Exo7. Equations différentielles

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Exo7. Equations différentielles"

Transcription

1 Exo7 Equations différentielles Exercice 1 On se propose d intégrer sur l intervalle le plus grand possible contenu dans ]0, [ l équation différentielle : (E) y (x) y(x) x y(x)2 = 9x Déterminer a ]0, [ tel que y(x) = ax soit une solution particulière y 0 de (E). 2. Montrer que le changement de fonction inconnue : y(x) = y 0 (x) 1 l équation différentielle (E 1 ) z (x) + (6x + 1 )z(x) = 1. x z(x) transforme l équation (E) en 3. Intégrer (E 1 ) sur ]0, [. 4. Donner toutes les solutions de (E) définies sur ]0, [. [000847] Exercice 2 Résoudre l équation suivante : y 3y + 2y = e x. [000863] Exercice 3 Résoudre l équation suivante : y y = 6cosx + 2xsinx. [000864] Exercice 4 Résoudre l équation suivante : 4y + 4y + 5y = sinxe x/2. [000865] Exercice 5 On considère l équation : y + 2y + 4y = xe x 1. Résoudre l équation différentielle homogène associée à (E). 2. Trouver une solution particulière de (E) (expliquer votre démarche), puis donner l ensemble de toutes les solutions de (E). (E) 3. Déterminer l unique solution h de (E) vérifiant h(0) = 1 et h(1) = 0. 1

2 4. Soit f :]0, [ R une fonction deux fois dérivable sur ]0, [ et qui vérifie : t 2 f (t) + 3t f (t) + 4 f (t) = t logt. (a) On pose g(x) = f (e x ), vérifier que g est solution de (E). (b) En déduire une expression de f. [000866] Exercice 6 On considère l équation différentielle suivante : (E.D.) y 4y + 4y = d(x), où d est une fonction qui sera précisée plus loin. 1. Résoudre l équation différentielle homogène (ou sans second membre) associée à (E.D.). 2. Trouver une solution particulière de (E.D.) lorsque d(x) = e 2x et lorsque d(x) = e 2x respectivement. 3. Donner la forme générale des solutions de (E.D) lorsque d(x) = e 2x + e 2x. 4 [000872] Exercice 7 Résoudre : y (x) + 2y (x) + y(x) = 2xcosxcoshx. [000880] Exercice 8 Déterminer les f C 2 (R,R) telles que : x R, f (x) + f ( x) = xcosx. [000881] Exercice 9 En posant t = arctan x, résoudre : y (x) + 2x 1 + x 2 y (x) + y(x) (1 + x 2 ) 2 = 0. [000884] Exercice 10 Résoudre par le changement de fonction z = y x l équation différentielle : x 2 y (x) 2xy (x) + (2 x 2 )y(x) = 0. [000885] Retrouver cette fiche et d autres exercices de maths sur exo7.emath.fr 2

3 Correction de l exercice 1 Le but de l exercice est de résoudre l équation y (x) y(x) x y(x)2 = 9x 2. (E) 1. Trouvons a ]0, [ tel que y 0 (x) = ax soit une solution particulière. Puisque y 0(x) y 0(x) x y 0 (x) 2 = a 2 x 2, y 0 est solution si et seulement si a = ±3. On choisit a = Si z est une fonction C 1 ne s annulant pas, on pose y(x) = 3x 1/z(x). Alors y est solution si et seulement si z (x) z(x) xz(x) 1 z(x) 2 + 6x z(x) = 0. En multipliant par z(x) 2, on obtient que y est solution de (E) ssi z vérifie ( z (x) + 6x + 1 ) z(x) = 1. (E 1 ) x 3. On résout (E 1 ) sur ]0, [. Une primitive de x 6x + 1/x est x 3x 2 + ln(x), donc les solutions de l équation homogène sont les x Aexp( 3x 2 ln(x)). On cherche une solution particulière de (E 1 ) sous la forme z p (x) = α(x)exp( 3x 2 ln(x)) ; alors z p est solution si α (x)exp( 3x 2 ln(x)) = 1, c est-à-dire si α (x) = xexp(3x 2 ), par exemple si α(x) = exp(3x 2 )/6. Les solutions de (E 1 ) sont donc les z(x) = 1 + Aexp( 3x2 ), avec A R. 6x 4. On va maintenant en déduire les solutions de (E) définies sur ]0, [. Soit y une solution C 1 définie sur ]0, [. On suppose dans un premier temps que y(x) > 3x sur l intervalle ouvert I ]0, [, pris aussi grand que possible. Alors y(x) = 3x 1/z I (x) pour une certaine fonction z I < 0 qui est C 1 sur I. D après la question précédente, on a nécessairement z I (x) = [1 + A I exp( 3x 2 )]/6x pour une certaine constante A I R. Puisque z I < 0, cela impose A I < 0, mais du coup I ]0,+ [ car 1 > A I exp( 3x 2 ) si x est assez grand. Dans tous les cas, il existe donc un intervalle ouvert J tel que y(x) < 3x sur J. On suppose encore que J est aussi grand que possible. Sur J, y(x) = 3x 1/z J (x) pour une certaine fonction z J > 0 qui est C 1 sur J. Encore d après la question précédente, z J (x) = [1+A J exp( 3x 2 )]/6x pour une certaine constante A J. Puisque l intervalle ouvert J =]a,b[ a été supposé maximal, et puisque y est supposée définie sur ]0,+ [, si a > 0 on a y(a) = 3a et de même si b <, y(b) = 3b, car sinon par continuité de y on aurait encore y(x) < 3x sur ]a ε,b + ε[ pour un petit ε > 0. Cela n est possible respectivement que si z J (x) + lorsque x a ou z J (x) + lorsque x b. Or on a dit que z J = [1 + A J exp( 3x 2 )]/6x, cela n est donc pas possible du tout (sauf précisément si respectivement a = 0 et b = 0). Donc soit y(x) = 3x sur ]0,+ [, soit y(x) < 3x sur ]0,+ [. Dans ce dernier cas, z(x) = 1/(3x y(x)) est définie sur ]0,+ [ et s écrit z(x) = [1 + Aexp( 3x 2 )]/6x. Puisque z > 0, nécessairement A 1. Donc si y est solution, alors y(x) = 3x ou y(x) = 3x 6x 1 + Aexp( 3x 2 ) avec A 1. Réciproquement, si y est ainsi définie, alors y est définie et C 1 sur ]0, [, et on peut vérifier que c est bien une solution. Correction de l exercice 2 3

4 y 3y +2y = e x. Le polynôme caractéristique est f (r) = (r 1)(r 2) et les solutions de l équation homogène sont donc toutes les fonctions : y(x) = c 1 e x + c 2 e 2x avec c 1,c 2 R. On cherche une solution particulière de la forme y p (x) = P(x)e x, on est dans la situation (ıı) la condition ( ) sur P est : P P = 1, et P(x) = x convient. Les solutions de l équation sont donc les fonctions : y(x) = (c 1 x)e x + c 2 e 2x avec c 1,c 2 R. Correction de l exercice 3 y y = 6cosx + 2xsinx. Ici f (r) = (r 1)(r + 1) et l équation homogène a pour solutions : y(x) = c 1 e x + c 2 e x avec c 1,c 2 R. On remarque que la fonction 3cosx vérifie l équation : y y = 6cosx, il nous reste donc à chercher une solution y 1 de l équation y y = 2xsinx, car y p (x) = 3cosx + y 1 (x) sera une solution de l équation considŕée. Pour cela, on remarque que 2xsinx = Im(2xe ix ) et on utilise la méthode décrite plus haut pour trouver une solution z 1 de l équation : y y = 2xe ix. On cherche z 1 sous la forme P(x)e ix où P est un polynôme de degré 1 car f (i) = 2 0. On a f (i) = 2i, la condition ( ) sur P est donc : 2iP (x) 2P(x) = 2x ce qui donne après identification P(x) = x i. Alors y 1 (x) = Im(( x+i)e ix ) = xsinx cosx. Les solutions sont par conséquent les fonctions : y(x) = c 1 e x + c 2 e x + 2cosx xsinx avec c 1,c 2 R. Autre méthode pour trouver une solution de y y = 2xsinx : On la cherche de la forme y 1 (x) = A(x)sinx + B(x)cosx où A,B sont des polynômes de degré 1 car i n est pas racine de l équation caractéristique (danger : pour un second membre du type Q(x)sin(βx)e αx la discussion porte sur α +iβ et non sur α ou β...). On calcule y 1, y 1 et on applique l équation étudiée à y 1... on obtient la condition : (A A 2B )sinx + (B B 2A ) = 2xsinx { A qui sera réalisée si : A 2B = 2x B B 2A = 0. On écrit : A(x) = ax + b et B(x) = cx + d, après identification on obtient : a = d = 1, b = c = 0, ce qui détermine y 1. Correction de l exercice 4 4y + 4y + 5y = sinxe x/2. L équation caractéristique a 2 racines complexes r 1 = 1/2 + i et r 2 = r 1 et les solutions de l équation homogène sont : y(x) = e x/2 (c 1 cosx + c 2 sinx) avec c 1,c 2 R On a sinxe x/2 = Im(e ( 1/2+i)x ), on commence donc par chercher une solution z p de l équation avec le nouveau second membre e ( 1/2+i)x.Comme 1/2 + i est racine de l équation caractéristique, on cherchera z p (x) = P(x)e ( 1/2+i)x avec P de degré 1. Par conséquent la condition ( ) sur P : 4P + f ( 1/2 + i)p + f ( 1/2 + i)p = 1 s écrit ici : 8iP = 1 ( P = 0, f ( 1/2 + i) = 0 et f ( 1/2 + i) = 8i), on peut donc prendre P(x) = i/8x et z p (x) = i/8xe ( 1/2+i)x, par conséquent sa partie imaginaire y p (x) = Im( i/8xe ( 1/2+i)x ) = 1/8xsinxe x/2 est une solution de notre équation. Les solutions sont donc toutes les fonctions de la forme : y(x) = e x/2 (c 1 cosx + (c 2 + 1/8x)sinx) avec c 1,c 2 R. Correction de l exercice 5 4

5 1. Le polynôme caractéristique associé à E est : p(x) = x 2 + 2x + 4 ; son discriminant est = 12 et il a pour racines les 2 nombres complexes 1 + i 3 et 1 i 3. Les solutions de l équation homogène sont donc toutes fonctions : y(x) = e x (acos 3x + bsin 3x) obtenues lorsque a,b décrivent R. 2. Le second membre est de la forme e λx Q(x) avec λ = 1 et Q(x) = x. On cherchera une solution de l équation sous la forme : y p (x) = R(x)e x avec R polynôme de degré égal à celui de Q puisque p(1) 0. On pose donc R(x) = ax + b. On a y p(x) + 2y p(x) + 4y p (x) = (7ax + 7b + 4a)e x. Donc y p est solution si et seulement si 7ax+7a+4b = x. On trouve après identification des coefficients : a = 1 7 et b = La fonction y p (x) = 1 7 (x 4 7 )ex est donc solution de E et la forme générale des solutions de E est : y(x) = e x (acos 3x + bsin 3x) (x 4 7 )ex ; a,b R. 3. Soit h une solution de E. Les conditions h(0) = 1, h(1) = 0 sont réalisées ssi a = et b = 53cos 3 + 3e 2 49sin (a) On a : g (x) = e x f (e x ) et g (x) = e x f (e x ) + e 2x f (e x ) d où pour tout x R : donc g est solution de E. g (x) + 2g (x) + 4g(x) = e 2x f (e x ) + 2e x f (e x ) + 4 f (e x ) = e x loge x = xe x (b) Réciproquement pour f (t) = g(logt) où g est une solution de E on montre que f est 2 fois dérivable et vérifie l équation donnée en 4. Donc les fonctions f recherchées sont de la forme : 1 t (acos( 3logt) + bsin( 3logt)) + t 7 (logt 4 ) ; a,b R. 7 Correction de l exercice 6 1. L équation caractéristique r 2 4r + 4 = 0 a une racine (double) r = 2 donc les solutions de l équation homogène sont les fonctions : y(x) = (c 1 x + c 2 )e 2x où c 1,c 2 R. 2. Pour d(x) = e 2x on peut chercher une solution particulière de la forme : y 1 (x) = ae 2x car 2 n est pas racine de l équation caractéristique. On a y 1 (x) = 2e 2x et y 1 (x) = 4ae 2x. Par conséquent y 1 est solution si et seulement si : x R (4a 4( 2a) + 4a)e 2x = e 2x donc si et seulement si a = Pour d(x) = e 2x on cherche une solution de la forme y 2 (x) = ax 2 e 2x, car 2 est racine double de l équation caractéristique. On a y 2 (x) = (2ax + 2ax2 )e 2x et y 2 (x) = (2a + 4ax + 4ax + 4ax2 )e 2x = (4ax 2 + 8ax + 2a)e 2x. Alors y 2 est solution si et seulement si x R (4ax 2 + 8ax + 2a 4(2ax + 2ax 2 ) + 4ax 2 )e 2x = e 2x donc si et seulement si a =

6 3. On déduit du principe de superposition que la fonction y p (x) = 1 4 (y 1(x) + y 2 (x)) = 1 64 e 2x x2 e 2x est solution de l équation pour le second membre donné dans cette question, et la forme générale des solutions est alors : y(x) = (c 1 x + c 2 )e 2x e 2x x2 e 2x où c 1,c 2 R. Correction de l exercice 7 Réponse : (λx + µ)e x + ex 25 [(3x 4)cosx (4x 2)sinx] + (sinx xcosx)e x. Correction de l exercice 8 Réponse : 1 2 ( xcosx + sinx) + λ cosx + µ sinhx. Correction de l exercice 9 Réponse : x λx+µ 1+x 2,(λ,µ) R2. Correction de l exercice 10 Réponse : x λxsinhx + µxcoshx,(λ,µ) R 2. 6

Exercice 1 On se propose d intégrer sur l intervalle le plus grand possible contenu dans ]0, [ l équation différentielle :

Exercice 1 On se propose d intégrer sur l intervalle le plus grand possible contenu dans ]0, [ l équation différentielle : Exo7 Equations différentielles Exercice 1 On se propose d intégrer sur l intervalle le plus grand possible contenu dans ]0, [ l équation différentielle : (E) y (x) y(x) x y(x)2 = 9x 2. 1. Déterminer a

Plus en détail

Exo7. Équations différentielles. 1 Ordre 1. Fiche de Léa Blanc-Centi.

Exo7. Équations différentielles. 1 Ordre 1. Fiche de Léa Blanc-Centi. Exo7 Équations différentielles Fiche de Léa Blanc-Centi. Ordre Exercice Résoudre sur R les équations différentielles suivantes :. y + 2y = x 2 (E ) 2. y + y = 2sinx (E 2 ). y y = (x + )e x (E ) 4. y +

Plus en détail

Correction du devoir surveillé

Correction du devoir surveillé ycée Saint ouis DS Correction du devoir surveillé Exercice. On cherche les racines carrées de 8 + i sous la forme u = x + iy avec x, y R. Ainsi, u = 8 + i. On obtient alors : x y = 8 égalité des parties

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES

ÉQUATIONS DIFFÉRENTIELLES ÉQUATIONS DIFFÉRENTIELLES K désigne les corps R ou C. 1 Généralités sur les équations différentielles 1.1 Notion d équation différentielle Définition 1.1 On appelle équation différentielle une équation

Plus en détail

SOLUTIONS EXERCICES 7 - Équations différentielles linéaires d ordre 1

SOLUTIONS EXERCICES 7 - Équations différentielles linéaires d ordre 1 SOLUTIONS EXERCICES 7 - Équations différentielles linéaires d ordre 1 Exercice 1. Déterminer les solutions aux problèmes homogènes suivants : (a) y (x) = x y(x) (b) y (x) = 1 x y(x) (c) y (x) = x 2 y(x)

Plus en détail

mpsi Khôlles MPSI. Équa_diff - Algèbre linéaire. Sujet A S =

mpsi Khôlles MPSI. Équa_diff - Algèbre linéaire. Sujet A S = Khôlles MPSI. Équa_diff - Algèbre linéaire. Sujet A mpsi Correction Résoudre sur Ê l équation différentielle ( + t y = t y + ( + t (L. Déterminer la solution de (L telle que y(0 = π. Solution générale

Plus en détail

Fiche Équations différentielles d ordre 1

Fiche Équations différentielles d ordre 1 Fiche Équations différentielles d ordre 1 MOSE 1003 24 Novembre 2014 Table des matières Définitions 1 Résolution de l équation homogène. 2 Méthode de variation de la constante. 3 Structure de l ensemble

Plus en détail

Équations différentielles linéaires

Équations différentielles linéaires Chapitre 18 Équations différentielles linéaires Définition 1. Une équation différentielle est une équation dont l inconnue est une fonction, et qui fait intervenir la fonction et ses dérivées. Dans le

Plus en détail

Equations différentielles linéaires

Equations différentielles linéaires [ttp://mp.cpgedupuydelome.fr] édité le 5 mai 2016 Enoncés 1 Equations différentielles linéaires Résolution d équations d ordre 1 Exercice 1 [ 01541 ] [Correction] a) y + 2y = x 2 b) y + y = 2 sin x c)

Plus en détail

Polynômes et fractions rationnelles

Polynômes et fractions rationnelles Polynômes et fractions rationnelles L ensemble K(X ) des fractions rationnelles () Polynômes et fractions rationnelles 1 / 25 L ensemble K(X ) des fractions rationnelles Définition On appelle fraction

Plus en détail

Primitives usuelles. fonction primitive. x 4 x = x

Primitives usuelles. fonction primitive. x 4 x = x Primitives usuelles fonction primitive x ln x x α, α α+ xα+ exemples : x 3 4 x 4 x = x /2 2 3 x 3/2 x 2 = x 2 e x cos(x) sin(x) cos 2 (x) = + tan2 (x) x = x e x sin(x) cos(x) tan(x) +x 2 Arctan(x) x 2

Plus en détail

Exercices : nombres réels et fonctions numériques

Exercices : nombres réels et fonctions numériques ECS 1 Dupuy de Lôme Semaine du 15 octobre 2004 Exercices : nombres réels et fonctions numériques Exercice 1 : Démontrez que pour tout (x, y, z) R 3 Propriétés des nombres réels x + y + z x + y + z et x

Plus en détail

Exercices du chapitre IX avec corrigé succinct

Exercices du chapitre IX avec corrigé succinct Exercices du chapitre IX avec corrigé succinct Exercice IX.1 Ch9-Exercice1 L équation différentielle du premier ordre admet comme solution x IR, y (x) = y(x) x 2, ϕ(x) = Ce x + x 2 + 2x + 2, C IR. A quoi

Plus en détail

Résumé de cours sur les équations différentielles.

Résumé de cours sur les équations différentielles. Résumé de cours sur les équations différentielles. Table des matières 1 Préliminaires et vocabulaire 2 2 ED linéaires d ordre 1 à coefficients constants, homogènes 3 2.1 Forme de l équation...................................

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES Lorsque l on modélise des phénomènes physiques, on obtient souvent des équations qui contiennent une fonction y que l on cherche à déterminer, ainsi que certaines de ses dérivées.

Plus en détail

Équations Différentielles

Équations Différentielles Équations Différentielles Pré-requis : Savoir calculer une primitive dans les cas décrits au chapitre précédent. Objectifs : Savoir résoudre une équation différentielle linéaire d ordre 1 homogène. Savoir

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES. Table des matières. 1. Équations Différentielles linéaires du premier ordre

ÉQUATIONS DIFFÉRENTIELLES. Table des matières. 1. Équations Différentielles linéaires du premier ordre ÉQUATIONS DIFFÉRENTIELLES Table des matières 1. Équations Différentielles linéaires du premier ordre 1 2. Équations Différentielles linéaires du second ordre à coefficients constants 5 2.1. Équations homogènes

Plus en détail

Racines de polynômes

Racines de polynômes Racines de polynômes Exercice 1 Factorisation de X n 1 Factoriser X n 1 sur C 1) En déduire n 1 k=1 sin( kπ n ) ) Calculer également n 1 sin( kπ n + θ) 3) On note ω = e iπ/n Calculer k l, k,l [0,n 1] (ωk

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES 2013 - Gérard Lavau - http://lavau.pagesperso-orange.fr/index.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitement. Toute diffusion à titre onéreux ou

Plus en détail

Exercices : Fonctions Dérivables

Exercices : Fonctions Dérivables Exercices : Fonctions Dérivables Exercice Déterminez l ensemble de dérivabilité des fonctions suivantes et calculez leur dérivée. ) f : x x 2 + x 2 2) f : x x + cos( x ) 3) f : x arctan( xe x ) 4) f :

Plus en détail

Devoir surveillé 5 mathématiques

Devoir surveillé 5 mathématiques Devoir surveillé 5 mathématiques BCPST 205-206 Exercice. Soit t un réel strictement positif. On définit la suite ( n N par la donnée de x 0 = t et la relation de récurrence : n N, + =.. (a Soit g la fonction

Plus en détail

Exo7. Espaces vectoriels. 1 Définition, sous-espaces. 2 Systèmes de vecteurs

Exo7. Espaces vectoriels. 1 Définition, sous-espaces. 2 Systèmes de vecteurs Exo7 Espaces vectoriels 1 Définition, sous-espaces Exercice 1 Déterminer lesquels des ensembles E 1, E 2, E 3 et E 4 sont des sous-espaces vectoriels de R 3. Calculer leurs dimensions. E 1 = {(x,y,z) R

Plus en détail

MPSI 2 DS 02. le 05 novembre 2003

MPSI 2 DS 02. le 05 novembre 2003 MPSI DS le 5 novembre 3 Présentation des copies : Utiliser des copies doubles uniquement ; Laisser une marge à gauche de chaque feuille et une demi-page sur la première feuille pour les remarques du correcteur.

Plus en détail

POLYNOMES. Table des matières. Fonction polynôme. I.1 Fonction polynôme de degré n

POLYNOMES. Table des matières. Fonction polynôme. I.1 Fonction polynôme de degré n POLYNOMES Table des matières I Fonction polynôme 1 I.1 Fonction polynôme de degré n.................................. 1 I.2 Egalité de deux polynômes................................... 1 I.3 Racine d un

Plus en détail

Exo7. Polynômes. 1 Opérations sur les polynômes. 2 Division, pgcd. Corrections de Léa Blanc-Centi.

Exo7. Polynômes. 1 Opérations sur les polynômes. 2 Division, pgcd. Corrections de Léa Blanc-Centi. Exo7 Polynômes Corrections de Léa Blanc-Centi. 1 Opérations sur les polynômes Exercice 1 Trouver le polynôme P de degré inférieur ou égal à 3 tel que : P(0) = 1 et P(1) = 0 et P( 1) = 2 et P(2) = 4. [000427]

Plus en détail

Module Analyse 2. Filières SM et SMIA. Universite Mohammed V- Agdal Faculté des Sciences. Semestre 2. Département de Mathématiques.

Module Analyse 2. Filières SM et SMIA. Universite Mohammed V- Agdal Faculté des Sciences. Semestre 2. Département de Mathématiques. Universite Mohammed V- Agdal Faculté des Sciences Département de Mathématiques Module Analyse 2 Filières SM et SMIA Semestre 2 Chapitre 3 Hamza BOUJEMAA 1 Chapitre 3 Equations diérentielles. En plus de

Plus en détail

Exercices du chapitre 8 avec corrigé succinct

Exercices du chapitre 8 avec corrigé succinct Exercices du chapitre 8 avec corrigé succinct Exercice VIII.1 Ch-Exercice7 Soient les deux lois définies sur R de la manière suivante. Étant donnés deux couples (x, y) et (x, y ) de R, on pose : (x, y)

Plus en détail

Fonctions usuelles réelles

Fonctions usuelles réelles Fonctions usuelles réelles fonctions polynômes et rationnelles 0. les fonctions polynômes Les polynômes seront étudiés en le détail au chapitre 7. définition 4. : n dit que p est une fonction polynôme

Plus en détail

Math206 Equations aux Dérivées Partielles Feuille d Exercices 1

Math206 Equations aux Dérivées Partielles Feuille d Exercices 1 Université de Paris Sud 11 L MPI Mathématiques ème semestre 14/15 Math06 Equations aux Dérivées Partielles Feuille d Exercices 1 NB. Ces exercices, et les corrigés qui suivent, sont issus du site http://www.bibmath.net

Plus en détail

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles Mathématiques - ECS 6 Dérivation et accroissements finis. Lycée La Bruyère 30 avenue de Paris 78000 Versailles c 06, Polycopié du cours de mathématiques de première année. 6 Dérivation et accroissements

Plus en détail

Notes de cours. Equations différentielles PC, Lycée Dupuy de Lôme

Notes de cours. Equations différentielles PC, Lycée Dupuy de Lôme Notes de cours Equations différentielles PC, Lycée Dupuy de Lôme I désigne un intervalle de R. On note K = R ou C 1 Equations différentielles linéaires d ordre 1 1.1 Généralités Définition On appelle équation

Plus en détail

Limite d une fonction en un point

Limite d une fonction en un point Limite d une fonction en un point Définiton Soit f une fct déf. sur un intervalle I de R, sauf p-ê en a I. l R est la limite de f en a si, quand x I se rapproche de a, f (x) se rapproche de l. Dans ce

Plus en détail

1. Quelle est la probabilité de tirer quatre boules rouges? 2. Quelle est la probabilité de tirer deux boules rouges et deux boules bleues?

1. Quelle est la probabilité de tirer quatre boules rouges? 2. Quelle est la probabilité de tirer deux boules rouges et deux boules bleues? Problème 1 [6p] On dispose de deux urnes, désignées respectivement par les lettres A et B. L urne A contient 6 boules bleues et 3 rouges. L urne B contient 4 boules bleues et 4 rouges. On tire deux boule

Plus en détail

Fonctions de plusieurs variables Chapitre V - Extrema - Convexité - Corrigé de quelques exercices

Fonctions de plusieurs variables Chapitre V - Extrema - Convexité - Corrigé de quelques exercices UNIVERSITÉ DE CERGY Année 01-01 LICENCE d ÉCONOMIE et GESTION Première année - Semestre Fonctions de plusieurs variables Chapitre V - Extrema - Convexité - Corrigé de quelques exercices Exercice II Le

Plus en détail

Exo7. Sujets de l année Devoir à la maison. Enoncés et corrections : Sandra Delaunay

Exo7. Sujets de l année Devoir à la maison. Enoncés et corrections : Sandra Delaunay Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 26-27 1 Devoir à la maison Exercice 1 Soit a R, notons A la matrice suivante ( ) 1 A =. a 1 + a On définit une suite (u n ) n N, par la donnée

Plus en détail

MATHS Rappels Equations Différentielles

MATHS Rappels Equations Différentielles INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE MATHS Rappels Equations Différentielles Jean-Pierre Bourgade Pascal Floquet Première Année à Distance Septembre 2011 Xuân Meyer 2 Table des matières 3 Equations

Plus en détail

En particulier : x, y R, e x+y = e x e y et e x = 1 e x.

En particulier : x, y R, e x+y = e x e y et e x = 1 e x. I. Propriétés algébriques La fonction logarithme néperien est dérivable et strictement croissante de R + sur R. Le théorème de la bijection, qu on abordera au chapitre 7, permet de prouver l existence

Plus en détail

Méthodes pratiques de calcul de primitives

Méthodes pratiques de calcul de primitives Méthodes pratiques de calcul de primitives I - Introduction On donne dans ce qui suit des méthodes de calcul des primitives d une fonction f, dans le cas où elles s obtiennent à l aide de fonctions élémentaires

Plus en détail

PROBLÈME 1 : Une équation matricielle PRÉLIMINAIRES PARTIE I

PROBLÈME 1 : Une équation matricielle PRÉLIMINAIRES PARTIE I TD - Chapitres 19 et 0 - ALGÈBRE LINÉAIRE PROBLÈME 1 : Une équation matricielle Extrait sujet «Petites Mines» 010 Le but de ce problème est d étudier différentes matrices qui commutent avec leur transposée,

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES .Définition On appelle équation différentielle du n ième ordre une relation de la forme : f [ ( )] n x,,, K, 0 entre la variable réelle x, une fonction inconnue (x) et les dérivées

Plus en détail

Equations différentielles

Equations différentielles Equations différentielles I Complements sur l exponentielle a) Rappels sur l exponentielle complexe Rappels : la fonction exponentielle réelle, les fonctions trigonométriques cosinus et sinus sont supposées

Plus en détail

Feuille d exercices 3

Feuille d exercices 3 UNIVERSITÉ PIERRE ET MARIE CURIE Année 2007/2008 MIME 22 LM 125 Groupe 22.4 Feuille d exercices 3 Exercice 1 Effectuer le produit des polynômes suivants : 1. P = X 3 X + 1 et Q = X 2 3X + 2. 2. P = X 4

Plus en détail

REVISIONS POUR LES VACANCES. Généralités sur les fonctions

REVISIONS POUR LES VACANCES. Généralités sur les fonctions Année 2016-2017 PCSI ( Baggio ) REVISIONS POUR LES VACANCES Vous devez connaître parfaitement tous les résultats donnés ici sur les généralités de fonctions, sur les fonctions exponentielles et logarithmes

Plus en détail

PCSI1-PCSI2 DNS n 07 - Pour le mardi 03 janvier Exercices ou premières questions d exercices posés à l oral des concours.

PCSI1-PCSI2 DNS n 07 - Pour le mardi 03 janvier Exercices ou premières questions d exercices posés à l oral des concours. Exercices ou premières questions d exercices posés à l oral des concours Exercice ENSEA-ENSAM [ Montrer que α, π ], cos 4 α) + sin 4 α) = 2 2 sin2 2α) puis que si a, b) R+) 2 alors a 2 cos 2 α) + b 2 sin

Plus en détail

1.3 Quelques techniques de calcul des DL

1.3 Quelques techniques de calcul des DL + + +.3 Quelques techniques de calcul des DL.3 Quelques techniques de calcul des DL Théorème.24. (troncation) Soient m et n deux entiers naturels tels que n

Plus en détail

Fractions rationnelles

Fractions rationnelles Fractions rationnelles Décomposition en éléments simples Exercice Éléments de ère espèce x 5 x + x 6 3 x3 + x + x 4 x 3 4 x x + x x 5 x x 6 x n 7 x + n 8 n! x + x + n Exercice x + x x + x x 4 3 x x x +

Plus en détail

Lycée de la Plaine de l Ain Bac. blanc Mathématiques Terminale S. Mars 2005

Lycée de la Plaine de l Ain Bac. blanc Mathématiques Terminale S. Mars 2005 Lycée de la Plaine de l Ain Bac. blanc Mathématiques Terminale S Mars 2005 1 Exercice 1 (4 points). A ne traiter que par les élèves ne suivant pas l enseignement de spécialité. 1. Résoudre dans C l équation

Plus en détail

= arctanx. 1+x. 1. Résoudre g(x) = 0. R R. x sh 2 (x) ch(x) 1. Exercice { 7. Soit g : Résoudre les équations suivantes : (arcsinx) 2 dx.

= arctanx. 1+x. 1. Résoudre g(x) = 0. R R. x sh 2 (x) ch(x) 1. Exercice { 7. Soit g : Résoudre les équations suivantes : (arcsinx) 2 dx. Lycée Joffre Année 05-06 PCSI Feuille 9 TD n 9: Analyse et fonctions usuelles Fonctions trigonométriques Exercice Résoudre les équations suivantes : cos (x sin (x = 0 4sin(xcos(x = cos (x+cos(x = 4 4 cos(x

Plus en détail

Sommaire. 1. Equations Différentielles Linéaires du second ordre Equation différentielle linéaire du second ordre

Sommaire. 1. Equations Différentielles Linéaires du second ordre Equation différentielle linéaire du second ordre Equations et systèmes différentiels 3 - Sommaire Eq Différentielles Linéaires du 2 nd ordre Linéaire du second ordre 2 Existence des solutions 2 3 Recherche des solutions 2 4 Recollement de solutions 4

Plus en détail

Devoir non surveillé Équation différentielle, fonction définie par une intégrale

Devoir non surveillé Équation différentielle, fonction définie par une intégrale Devoir non surveillé Équation différentielle, fonction définie par une intégrale Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: pour le 0 juin Eercice Résoudre l équation différentielle : E y y + 5y cos

Plus en détail

Université Denis Diderot Paris 7 ( ) Devoir maison 2

Université Denis Diderot Paris 7 ( ) Devoir maison 2 Université Denis Diderot Paris 7 (03-04) Maths, Agro & Véto Devoir maison Exercice [Sujet Analyse 03] Soit la fonction d une variable réelle f définie sur D = [0,+ [ par f(x) = xe x +x. On appelle Cf la

Plus en détail

Quelques exercices. 4 Avril 2014

Quelques exercices. 4 Avril 2014 Quelques exercices 4 Avril 04 Exercice Effectuer les divisions euclidiennes de 3 5 + 4 + par + + 3, 3 5 + 4 + par 3 + +, 4 3 + par + 4. Exercice Dans C[], effectuer les divisions euclidiennes de 3i 5(

Plus en détail

Contenu du Cours 24. ÉDO du type homogène. ÉDO linéaires. Équations linéaires du second ordre à coefficients constants

Contenu du Cours 24. ÉDO du type homogène. ÉDO linéaires. Équations linéaires du second ordre à coefficients constants Contenu du Cours 24 ÉDO du type homogène ÉDO linéaires Équations linéaires du second ordre à coefficients constants ÉDO du type homogène ÉDO du type homogène ÉDO du type homogène Définition Une équation

Plus en détail

Université Paris Dauphine DUMI2E 2e année. Calcul différentiel et optimisation I. Sujets d examen François BOLLEY

Université Paris Dauphine DUMI2E 2e année. Calcul différentiel et optimisation I. Sujets d examen François BOLLEY Université Paris Dauphine DUMI2E 2e année Calcul différentiel et optimisation I Sujets d examen 2006-2007 François BOLLEY Université Paris Dauphine DUMI2E 2e année Calcul différentiel Contrôle continu

Plus en détail

Equations différentielles

Equations différentielles 07 Cours - Equations differentielles.nb 1/6 Equations différentielles I) Compléments 1) Fonction exponentielle complexe 2) Intégration par parties II) Généralités sur les équations différentielles 2) Exemples

Plus en détail

I. Equation et inéquation du second degré

I. Equation et inéquation du second degré I. Equation et inéquation du second degré Théorème : Soient a, b et c des nombres réels avec a non nul, on appelle discriminant et on note Δ le nombre b 2 4ac. L équation ax 2 + bx + c = 0, - admet deux

Plus en détail

14. ÉQUATIONS DIFFÉRENTIELLES

14. ÉQUATIONS DIFFÉRENTIELLES 14. ÉQUATIONS DIFFÉRENTIELLES 1 Dénitions générales. 1. 1 Équations fonctionnelles, équations diérentielles. Les équations dont on va à présent parler sont des propriétés de fonctions inconnues, et le

Plus en détail

Dérivation des fonctions numériques d une variable réelle

Dérivation des fonctions numériques d une variable réelle Maths PCSI Exercices Dérivation des fonctions numériques d une variable réelle 1 Aspects locaux 1 + x 1 x si x 0 Exercice 1 Etudier la dérivabilité en 0 de x x 1 sinon Exercice 2 Dériver x 1 + 2 + x. Recommencer,

Plus en détail

FX 24 - EQUATIONS DIFFÉRENTIELLES

FX 24 - EQUATIONS DIFFÉRENTIELLES Lycée Thiers FX 24 - EQUATIONS DIFFÉRENTIELLES EDL - 1 Soit n N. Résoudre sur ], + [ l équation différentielle 2t + = t n. Résoudre sur R l équation différentielle ch (t) + sh (t) = 1 1 + t 2. Soit I un

Plus en détail

FASCICULE D'EXERCICES

FASCICULE D'EXERCICES ELEMENTS D'ALGEBRE LINEAIRE, A L'USAGE DES ETUDIANTS DE L'U.E. M1PY3W01 FASCICULE D'EXERCICES A partir de Septembre 2014, le programme de cette U.E. devient le programme d'algèbre et application à la résolution

Plus en détail

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes 1. Fonction du second degré 1.1 Définition Une fonction f définie sur R dont l expression peut se mettre sous la forme = ax 2 +bx +c (où a, b et c sont des réels avec a non nul) est une fonction du second

Plus en détail

2 Équations différentielles non linéaires. 4

2 Équations différentielles non linéaires. 4 XM6-CPGE MY YOUSSEF RABAT LE 2 AVRIL 2010 Blague du jour : Faites vous partie de la nouvelle économie? La réponse serait oui, si : Pour demander a votre voisin s il veut aller déjeuner avec vous, vous

Plus en détail

E3A 2007 MP - Maths B

E3A 2007 MP - Maths B E3A 2007 MP - Maths B Exercice 1 1. Suivant l énoncé, soit y une fonction dérivable sur J, et soit z : x x α y(x). Puisque J ne contient pas 0, z est elle aussi dérivable sur J, et on a : si J R + : x

Plus en détail

Chapitre 18 : équations différentielles linéaires

Chapitre 18 : équations différentielles linéaires Math Spé MP Chapitre 18 : équations différentielles linéaires 13/3/2012 1 Rappels de 1 re année Résolution d une équation différentielle linéaire de la forme de (E) (E) : y = a(x) y +b(x), a,b C(I,R) L

Plus en détail

Comment utiliser le Mini-Manuel?

Comment utiliser le Mini-Manuel? Comment utiliser le Mini-Manuel? La page d entrée de chapitre Elle rappelle les objectifs pédagogiques du chapitre. Le cours Le cours, concis et structuré, expose les notions importantes du programme.

Plus en détail

Cours de Mathématiques Équations différentielles linéaires Sommaire. I Systèmes différentiels linéaires d ordre

Cours de Mathématiques Équations différentielles linéaires Sommaire. I Systèmes différentiels linéaires d ordre Sommaire Sommaire I Systèmes différentiels linéaires d ordre 1............... 2 I.1 Généralités................................. 2 I.2 Systèmes homogènes à coefficients constants............... 3 I.3 Exponentielles

Plus en détail

D. CRESSON. 15 octobre D. CRESSON () Cours Première STL 15 octobre / 8

D. CRESSON. 15 octobre D. CRESSON () Cours Première STL 15 octobre / 8 Polynômes D. CRESSON 15 octobre 2008 D. CRESSON () Cours Première STL 15 octobre 2008 1 / 8 I fonction polynôme On appelle monôme, une expression du type ax n, où n est un entier naturel, a une constante

Plus en détail

Limites de fonctions

Limites de fonctions Aix-Marseille Université 013-014 Analyse I PLANCHE : LIMITES, CONTINUITÉ Les exercices marqués du symbole sont les exercices qui seront traités prioritairement en TD. Le site internet EXO7 (http ://exo7.emath.fr)

Plus en détail

Correction partielle du TD 12

Correction partielle du TD 12 Correction partielle du TD Correction Il faut d abord que la fonction soit continue en = La ite à gauche est = + et à droite a +b+ = a+b+ Donc a+b+ = Il faut maintenant que les dérivées à droites et à

Plus en détail

Différentielle seconde, extremums.

Différentielle seconde, extremums. Différentielle seconde, extremums Exercice 1 Soit A une matrice de taille n n Pour tout x R n, on pose qx) = x, Ax Montrer que q est C et calculer son gradient et sa matrice hessienne Indication On remarquera

Plus en détail

PRIX YAHYA OULD HAMIDOUNE. Correction des exercices

PRIX YAHYA OULD HAMIDOUNE. Correction des exercices PRIX YAHYA OULD HAMIDOUNE NIVEAU UNIVERSITAIRE ÈME PARTIE NOUAKCHOTT, MARS Correction des exercices Exercice Il s agit de montrer l équivalence entre les propriétés (a) σ > tel que pour tous vecteurs x,

Plus en détail

CORRECTION. Première méthode (utilisant les dérivées) Deuxième méthode (trigonométrique) Année: Mathématiques CPGE: SETTAT

CORRECTION. Première méthode (utilisant les dérivées) Deuxième méthode (trigonométrique) Année: Mathématiques CPGE: SETTAT TSI-sup Devoir libre n CORRECTION Année: 00-0 Exercice : On considère les deux fonctions f et g définies par f (x) ( ) arctan() et g(x) arctan Le but est de montrer, par deux méthodes différentes, que

Plus en détail

13. EQUATIONS DIFFERENTIELLES LINEAIRES DU SECOND ORDRE A COEFFICIENTS CONSTANTS.

13. EQUATIONS DIFFERENTIELLES LINEAIRES DU SECOND ORDRE A COEFFICIENTS CONSTANTS. 13. EQUATIONS DIFFERENTIELLES LINEAIRES DU SECOND ORDRE A COEFFICIENTS CONSTANTS. 1. DEFINITION Soit l'équation différentielle du second ordre à coefficients constants ay + by + cy = ϕ( x) ( I) a R, b

Plus en détail

MATH Pratique des Fonctions Numériques. Livret d exercices III Chapitres 3 & 4 : Continuité - Dérivabilité

MATH Pratique des Fonctions Numériques. Livret d exercices III Chapitres 3 & 4 : Continuité - Dérivabilité UNIVERSITÉ DE CERGY Année 2012-2013 LICENCE d ÉCONOMIE et GESTION Première année - Semestre 1 MATH 101 - Pratique des Fonctions Numériques Livret d exercices III Chapitres 3 & 4 : Continuité - Dérivabilité

Plus en détail

Second degré et polynômes Résolution d équation, inéquations et problèmes du second

Second degré et polynômes Résolution d équation, inéquations et problèmes du second Second degré et polynômes Résolution d équation, inéquations et problèmes du second degré Y. Morel Table des matières 1 Trinôme du second degré 1 1.1 Equations du second degré...............................

Plus en détail

Calcul de primitives et d intégrales. () Calcul de primitives et d intégrales 1 / 53

Calcul de primitives et d intégrales. () Calcul de primitives et d intégrales 1 / 53 Calcul de primitives et d intégrales () Calcul de primitives et d intégrales 1 / 53 1 Primitives et intégrale d une fonction continue sur un intervalle 2 Première méthode de calcul : reconnaître la dérivée

Plus en détail

DÉRIVATION CHAPITRE 8. 1 Dérivée d une fonction. 1.1 Dérivabilité

DÉRIVATION CHAPITRE 8. 1 Dérivée d une fonction. 1.1 Dérivabilité CHAPITRE 8 DÉRIVATION Dans tout ce chapitre, sauf mention contraire, D, E, F désigneront des parties de R et I, J des intervalles de R On supposera donné, quand nécessaire, un repère du plan et l on notera

Plus en détail

Les Développements Limités

Les Développements Limités Abderezak Ould Houcine, 003-004. Les Développements Limités Définition. Soit I un intervalle et f : I R une application. Soit x 0 un élément de I ou une extrémité de I (exemple : si I = ]a, b[ alors x

Plus en détail

2. Donner des équations paramétriques et cartésiennes des droites passant par A et dirigées par v avec :

2. Donner des équations paramétriques et cartésiennes des droites passant par A et dirigées par v avec : Exo7 Droites du plan ; droites et plans de l espace Fiche corrigée par Arnaud Bodin 1 Droites dans le plan Exercice 1 Soit P un plan muni d un repère R(O, i, j), les points et les vecteurs sont exprimés

Plus en détail

Les fractions rationnelles

Les fractions rationnelles [http://mp.cpgedupuydelome.fr] édité le 24 septembre 206 Enoncés Les fractions rationnelles Généralités Exercice [ 02007 ] [Correction] Soit F K(X) de représentant irréductible P/Q. Montrer que F est paire

Plus en détail

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion Année 2012-2013 UNIVERSITÉ DE CERGY U.F.R. Économie & Gestion LICENCE d ÉCONOMIE et GESTION Première année - Semestre 1 MATH101 : Pratique des Fonctions numériques Enseignant responsable : J. Stéphan Documents

Plus en détail

Chapitre 7 : Exercices d approfondissement

Chapitre 7 : Exercices d approfondissement Chapitre 7 : Exercices d approfondissement Corrigés des exercices du chapitre 7 Exercice I Dans chaque cas, on va travailler avec la forme la plus adaptée aux données. Ici, on connaît le sommet S (3 ;

Plus en détail

Corrigé du DS du 12 novembre 2007

Corrigé du DS du 12 novembre 2007 École des Mines de Douai FIA Mathématiques Année 7-8 Corrigé du DS du novembre 7 Problème. Étude des coordonnées polaires Soit f : R \ {(, )} R une fonction de classe C dont on convient de noter les variables

Plus en détail

Chapitre 9. Les polynômes. Définitions et structures. I.1 Définitions. K sera le corps R ou C.

Chapitre 9. Les polynômes. Définitions et structures. I.1 Définitions. K sera le corps R ou C. Chapitre 9 Les polynômes Motivation : Les polynomes sont les seules fonctions dont on sache calculer les images des rationnels. K sera le corps R ou C. I Définitions et structures I.1 Définitions Définition

Plus en détail

Calcul matriciel. Décembre 2010

Calcul matriciel. Décembre 2010 Calcul matriciel Dédou Décembre 2010 Matrices colonnes Les matrices à une seule colonne s appellent matrices-colonnes. Les matrices à une seule ligne s appellent matrices-lignes. On peut voir les vecteurs

Plus en détail

Exercice 11. Exercice 12 Soit n N. Montrer que (X 1) 2 divise nx n+1 (n+1)x n +1. Exercice 14 Soit n 2 et P n = n k=0

Exercice 11. Exercice 12 Soit n N. Montrer que (X 1) 2 divise nx n+1 (n+1)x n +1. Exercice 14 Soit n 2 et P n = n k=0 Lycée Joffre Année 2015-2016 PCSI 1. Feuille 15 TD n 15: Polynômes. Exercice 10 Déterminer le reste de la division euclidienne de P(X) = X 7 3X 5 2X 4 +5 par X 2 3X +2 puis par (X +1) 2. Exercice 11 Déterminer

Plus en détail

Les développements limités.

Les développements limités. PCGI re année, L32 : outils mathématiques 2 Les développements limités. Dans toute la suite, I désigne un intervalle de R non vide et non réduit à un singleton, x 0 un point de I et f : I R une fonction

Plus en détail

Polynômes et fractions rationnelles Trinômes du second degré

Polynômes et fractions rationnelles Trinômes du second degré Polynômes et fractions rationnelles Trinômes du second degré 1 Rappels 1. Carré d une somme : 2. Carré d une différence : 3. Différence de deux carrés : Pour tous réels a et b, a + b) 2 =........ Pour

Plus en détail

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en Chaudronnerie Industrielle Chapitre Fonctions de référence...3 I Fonctions affines...3 a) Signe d'une fonction affine...3 II

Plus en détail

Les polynômes du second degré. Niveau : Première S. Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble

Les polynômes du second degré. Niveau : Première S. Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble Les polynômes du second degré Niveau : Première S Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble 1 I. Les trinômes du second degré 1. Grille d'auto-évaluation AN01 AN0 AN03 A

Plus en détail

FONCTIONS D UNE VARIABLE RÉELLE

FONCTIONS D UNE VARIABLE RÉELLE CHAPITRE 4 FONCTIONS D UNE VARIABLE RÉELLE On appelle fonction numérique une application définie sur une partie D de R, à valeurs dans R. 1 Bornes d une fonction Définition 4.1 Soient D R et f : D R. f

Plus en détail

Limite et continuité de fonctions réelles

Limite et continuité de fonctions réelles Limite et continuité de fonctions réelles Denis Vekemans Introduction : on désigne par "fonction réelle" tout fonction d une variable réelle à valeurs réelles. 1 Limite finie 1.1 Définitions 1.1.1 Définition

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 04 05 L Économie Cours de M. Desgraupes Corrigé des exercices de mise à niveau en Mathématiques Séance 0 : Fonctions usuelles

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

Exercice 6 [ ] [Correction] Soit P C[X] non constant et tel que P(0) = 1. Montrer que :

Exercice 6 [ ] [Correction] Soit P C[X] non constant et tel que P(0) = 1. Montrer que : [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1 Polynômes L anneau des polynômes Exercice 1 [ 02127 ] [Correction] Résoudre les équations suivantes : (a) Q 2 = XP 2 d inconnues P, Q

Plus en détail

0.2.3 Polynômes Monômes Opérations entre monômes... 4

0.2.3 Polynômes Monômes Opérations entre monômes... 4 Table des matières 0 Rappels sur les polynômes et fractions algébriques 1 0.1 Puissances............................................... 1 0.1.1 Puissance d un nombre réel.................................

Plus en détail

DY - METHODES PRATIQUES DE CALCUL DE PRIMITIVES

DY - METHODES PRATIQUES DE CALCUL DE PRIMITIVES DY - METHODES PRATIQUES DE CALCUL DE PRIMITIVES I - Introduction On donne dans ce qui suit des méthodes de calcul des primitives d une fonction f, dans le cas où elles s obtiennent à l aide de fonctions

Plus en détail

Formules de Taylor. Applications.

Formules de Taylor. Applications. CAPES 27 Décembre 27 Oral Analyse Formules de Taylor. Applications. Remarques Le niveau naturel de cette leçon est celui du Deug. Pré-requis. Continuité, dérivabilité, inégalité des accroissements finis,

Plus en détail

Correction de l interrogation de mathématique 1 BMV Octobre 2012

Correction de l interrogation de mathématique 1 BMV Octobre 2012 Correction de l interrogation de mathématique 1 BMV Octobre 2012 s données par question La valeur sur fond jaune correspond à la réponse correcte Code Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

Plus en détail