cylindrique, de secion S consane, d axe Ox (de veceur uniaire r u X ), don les deux faces e en

Plus en détail

Mathématiques financières. Peter Tankov

Mathématiques financières. Peter Tankov Mahémaiques financières Peer ankov Maser ISIFAR Ediion 13-14 Preface Objecifs du cours L obje de ce cours es la modélisaion financière en emps coninu. L objecif es d un coé de comprendre les bases de

Plus en détail

Solutions auto-semblables pour des modèles avec conductivité thermique

Solutions auto-semblables pour des modèles avec conductivité thermique Soluions auo-semblables pour des modèles avec conducivié hermique Séphane DELLACHERIE e Olivier LAFITTE CRM-327 5 décembre 25 Cenre de Recherches Mahémaiques, Universié de Monréal, Case posale 628, Succursale

Plus en détail

RELATIONS FONCTIONNELLES. I Généralités

RELATIONS FONCTIONNELLES. I Généralités Universié d'angers : LSEN relaions foncionnelles p. Parie A : Proporionnalié RELATIONS FONCTIONNELLES I Généraliés / Définiion : Soien deux suies de nombres réels : (x ;x ;x ;x 4 ) e (y ;y ;y ;y 4 ). Ces

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé mis en ligne par le Canopé de l académie de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Base Naionale des Sujes d'examens de l'enseignemen professionnel

Plus en détail

Procédé thermocyclique de régulation de température

Procédé thermocyclique de régulation de température - 1 - Innovaion echnologique dans le domaine de la régulaion de empéraure, le procédé hermocyclique foncionne selon un principe unique en son genre qui n a rien en commun avec les régulaions par hermosa

Plus en détail

Catherine Bruneau. Année Produit scalaire, orthogonalité et projection orthogonale. y! hx; yi est linéaire

Catherine Bruneau. Année Produit scalaire, orthogonalité et projection orthogonale. y! hx; yi est linéaire Cours de mahémaiques appliquées à la nance Produi scalaire, orhogonalié Séparaion des convexes e lemme de Farkas Applicaion: évaluaion par arbirage en déerminise Caherine Bruneau Année 2009-2010 1 Produi

Plus en détail

L bien comment traduire cette définition informelle dans le cas d une variable aléatoire discrète X en posant :

L bien comment traduire cette définition informelle dans le cas d une variable aléatoire discrète X en posant : Chapire 7 Espérance 7. Inroducion espérance d une variable aléaoire es, lorsqu elle exise, la moyenne des valeurs de cee variable, pondérées par leurs probabiliés de réalisaion. On voi L bien commen raduire

Plus en détail

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little. Cours de Tronc Commun Scienifique Recherche Opéraionnelle Les files d aene () Les files d aene () Frédéric Sur École des Mines de Nancy www.loria.fr/ sur/enseignemen/ro/ 5 /8 /8 Exemples de files d aene

Plus en détail

a f (t)dt. Alors F est continue sur [a,b]. De plus, si f est continue en un point x de [a,b], alors F est dérivable en x et F (x) = f (x).

a f (t)dt. Alors F est continue sur [a,b]. De plus, si f est continue en un point x de [a,b], alors F est dérivable en x et F (x) = f (x). Eercices : Brbr Tumpch Relecure : Frnçois Lescure Eo7 Inégrles générlisées e héorie de l mesure Rppel Définiion. Soi f : (,b R une foncion Riemnn-inégrble sur ou segmen [α,β] (,b (on dme les cs où = e/ou

Plus en détail

Chapitre 15 c Circuits RL et RC

Chapitre 15 c Circuits RL et RC Chapire 15 c Circuis L e C en régime impulsionnel Sommaire Circuis en régime impulsionnel Signal impulsionnel Mesure d'un circui C en régime impulsionnel Applicaion praique Eude du circui C en régime impulsionnel

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Académie Européenne Interdisciplinaire des Sciences Colloque Théories et Modèles en Sciences Sociales 28-29 novembre 2011.

Académie Européenne Interdisciplinaire des Sciences Colloque Théories et Modèles en Sciences Sociales 28-29 novembre 2011. RISQUE EXTREME ET REGULARITE FRACTALE EN FINANCE Académie Européenne Inerdisciplinaire des Sciences Colloque Théories e Modèles en Sciences Sociales 28-29 novembre 2011 Lauren Emmanuel Calve Lauren Emmanuel

Plus en détail

Les Univers Virtuels de la Finance

Les Univers Virtuels de la Finance Les Univers Viruels de la Finance Viruel Worlds of Finance ierre Devolder 1 Résumé. La mesure neure au risque es devenue une noion cenrale en finance moderne: elle s obien par changemen de mesure de probabilié

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Prénom e nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Exercice n 1 Un ouvrier dispose de plaques de méal de 110 cm de longueur e de 88 cm de largeur. Il a reçu la consigne suivane : «Découpe dans

Plus en détail

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1.

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1. Pourcenages MATHEMATQUES 1ES 5. Lors de l acha d un aure aricle, je dois verser un acompe de 15%, e il me resera alors POURCENTAGES à débourser 1 700. CORRGES EXERCCES Prix de l aricle : 1 700 = 85% du

Plus en détail

CH.3 PROBLÈME DE FLOTS

CH.3 PROBLÈME DE FLOTS H.3 PROLÈME E FLOTS 3.1 Le réeaux de ranpor 3.2 Le flo maximum e la coupe minimum 3.3 L'algorihme de Ford e Fulkeron 3. Quelque applicaion Opi-comb ch 3 1 3.1 Le réeaux de ranpor Réeau de ranpor : graphe

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore :

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore : Plnche Exercice 1 On considère un mrché nncier de ux d'inérê r e une cion de dynmique risque neure ds = S µd + σdw, S = x Soi une brrière hue ; on considère une opion brrière Up In qui délivre l'cion S

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Devoir de physique-chimie n 5. Nom:... Exercice 1 : Quand Sébastien Loeb rencontre Isaac Newton /5,0

Devoir de physique-chimie n 5. Nom:... Exercice 1 : Quand Sébastien Loeb rencontre Isaac Newton /5,0 TS avril 04 Devoir de physique-chimie n 5 LES EXERCICES SNT INDEPENDANTS CALCULATRICE AUTRISEE Eercice : Quand Sébasien Loeb renconre Isaac Newon /5,0 "( ) Sébasien Loeb e son copiloe Daniel Elena on brillammen

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002 Universié Paris IX Dauphine UFR Economie Appliquée Maîrise Economie Appliquée ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 00 Noes de Cours Auorisées, Calcularices sans Mémoire Auorisées Durée :

Plus en détail

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0.

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0. # $ %& 1. La VAN. Les aures crières 3. Exemple. Choix d invesissemen à long erme 5. Exercices!" '* '( Un proje ne sera mis en œuvre que si sa valeur acuelle nee ou VAN, définie comme la somme acualisée

Plus en détail

L évaluation immobilière. Michel Baroni 27/11/2009

L évaluation immobilière. Michel Baroni 27/11/2009 L évaluaion immobilière Michel Baroni 27/11/2009 Méhodes exisanes Méhodes des comparables Dépend de la base de données; méhode hédonique évenuellemen possible Méhodes de capialisaion Dépend de la base

Plus en détail

La définition naturelle de la transformée de Fourier d une distribution T, devrait

La définition naturelle de la transformée de Fourier d une distribution T, devrait Chapire 12 Transformée de Fourier des disribuions 12.1 Inroducion La définiion naurelle de la ransformée de Fourier d une disribuion T, devrai êre ϕ D, < F(T ), ϕ >= < T, F(ϕ) > Mais il y a un problème

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

Gestion Actif Passif et Solvabilité

Gestion Actif Passif et Solvabilité Gesion Acif Passif e Solvabilié Charles Descure & Crisiano Borean Generali France 7/9 Boulevard Haussmann 759 Paris Tel. : +33 58 38 86 84 +33 58 38 86 64 Fax. : +33 58 38 8 cdescure@generali.fr cborean@generali.fr

Plus en détail

Détermination de la primitive d une fonction trigonométrique à l aide de la V200

Détermination de la primitive d une fonction trigonométrique à l aide de la V200 Déerminaion de la primiive d une foncion rigonomérique à l aide de la V00. Formules élémenaires Dans les formules suivanes, u u ( ) es une foncion de. sin cos k u'sinu cosu cos sin k u'cosu sinu k k sin

Plus en détail

Modèles stochastiques. Chaînes de Markov discrètes

Modèles stochastiques. Chaînes de Markov discrètes odèles sochasiques Chaînes de arkov discrèes 1. Processus sochasique discre { } Suie de variables aléaoires X, T T es un ensemble d'eniers non-négaifs e X représene une mesure d'une caracérisique au emps

Plus en détail

Développements limités

Développements limités BTS DOMOTIQUE Développemens limiés 8- Développemens limiés Table des maières I Foncion eponenielle I. Développemen limié d ordre................................... I. Développemen limié d ordre...................................

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0 Balisique Inroducion La balisique es l'éude du mouvemen des mobiles soumis à la force raviaionnelle. Galilée (1564-164) a éé le premier à décrire de façon adéquae le mouvemen des projeciles e à démonrer

Plus en détail

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique 1 INSUMENAION ELEIQUE OSILLOSOPE NUMEIQUE GENEAEU BASSE FEQUENE UILISE EN SINUSOIDAL Eude héorique 1 Noions élémenaires 1.1 Masse e erre : Lorsqu on mesure une ension, on mesure en fai une différence de

Plus en détail

PHYSIQUE. Partie préliminaire

PHYSIQUE. Partie préliminaire PHYSIQUE Les différenes paries de ce problème son dans une large mesure indépendanes Seules les argumenaions précises e concises seron prises en compe en réponse aux quesions qualiaives Parie préliminaire

Plus en détail

Fiche d exercices 12 : Lois normales

Fiche d exercices 12 : Lois normales Fiche d exercices 1 : Lois normales Exercice 1 Loi normale cenrée e réduie N (0,1) Une variable aléaoire Z sui la loi N (0,1). On donne P ( Z 1,8 ) 0, 964 e P ( Z,3) 0, 989. Calculer les probabiliés suivanes

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

Université d Evry Val d Essonne DESS d Ingéniérie Mathématique option Finance Introduction à la valorisation des produits financiers

Université d Evry Val d Essonne DESS d Ingéniérie Mathématique option Finance Introduction à la valorisation des produits financiers Universié d Evry Val d Essonne DESS d Ingéniérie Mahémaique opion Finance Inroducion à la valorisaion des produis financiers Véronique Berger versiondu10janvier2006 Conens I Insrumens financiers 5 1 Définiion

Plus en détail

de rentiers en cours de service

de rentiers en cours de service Les Allocaion normes d acifs IFRS d un en assurance régime de reniers en cours de service 27 e journée de séminaires acuariels ISFA Lyon e ISA-HEC Lausanne Frédéric PLANCHET Pierre THEROND 3 décembre 2004

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

df( t) P( t T t dt) ft ( ) lim

df( t) P( t T t dt) ft ( ) lim I APPROCHE DE LA FIABILITE PAR LES PROBABILITES : Définiion selon la NF X 6 5 : la fiabilié es la caracérisique d un disposiif exprimée par la probabilié que ce disposiif accomplisse une foncion requise

Plus en détail

Solvency II, IFRS : l impact des modèles d actifs retenus

Solvency II, IFRS : l impact des modèles d actifs retenus Les normes IFRS en assurance Solvency II, IFRS : l impac des modèles d acifs reenus 31 e journée de séminaires acuariels ISA-HEC Lausanne e ISFA Lyon Pierre THÉROND pherond@winer-associes.fr 18 novembre

Plus en détail

Mathématiques discrètes Chapitre 2 : Théorie des ensembles

Mathématiques discrètes Chapitre 2 : Théorie des ensembles U.P.S. I.U.T., Déparemen d Informaique nnée 9- Mahémaiques discrèes Chapire : Théorie des ensembles. Définiions Définiion On appelle ensemble oue collecion d objes caracérisés par une propriéé commune.

Plus en détail

Analyse de Fourier. Eric Aristidi

Analyse de Fourier. Eric Aristidi Analyse de Fourier Eric Arisidi Version rès préliminaire, 5 décembre 3 Table des maières Signau disconinus Disribuion de Dirac. La foncion de Heaviside H()........................................ La foncion

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

Chapitre 6 Modèles de taux d intérêt

Chapitre 6 Modèles de taux d intérêt Chapire 6 Modèles de aux d inérê Les modèles de aux d inérê son uilisés principalemen pour pricer e couvrir des obligaions e des opions sur obligaions Jusqu à présen, aucun modèle n a pu s imposer comme

Plus en détail

Triangularisation, jordanisation, exponentielle de matrices

Triangularisation, jordanisation, exponentielle de matrices Triangularisaion, jordanisaion, exponenielle de marices 1 Triangularisaion Soien E un espace vecoriel de dimension n e ϕ un endomorphisme de E de marice A dans une base donnée. On suppose que le polynôme

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Formalisme des processus aléatoires

Formalisme des processus aléatoires HAPITRE Formalisme des processus aléaoires. - Signal déerminise e signal aléaoire.. - Signal déerminise Les signaux déerminises son connus par leur représenaion emporelle e specrale. Dans le domaine emporel,

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE 1. Durée : 4 heures

EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE 1. Durée : 4 heures SESSION PSIP3 EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE Durée : 4 heures NB : Le candida aachera la plus grande imporance à la claré, à la précision e à la concision de la rédacion Si un candida es amené

Plus en détail

TP Mesures de la vitesse du son

TP Mesures de la vitesse du son TP Mesures de la viesse du son Bu du TP. Lors de cee séance de ravaux praiques, l éudian es amené à mesurer la viesse de propagaion du son dans l air e dans l eau. 1 Inroducion Qu es-ce qu un son? Un son

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

EDSR et EDSPR avec grossissement de filtration, problèmes d asymétrie d information et de couverture sur les marchés financiers

EDSR et EDSPR avec grossissement de filtration, problèmes d asymétrie d information et de couverture sur les marchés financiers UNIVERSITE PAUL SABATIER TOULOUSE III U.F.R Mahémaique Informaique Gesion THÈSE présenée e souenue publiquemen le 7 décembre 25 pour l obenion du Docora de l Universié Paul Sabaier TOULOUSE III mahémaiques

Plus en détail

Introduction aux equations différentielles stochastiques

Introduction aux equations différentielles stochastiques Inroducion aux equaions différenielles sochasiques Nils Berglund Janvier 25 1 Le mouvemen Brownien Les équaions différenielles sochasiques serven de modèle mahémaique à des sysèmes faisan inervenir deux

Plus en détail

UN INDICE D ÉVOLUTION EN VOLUME DU STOCK DE RESSOURCES NATURELLES

UN INDICE D ÉVOLUTION EN VOLUME DU STOCK DE RESSOURCES NATURELLES UN INDICE D ÉVOLUTION EN VOLUME DU STOCK DE RESSOURCES NATURELLES 15e Colloque de l Associaion de Compabilié Naionale Novembre 2014 Pierre-Alain Pionnier OCDE Indicaeurs phares de l OCDE pour une croissance

Plus en détail

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures niversié de Paris X Nanerre École Docorale MP DA conomie Inernaionale, Modélisaion e Analyse des Poliiques Économiques Année 2004-2005 XAMN FINAL Économie Monéaire Inernaionale 27 janvier 2005 2 heures

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Fiche de Biostatistique. Exercices d'algèbre. Solutions proposées par C. BAJARD et S. CHARLES. Plan

Fiche de Biostatistique. Exercices d'algèbre. Solutions proposées par C. BAJARD et S. CHARLES. Plan Fiche de Biosaisique Exercices d'algèbre Soluions proposées par C. BAJARD e S. CHARLES Plan INDÉPENDANCE, GÉNÉRATEUR, DIMENSION, BASES... MÉTHODE DU PIVOT...4 PRODUITS SCALAIRES... 6 ORTHONORMALISATION...

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

Journée de la Régionale de Poitou-Charentes 16 octobre 2013

Journée de la Régionale de Poitou-Charentes 16 octobre 2013 es Maéaiques dans l assurance-vie Journée de la Régionale de Poiou-arenes 6 ocobre 23 es aéaiques uilisées dans les éiers de l'assurance ou de la banque Associaion des Professeurs de Maéaiques de l Enseigneen

Plus en détail

Analyse par intervalles pour la localisation et la cartographie simultanées; Application à la robotique sous-marine.

Analyse par intervalles pour la localisation et la cartographie simultanées; Application à la robotique sous-marine. Analyse par inervalles pour la localisaion e la carographie simulanées; Applicaion à la roboique sous-marine Fabrice LE BARS Analyse par inervalles pour la localisaion e la carographie simulanées; Thèse

Plus en détail