Les nombres complexes

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Les nombres complexes"

Transcription

1 Lycée Paul Doumer TS1 Cours Les nombres complexes Contents 1 Introduction - Une extension des ensembles de nombres 2 2 Forme algébrique d un nombre complexe Définitions et vocabulaire Opérations dans C Conjugué d un nombre complexe Représentation dans le plan clomplexe Forme trigonométrique 8 4 Notation exponentielle 8 1

2 1 Introduction - Une extension des ensembles de nombres Dans les années précédentes, on a manipulé différents types de nombres : d abord les entiers naturels (formant l ensemble N), puis les entiers relatifs (formant l ensemble Z), puis les nombres décimaux (formant l ensemble D), puis les nombres rationnels (formant l ensemble Q) et enfin les réels (formant l ensemble R). À chaque fois, l introduction d un nouvel ensemble de nombres était motivé par l insuffisance du précédent pour la résolution de certains problèmes mathématiques. D Q R 27 N 0 Z -6 0, π 2 On cherche à résoudre des équations du premier ou second degré dans ces différents ensembles. 1. (a) L équation x + 5 = 0 a-t-elle des solutions dans N? La résoudre dans Z. (b) Résoudre dans N, puis dans Z, l équation : x 2 9 = 0 2. (a) L équation 2x 1 = 0 a-t-elle des solutions dans Z? La résoudre dans Q. 2

3 (b) Résoudre dans Z, puis dans Q, l équation : x = 0 3. (a) L équation x 2 2 = 0 a-t-elle des solutions dans Q? La résoudre dans R. (b) Résoudre dans Q, puis dans R, l équation : ( 3x ) 3 x + 3 = 0 4. (a) L équation x = 0 a-t-elle des solutions dans R? (b) On travaille dans un nouvel ensemble. On note i, première lettre du mot imaginaire, l une des solutions de l équation x = 0. En utillisant les mêmes règles de calculs que dans R, résoudre les équaitons x 2 +1 = 0, x 2 = 2 et (x 2) 2 = 1. 2 Forme algébrique d un nombre complexe 2.1 Définitions et vocabulaire Théorème : Il existe un ensemble noté C, appelé ensemble des nombres complexes, qui possède les propriétés suivantes : L ensemble des nombres réels R est inclus dans C; l addition et la multiplication des nombres réels se prolongent aux nombres complexes et les règles de calculs restent les mêmes; C contient un nombre noté i tel que i 2 = 1; tout nombre complexe z s écrit de manière unique z = a+ib, avec a et b des réels. Définition : L écriture a = a + ib avec a et b réels est la forme (ou l écriture) algébrique du nombre complexe z. a est la partie réelle de z, elle est notée Re (z) b est la partie imaginaire de z, elle est notée Im (z) Exemple : Si z = 2 + 4i, alors Re(z) = 2 et Im(z) = 4 Si z = 3, alors Re(z) = 3 et Im(z) = 0 Remarque : Si z = 1 5 i, alors Re(z) = 0 et Im(z) = 1 5 3

4 Lorsque b = 0, z est un réel. Lorsque a = 0, z = ib (avec b réel) est un imaginaire pur. 0 est le seul complexe à la fois réel et imaginaire pur. 2.2 Opérations dans C Pour effectur des calculs dans C, il suffit d utilsier i 2 = 1 et les mêmes règles de calculs que dans R. Dans la suite, on considère deux nombres complexes écrits sous formes algébriques : z = a + ib et z = a + ib avec a, b, c, et d des réels Somme de deux nombres complexes z + z = (a + ib) + (a + ib ) = (a + a ) + i (b + b ) Produit de deux nombres complexes z z = (a + ib) (a + ib ) = aa bb + i (ab + ba ) Inverse de deux nombres complexes 1 z = 1 a + ib = a ib a 2 + b 2 Remarque : On retrouve ce résultat en multipliant le dénominateur par sa quantité conjuguée.. Quotient de deux nombres complexes z = a + ib = (a + ib) 1 z a + ib a + ib pour z non nul Remarque : Conséquence de la propriété i 2 = 1 En utilisant la propriété i 2 = 1, on peut déterminer la forme algébrique des nombres complexes. Exemple, (3i) 2 est un nombre complexe non présenté sous sa forme algébrique. Cependant : (3i) = 3 2 i 2 = 9 ( 1) = 9 4

5 Conséquence de l unicité de la forme algébrique 1. a + ib = 0 { a = 0 b = 0 ou encore z = 0 { Re(z) = 0 Im(z) = 0 2. Deux nombres complexes sont egaux, si et seulement si, ils ont la même partie réelle et la même partie imaginaire. Si z = a + ib et z = a + ib avec a, b, a et b des réels. Alors : { a = a z = z b = b { Re(z) = Re(z ) Im(z) = Im(z ) Exemple : Résoudre dans C l équation Remarque : i z 2 Donc Re(z) = +2 et Im(z) = 1 3. i z 2 = 3 = 3 i = 3 (z 2) z = 1 3 i + 2 Un nombre complexe est réel, si et seulement si, sa partie imaginaire est nulle. Un nombre complexe est imaginaire pur, si et seulement si, sa partie réelle est nulle. 5

6 2.3 Conjugué d un nombre complexe Définition : Soit z = a + ib un nombre complexe. Le nombre complexe a ib est appelé conjugué de z et est noté z. On a ainsi : z = a ib Exemples : 3 + 4i = 3 4i 1 i = 1 + i 7 = 7 i = i Soient z et z deux nombres complexes quelconques. 1. z + z = z + z 2. z z = z z 3. z n = z n pour tout entier naturel n ( ) 1 4. Si z 0, alors = 1z ( ) z z et = z z z 5. zz = a 2 + b 2 (avec z = a + ib). Le nombre zz est un réel positif ou nul. 6. z est un réel si, et seulement si, z = z 7. z est un imaginaire pur si, et seulement si, z = z Démonstration : Remarque : z = z Exemples : 2 3i 1 + i = 2 3i 1 + i = 2 + 3i 1 i (2 i) 2 = (2 + i) Représentation dans le plan clomplexe Le plan est rapporté à un repère orthonormé direct (0; u ; v ). Il est ainsi appelé plan complexe. 6

7 Définition : Représentation géométrique d un nombre complexe À tout nombre complexe z = a + ib, avec a et b réels, on associe le point M (a; b) appelé point image de z. Réciproquement, à tout point M (a; b) du plan complexe, on associe le nombre complexe z = a + ib appelé affixe du point M. b M (a; b) L axe des abscisses est appelé axe des réels et l axe des ordonnées est apelé axe des imaginaires purs. v O u a Remarque : L affixe du point M se note z M. Exemple : le point A d affixe i a pour coordonnées (0; 1) le point B d affixe 2i a pour coordonnées (0; 2) le point C d affixe 1+i a pour coordonnées (1; 1) le point D d affixe 2 a pour coordonnées ( 2; 0) 1 A C v D 2 1 O 0 u B Remarque : Soit M un point d affixe z. M appartient à l axe des abscisses Im(z) = 0. M appartient à l axe des ordonnées Re(z) = 0. Remarque : Les points d affixes z et z sont symétriques par rapport à l axe (O; u ). Définition : Affixe d un vecteur De même qu à ( un) point M (a; b), on associe son affixe z = a + ib, à tout vecteur w de a coordonnées ; on associe le nombre complexe z = a + ib appelé affixe de w. b 7

8 On a les résultats suivants : 1. z AB = z B z A 2. z w + w = z w + z w 3. z k w = kz w, avec k un réel 4. Soit I le milieu de [AB], alors z I = z A + z B 2 3 Forme trigonométrique 4 Notation exponentielle 8

TS Nombres complexes Cours

TS Nombres complexes Cours TS Nombres complexes Cours I. Le plan complexe 1. Définitions générales Théorème( admis ) Il existe un ensemble noté, appelé ensemble des nombres complexes qui possède les propriétés suivantes : contient

Plus en détail

TERMINALE S Les nombres complexes [forme algébrique]

TERMINALE S Les nombres complexes [forme algébrique] Définitions et propriétés. Il existe un ensemble de nombres, noté C, qui contient tous les nombres réels et qui de plus : -contient un nombre noté i, un symbole tel que i 2 = -1. -tous les nombres de C

Plus en détail

Chapitre VII : LES NOMBRES COMPLEXES

Chapitre VII : LES NOMBRES COMPLEXES I - Ecriture algébrique des nombres complexes 1) Définition Chapitre VII : LES NOMBRES COMPLEXES Définition 1 : On admet qu il existe un ensemble de nombres, noté C, vérifiant les propriétés suivantes

Plus en détail

Chapitre VI : Complexes (1) Forme algébrique

Chapitre VI : Complexes (1) Forme algébrique Forme algébrique. Ensemble des nombres complexes. Notion de nombres complexes Théorème l existe un ensemble, noté, appelé ensemble de nombres complexes qui possède les propriétés suivantes : R l addition

Plus en détail

TERMINALE S Chapitre 1 : les nombres complexes [forme algébrique]

TERMINALE S Chapitre 1 : les nombres complexes [forme algébrique] SOMMAIRE * 1. NOTION DE NOMBRE COMPLEXE... 2 DEFINITIONS ET PROPRIETES.... 2 * 2. INTERPRETATION GEOMETRIQUE.... 3 * 3. AFFIXE D UN VECTEUR, D UN BARYCENTRE... 3 * 4. NOMBRES COMPLEXES CONJUGUES... 4 *

Plus en détail

Cours de terminale S Les nombres complexes

Cours de terminale S Les nombres complexes Cours de terminale S Les nombres complexes V. B. et S. B. Lycée des EK 20 décembre 2014 Définition Vocabulaire Conséquences Définition Il existe un ensemble, noté C, d éléments appelés nombres complexes,

Plus en détail

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire :

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire : Nombres complexes 1 Ensemble des nombres complexes 1.1 Forme algébrique d un nombre complexe Théorème Admis 1. Il existe un ensemble, noté C, d éléments appelés nombres complexes, tel que : C contient

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Généralités 1.1 Définitions................................................. 1. Règles de calcul dans C.........................................

Plus en détail

Chapitre 2 : LES NOMBRES COMPLEXES : FORME ALGEBRIQUE

Chapitre 2 : LES NOMBRES COMPLEXES : FORME ALGEBRIQUE SOMMAIRE 1.ACTIVITES... 2 ACTIVITE 1... 2 ACTIVITE 2... 2 2. NOTION DE NOMBRE COMPLEXE... 3 DEFINITIONS ET PROPRIETES.... 3 3. INTERPRETATION GEOMETRIQUE.... 4 4. AFFIXE D UN VECTEUR, D UN BARYCENTRE...

Plus en détail

Nombres complexes Forme algébrique

Nombres complexes Forme algébrique Nombres complexes Forme algébrique I) Forme algébrique d un nombre complexe 1) Définitions On admet l existence d un nombre, noté dont le carré est égal à On appelle alors nombre complexe tout nombre de

Plus en détail

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe Chapitre 7 Les nombres complexes Objectifs du chapitre : item références auto évaluation forme algébrique d un nombre complexe résolution d équation du second degré dans C forme exponentielle d un nombre

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Les nombres complexes. Il existe un ensemble, noté C, d éléments appelés..........................., tels que : C contient l ensemble............... ; C contient un élément i tel

Plus en détail

Les nombres complexes : forme algébrique

Les nombres complexes : forme algébrique Isabelle orel-ts-cours complexes forme algébrique Les nombres complexes : forme algébrique Introduction. Le problème L histoire des nombres complexes commence en pleine Renaissance italienne avec les algébristes

Plus en détail

Chapitre 10 Nombres complexes NOMBRES COMPLEXES. et Im(z) =

Chapitre 10 Nombres complexes NOMBRES COMPLEXES. et Im(z) = Chapitre 0 Nombres complexes NOMBRES COMPLEXES I- - Forme algébrique d un nombre complexe Définition : On note C l ensemble des nombres de la forme z = x + iy, où x et y sont deux nombres réels et ii un

Plus en détail

Nombres complexes, cours, première STI2D

Nombres complexes, cours, première STI2D Nombres complexes, cours, première STID F.Gaudon 9 juin 015 Table des matières 1 Notion de nombre complexe Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes 3 4

Plus en détail

Nombres complexes. Lycée du parc. Année

Nombres complexes. Lycée du parc. Année Nombres complexes Lycée du parc Année 2014-2015 Introduction historique Au début du XVI ème siècle en Italie, Scipione del Ferro, découvre une formule permettant de résoudre les équations du type x 3 +

Plus en détail

Ecritures des nombres complexes

Ecritures des nombres complexes Ecritures des nombres complexes I. Rappel sur les nombres complexes Le nombre i est un nombre dont le carré vaut 1. Donc : i² = 1 De plus, son opposé i a aussi pour carré 1. ( i)² = i² = 1 Les deux racines

Plus en détail

Nombres complexes, cours, Terminale S

Nombres complexes, cours, Terminale S Nombres complexes, cours, Terminale S F.Gaudon 25 mars 2014 Table des matières 1 Notion de nombre complexe 2 2 Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes

Plus en détail

Les nombres complexes

Les nombres complexes DERNIÈRE IMPRESSION LE 17 février 016 à 15:35 Les nombres complexes Table des matières 1 Introduction 1.1 Un problème historique......................... 1. Création d un nouvel ensemble.....................

Plus en détail

Les nombres complexes (forme algébrique)

Les nombres complexes (forme algébrique) Les nombres complexes (forme algébrique) I. L'ensemble IC des nombres complexes. ) Notion de nombre complexe. def : Soit i le nombre "imaginaire" tel que i ² =. L'ensemble IC des nombres complexes est

Plus en détail

Chapitre VII Les nombres complexes

Chapitre VII Les nombres complexes Chapitre VII Les nombres complexes Extrait du programme : I. Ensemble des nombres complexes 1. Existence Théorème (admis) : Il existe un ensemble noté, appelé ensemble des nombres complexes, qui possède

Plus en détail

GEOMETRIE PLANE : NOMBRES COMPLEXES

GEOMETRIE PLANE : NOMBRES COMPLEXES GEOMETRIE PLANE : NOMBRES COMPLEXES I Les points du plan et les nombres complexes - Notion de nombre complexe Dans ce chapitre, on définit un ensemble noté C, qui prolonge l ensemble R, muni d une addition

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3 I Forme algébrique d un nombre complexe 1 Il existe un ensemble noté et appelé ensemble des nombres complexes qui vérifie les propriétés suivantes : " ; L'ensemble est muni d'une addition et d'une multiplication

Plus en détail

cours de mathématiques en terminale

cours de mathématiques en terminale cours de mathématiques en terminale Les nombres complexes (partie 1) I. Notion de nombre complexe : 1. Théorème : théorème :. Il existe un ensemble noté propriétés suivantes :, appellé ensemble des nombres

Plus en détail

NOMBRES COMPLEXES. I Introduction 1 I.1 Le nombre i... 1 I.2 L ensemble des nombres complexes... 1

NOMBRES COMPLEXES. I Introduction 1 I.1 Le nombre i... 1 I.2 L ensemble des nombres complexes... 1 re STI Ch03 : Nombres complexes 006/007 NOMBRES COMPLEXES Table des matières I Introduction I. Le nombre i............................................ I. L ensemble des nombres complexes...............................

Plus en détail

NOMBRES COMPLEXES. Définition Deux nombres complexes Z = a + i b et Z = a + i b' sont égaux si et seulement si a = a et b = b

NOMBRES COMPLEXES. Définition Deux nombres complexes Z = a + i b et Z = a + i b' sont égaux si et seulement si a = a et b = b NOMBRES COMPLEXES I- s et règles de calcul dans C Un nombre complexe est un nombre de la forme Z = a + i b où a et b sont des réels et i un nombre vérifiant i² = 1 L'ensemble des nombres complexes est

Plus en détail

Les nombres complexes

Les nombres complexes Chapitre 6 Terminale S Ce que dit le programme : Les nombres complexes CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie Forme algébrique, conjugué. Somme, produit, quotient. Équation du second degré

Plus en détail

Nombres complexes. I. Conventions

Nombres complexes. I. Conventions Nombres complexes I. Conventions On admet qu il existe un ensemble, noté que : d éléments appelés nombres complexes tel contient Les opérations dans prolongent celles dans avec des propriétés analogues

Plus en détail

Chapitre 9 Les nombres complexes

Chapitre 9 Les nombres complexes Chapitre 9 Les nombres complexes Vocabulaire-représentation Définition des nombres complexes Définition Nombres complexes, partie réelle, partie imaginaire) On introduit i, un nombre qui vérifie i = On

Plus en détail

Nombres complexes, cours, Terminale S

Nombres complexes, cours, Terminale S Nombres complexes, cours, Terminale S F.Gaudon 18 décembre 2013 Table des matières 1 Notion de nombre complexe 2 2 Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes

Plus en détail

II ÉQUATIONS DU SECOND DEGRÉ À COEFFICIENTS RÉELS

II ÉQUATIONS DU SECOND DEGRÉ À COEFFICIENTS RÉELS Terminale S (3-4) I GÉNÉRALITÉS I. Présentation des nombres complexes Définition - Théorème : (admis) Il existe un ensemble noté C, contenant R, vérifiant les conditions suivantes : C est muni d une addition

Plus en détail

Géométrie plane & nombres complexes

Géométrie plane & nombres complexes Géométrie plane & nombres complexes Terminale S P. Flambard Lycée Max Linder Année scolaire 2017-2018 1. Notion de nombre complexe Ensemble des nombres complexes Propriété Il existe un ensemble de nombres,

Plus en détail

Nombres complexes - Équations et forme trigonométrique

Nombres complexes - Équations et forme trigonométrique Lycée Paul Doumer 0-04 TS Cours Nombres complexes - Équations et forme trigonométrique Contents Équation du second degré. Racines carrées..................................... Équation du second degré à

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 8 novembre 009 Table des matières Définitions Forme algébrique Représentation graphique Opérations sur les nombres complexes Addition et multiplication Inverse d un nombre complexe

Plus en détail

Cours Chapitre 1 : Nombres complexes

Cours Chapitre 1 : Nombres complexes Mr Arfaoui.O Tél : 563334 4 éme année sc & tech Cours Chapitre : Nombres complexes Forme cartésienne (algébrique) : Définition : La forme algébrique d un nombre complexe zεc est : z = a + ib avec a et

Plus en détail

Relations entre forme trigonométrique et forme algébrique

Relations entre forme trigonométrique et forme algébrique FORMULES ET THÉORÈMES Carré du nombre i On définit le nombre i de la façon suivante. i = 1 Forme algébrique d'un nombre complexe Tout nombre complexe z peut s'écrire sous une forme algébrique. z = a +

Plus en détail

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec 1/Les Nombres Complexes Chapitre 4 Les Nombres Complexes. I. Définitions Objectif : On veut «construire» un ensemble de nombres contenant l ensemble des nombres réels, muni de deux opérations qui généralisent

Plus en détail

Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER. D. Poquillon, C. Mijoule et P. Floquet

Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER. D. Poquillon, C. Mijoule et P. Floquet Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER D Poquillon, C Mijoule et P Floquet SEPTEMBRE 005 Cours semaine 1 :Introduction, définitions, résolution d équations 1-1 Introduction

Plus en détail

Nombre complexe. 1. Il existe un nombre noté i, (ou j dans les matières comportant de l électricité), tel que

Nombre complexe. 1. Il existe un nombre noté i, (ou j dans les matières comportant de l électricité), tel que Nombre complexe I. Forme algébrique, Représentation géométrique 1. Il existe un nombre noté i, (ou j dans les matières comportant de l électricité), tel que 2. On appelle nombre complexe tout nombre de

Plus en détail

Chapitre X : Nombres Complexes

Chapitre X : Nombres Complexes Chapitre X : Nombres Complexes I : L ensemble des complexes Il existe un ensemble appelé ensemble des nombres complexes, qu on note C et qui possède les propriétés suivantes : 1. C contient R (on note

Plus en détail

Nombres complexes. Les Nombres Complexes

Nombres complexes. Les Nombres Complexes Introduction : Historique : Les Nombres Complexes Au début du XVI ème siècle, le mathématicien Scipione dal Ferro, propose une formule donnant une solution de l'équation du 3 ème degré : A la fin du XVI

Plus en détail

CHAPITRE 1 : LES NOMBRES COMPEXES :

CHAPITRE 1 : LES NOMBRES COMPEXES : CHAPITRE 1 : LES NOMBRES COMPEXES : I-Forme algébrique d un nombre complexe : I.1) Définitions : On appelle nombre complexe tout nombre de la forme z=a+ib où a et b sont des nombres réels et où la quantité

Plus en détail

Module d'un nombre complexe. Nombres complexes. Définition. Forme algébrique :

Module d'un nombre complexe. Nombres complexes. Définition. Forme algébrique : Définition Nombres complexes L'ensemble des nombres complexes noté est l'ensemble des nombres de la forme z = a + biou a et b sont des réels quelconques et i un nouveau nombre tel que i²= -1. Le nombre

Plus en détail

Nombres complexes et application à la géométrie

Nombres complexes et application à la géométrie Nombres complexes et application à la géométrie I) Représentation graphique d un nombre complexe Le plan est muni d un repère orthonormé (O,u,v). 1) Affixe d un point a) Définition Si M est le point de

Plus en détail

NOMBRES COMPLEXES. 2 + q 2

NOMBRES COMPLEXES. 2 + q 2 NMBRES CMPLEXES I - Représentation géométrique f(x) = x 3 Pour tout réel k, il existe un unique nombre réel dont le cube est k. Ce nombre est appelé racine cubique de k. Il est noté 3 k ou aussi k 3. k

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Table des matières 1 Approche historique 2 2 Définition 2 3 Représentation graphique des nombres complexes 3 4 Opérations sur les nombres complexes 4 4.1 Addition et soustraction

Plus en détail

CHAPITRE 4 : Les nombres complexes

CHAPITRE 4 : Les nombres complexes CHAPITRE 4 : Les nombres complexes 1 Définition... 1.1 Théorème... 1. Définitions... 1.3 Théorème... Nombre complexe conjugué... 3.1 Définition... 3. Théorème 1... 3.3 Théorème... 3.4 Théorème 3... 5 3

Plus en détail

NOMBRES COMPLEXES. avec une calculatrice TI on écrit par exemple 5^(1/3) et on obtient environ 1,71. On a donc 3 5 1,71

NOMBRES COMPLEXES. avec une calculatrice TI on écrit par exemple 5^(1/3) et on obtient environ 1,71. On a donc 3 5 1,71 NMBRES CMPLEXES I - Représentation géométrique Rappel Pour tout réel k, il existe un unique nombre réel dont le cube est k. Ce nombre est appelé racine cubique de k. Il est noté 3 k ou aussi k n a par

Plus en détail

Bac Mathématiques. Série S Nombres complexes UNIQUEMENT LE COURS POUR AVOIR 20/20. alainpiller. fr

Bac Mathématiques. Série S Nombres complexes UNIQUEMENT LE COURS POUR AVOIR 20/20. alainpiller. fr Bac Mathématiques Série S - 017 Nombres complexes UNIQUEMENT LE COURS POUR AVOIR 0/0 alainpiller fr SAVOIR I A Définition de l ensemble des nombres complexes : L ensemble des nombres complexes est un

Plus en détail

Module et Argument d un nombre complexe

Module et Argument d un nombre complexe Module et Argument d un nombre complexe Introduction : Les nombres complexes forment une extension de l'ensemble des nombres réels. Ils permettent notamment de définir des solutions à toutes les équations

Plus en détail

NOMBRES COMPLEXES. I Définitions

NOMBRES COMPLEXES. I Définitions NOMBRES COMPLEXES Objectifs Définitions C, nombre complexe, forme algébrique, parties réelles imaginaires, imaginaire pur. Plan complexe, affixe, image, axe imaginaire, axe réel Introduction. Inclusions

Plus en détail

Nombres complexes. s'écrit alors i

Nombres complexes. s'écrit alors i Nombres complexes préambule : En 1545, dans son ouvrage Artis magnae sive regulis algebraicus, le mathématicien italien Cardan veut résoudre l'équation : x(10 x) 40. Il est confronté à une opération impossible

Plus en détail

Nombres complexes, cours, terminale S

Nombres complexes, cours, terminale S Nombres complexes, cours, terminale S 1 Notion de nombre complexe Il existe un ensemble noté C et appelé ensemble des nombres complexes tel que : C contient l'ensemble des...... ; l'addition et la multiplication

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Hervé Hocquard Université de Bordeaux, France 6 septembre 017 Rappels ou pas Introduction Soit (O; i, j ) un repère orthonormal direct et soit C le cercle trigonométrique de centre

Plus en détail

BTS Mécanique et Automatismes Industriels. Nombres complexes

BTS Mécanique et Automatismes Industriels. Nombres complexes BTS Mécanique et Automatismes Industriels, Année scolaire 006 007 Table des matières. Les différentes écritures. - Forme algébrique d un nombre complexe. - Représentation géométrique d un nombre complexe.3

Plus en détail

BTS Mécanique et Automatismes Industriels. Nombrescomplexes

BTS Mécanique et Automatismes Industriels. Nombrescomplexes BTS Mécanique Automatismes Industriels Nombrescomplexes, Année scolaire 008/009 Table des matières Nombres complexes.lesdifférentesécritures....... Forme algébriqued unnombre complexe.... Représentationgéométrique

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - représentation graphique, opérations, conjugué, module, argument, forme trigonométrique : toutes sections - notation exponentielle : STISD STL - S Prérequis

Plus en détail

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009 CH 1 Géométrie : Complexes 4 ème Sciences Septembre 009 A. LAATAOUI I. INTRODUCTION ET DEFINITION Tous les nombres positifs ont une racine carrée, par exemple, 9 a pour racine 3 et 3 et a pour racine et

Plus en détail

Nombres complexes, fonctions et formules trigonométriques

Nombres complexes, fonctions et formules trigonométriques Chapitre 4 Nombres complexes, fonctions et formules trigonométriques 41 Nombres complexes L ensemble C des nombres complexes est où i = 1 R C C = {z = a + ib : a, b R} Définition 411 On dit que l écriture

Plus en détail

Nombres complexes Ecriture algébrique d un complexe Exercices corrigés

Nombres complexes Ecriture algébrique d un complexe Exercices corrigés Nombres complexes Ecriture algébrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : calculs dans l ensemble des nombres complexes (addition, soustraction, multiplication,

Plus en détail

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 Université de Tours Année 2015-2016 Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 NOMBRES COMPLEXES ET ÉQUATIONS ALGÉBRIQUES (12 h) 1 Nombres complexes 1.1 Introduction

Plus en détail

Introduction universitaire aux mathématiques. Notes de cours. 1 re année du Bachelier en Sciences chimiques

Introduction universitaire aux mathématiques. Notes de cours. 1 re année du Bachelier en Sciences chimiques Introduction universitaire aux mathématiques Notes de cours re année du Bachelier en Sciences chimiques Introduction Ce cours se donne comme objectif principal de rappeler et fixer quelques notions mathématiques

Plus en détail

C1 Nombres complexes : forme algébrique. Le plan complexe.

C1 Nombres complexes : forme algébrique. Le plan complexe. C Nombres complexes : forme algébrique. Le plan complexe. OBJECTIFS DU CHAPITRE C- Mettre en œuvre les règles de calcul sur les nombres complexes C-2 Utiliser les nombres complexes pour résoudre un exercice

Plus en détail

LES NOMBRES COMPLEXES

LES NOMBRES COMPLEXES LES NMBRES CMPLEXES Table des matières Écriture algébrique d un nombre complee Définitions Propriétés 3 Somme, produit et inverse 4 Équation dans C Représentation géométrique d un nombre complee 4 Définitions

Plus en détail

NOMBRES COMPLEXES (Partie 1)

NOMBRES COMPLEXES (Partie 1) NOMBRES COMPLEXES (Partie 1) 1 Les nombres complexes prennent naissance au XVIème siècle lorsqu un italien Gerolamo Cardano (1501 ; 1576), ci-contre, au nom francisé de Jérôme Cardan, introduit 15 pour

Plus en détail

1 Forme algébrique d un nombre complexe

1 Forme algébrique d un nombre complexe Chapitre 2 Nombres complexes 1 BCPST 851 27 septembre 2011 Chapitre 2 Nombres complexes On suppose donné un nombre i n appartenant pas à R. 1 Forme algébrique d un nombre complexe Définition 1 Propriété

Plus en détail

Nombres complexes-partie 1

Nombres complexes-partie 1 Nombres complexes-partie 1 Dimension historique : documents distribués en début de séquence 1) Forme algébrique d un nombre complexe a) Théorème : Il existe un ensemble de nombres noté contenant l ensemble

Plus en détail

Nombres complexes. 1 Le corps commutatif (C, +, )

Nombres complexes. 1 Le corps commutatif (C, +, ) Nombres complexes La construction du corps des réels a permis de gagner, par rapport au corps des rationnels, des propriétés topologiques importantes : complétude, théorème de la borne supérieure... À

Plus en détail

Chapitre 4 Les nombres complexes : 1ère Partie

Chapitre 4 Les nombres complexes : 1ère Partie Chapitre 4 Les nombres complexes : 1ère Partie A) Définition et propriétés de base 1) Historique Les nombre complexes ont été inventés au départ en 1545 par le mathématicien italien Jérôme Cardan (Girolamo

Plus en détail

I. Nombres complexes. 1 Corps C des nombres complexes

I. Nombres complexes. 1 Corps C des nombres complexes 1 Corps C des nombres complexes Théorème 1. Il existe un ensemble C des nombres complexes qui possède les propriétés suivantes : C contient R. C est muni d une addition et d une multiplication qui suivent

Plus en détail

Chapitre 1 Les nombres complexes

Chapitre 1 Les nombres complexes Chapitre 1 Les nombres complexes A) Définition et propriétés de base (rappels) 1) Définition a) On appelle C l'ensemble des nombres complexes. Un nombre complexe s'écrit z a bi, où a et b sont des réels

Plus en détail

Module et Argument d un nombre complexe

Module et Argument d un nombre complexe I Module et Argument d un nombre complexe Tout point M du plan peut être repéré par un couple de coordonnées polaires (r, θ) (r > 0, θ réel) M r est la distance OM ; θ est une mesure de l angle ( u, OM).

Plus en détail

Nombres Complexes Exercice 1. [5 pts] Équations

Nombres Complexes Exercice 1. [5 pts] Équations Nombres Complexes Exercice 1. [5 pts] Équations On se propose d étudier les solutions de l équation (E) z + 1 = 0 1. Vérifier que pour tout nombre complexe z, on a : z + 1 = (z + 1)(z z + 1). En déduire

Plus en détail

Vecteurs de l espace

Vecteurs de l espace Vecteurs de l espace Définitions règles de calcul On étend à l espace la notion de vecteur définie dans le plan, ainsi que les opérations associées : somme de vecteurs multiplication par un réel Définition-

Plus en détail

Les nombres complexes - 2

Les nombres complexes - 2 Chapitre 9 Les nombres complexes - Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie Forme algébrique, conjugué. Somme, produit, quotient. Équation du second degré

Plus en détail

Nombres complexes. I.2 Représentation géométrique des nombres complexes

Nombres complexes. I.2 Représentation géométrique des nombres complexes MTA - ch3 Page 1/11 Nombres complexes I L'ensemble C des nombres complexes I.1 Écriture des nombres complexes Il existe un ensemble noté C de nombres dits complexes vériant : R C C contient le nombre i

Plus en détail

Nombres complexes. Chapitre 1

Nombres complexes. Chapitre 1 Chapitre 1 Nombres complexes Les nombres complexes sont apparus en Italie au XVI e siècle. Niccolo Tartaglia le premier résout des équations du troisième degré. Il révèle sa formule à Jérôme Cardan qui

Plus en détail

et z B alors le vecteur AB a pour affixe le iy B. Alors par définition les coordonnées = x B, z B, z C et z D, z C = z B

et z B alors le vecteur AB a pour affixe le iy B. Alors par définition les coordonnées = x B, z B, z C et z D, z C = z B Chapitre 9 Nombres complexes et géométrie Dans tout ce chapitre on se place dans un repère orthonormal direct du plan complexe O ; i ; j. 1. Affixe d un vecteur Définitions et conséquences Définition :

Plus en détail

MATHÉMATIQUES T erminale S

MATHÉMATIQUES T erminale S L Oasis Des M@Thém@tiques MATHÉMATIQUES T erminale S Boubacar MANÉ Mansour SANÉ Préface Table des matières 1 Les Nombres Complexes 5 I Historique......................................... 5 II Fabrication

Plus en détail

NOMBRES COMPLEXES ET TRIGONOMÉTRIE

NOMBRES COMPLEXES ET TRIGONOMÉTRIE CHAPITRE 2 NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Rappels de trigonométrie tanα sinα π 2 M(α) π α cosα 0 3π 2 Figure 2.1 Sinus, cosinus, tangente Définition 2.1 La tangente d un nombre réel x, notée tan

Plus en détail

Chapitre 7 : Nombre complexes

Chapitre 7 : Nombre complexes Chapitre 7 : Nombre complexes Cours 1 Définitions. Forme algébrique. Définition 1 Les nombres complexes sont des nombres de la formea+bi, où a et b sont des nombres réels quelconques et i est un nouveau

Plus en détail

Nombres et plan complexes Les exercices fondamentaux à connaître

Nombres et plan complexes Les exercices fondamentaux à connaître Nombres et plan complexes Les exercices fondamentaux à connaître Y. Morel Version en ligne et interactive : http://xymaths.free.fr/lycee/ts/exercices-corriges-complexes.php Table des matières 1 Formes

Plus en détail

Nombres complexes. Emmanuel Vieillard-Baron 5 avril Nombres complexes

Nombres complexes. Emmanuel Vieillard-Baron 5 avril Nombres complexes Nombres complexes Emmanuel Vieillard-Baron 5 avril 2005 Programme officiel 1- Nombres complexes L objectif est de consolider et d approfondir les notions sur les nombres complexes déjà abordées en classe

Plus en détail

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque...

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque... Le corps C des nombres complexes Table des matières 1 Définitions algébrique et géométrique de C 1 1.1 Définition de C............................................. 1 1. Structure algébrique de C.......................................

Plus en détail

Chap. 5 : Ensemble C 1. L ensemble C. Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + i.

Chap. 5 : Ensemble C 1. L ensemble C. Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + i. Chap 5 : Ensemble C 1 Arthur LANNUZEL le 1 Octobre 005 L ensemble C 1 Définition de C 11 Rappels Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + ib, a, b R} où i =

Plus en détail

NOMBRES COMPLEXES. I Introduction 2 I.1 Le nombrei... 2 I.2 L ensemble des nombres complexes... 2

NOMBRES COMPLEXES. I Introduction 2 I.1 Le nombrei... 2 I.2 L ensemble des nombres complexes... 2 T ale STI Nombres complexes 008/009 NOMBRES COMPLEXES Table des matières I Introduction I. Le nombrei.............................................. I. L ensemble des nombres complexes.................................

Plus en détail

1.1 Nombres complexes

1.1 Nombres complexes Université de Provence 011 01 Mathématiques Générales I Parcours PEIP Cours : Nombres complexes 1 Définitions 11 Nombres complexes Définition 1 On appelle nombre complexe tout élément z de la forme z a

Plus en détail

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban.

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban. COMPLEXES Sujets septembre 01 novembre 01 avril 01 mai 01 Antilles-Guyane Amérique du Sud Pondichéry Liban Formulaire COMPLEXES 1 Antilles-Guyane septembre 01. EXERCICE Le plan complexe est rapporté à

Plus en détail

9 page 333 du LIVRE : EXERCICE N 5 : Extrait de l épreuve du concours EFREI (mai 2010) ÉLÉMENTS DE RÉPONSE DES EXERCICES DU CHAPITRE 5.

9 page 333 du LIVRE : EXERCICE N 5 : Extrait de l épreuve du concours EFREI (mai 2010) ÉLÉMENTS DE RÉPONSE DES EXERCICES DU CHAPITRE 5. 1 FICHE : EXERCICE N 1 : 1. j = 1.. j = j. 1 + j + j = 0 et j = 1. EXERCICE N : 15 page du LIVRE : correction page 474 du livre. EXERCICE N : 6 page du LIVRE : z 1 = 1 + 1 i ; z = 7 + 7 i ; z = 4 5 + 5

Plus en détail

Et un jour on inventa les nombres complexes.

Et un jour on inventa les nombres complexes. CHAPITRE 5. NOMBRES COMPLEXES Chapitre 5 Nombres complexes Et un jour on inventa les nombres complexes. Les plus anciens nombres qui ont été inventés, il y a plusieurs milliers d années, sont bien sûr

Plus en détail

Chapitre 14 : Nombres complexes et géométrie

Chapitre 14 : Nombres complexes et géométrie Chapitre 14 : Nombres complexes et géométrie I Affixe, module et argument I.1 Représentation géométrique d un nombre complexe Le plan est muni d un repère orthonormal direct (O; u; v. Il est ainsi appelé

Plus en détail

CHAPITRE 2 : L ENSEMBLE C DES NOMBRES COMPLEXES. 1. Insuffisance dans R

CHAPITRE 2 : L ENSEMBLE C DES NOMBRES COMPLEXES. 1. Insuffisance dans R CHAPITRE 2 : L ENSEMBLE C DES NOMBRES COMPLEXES 1. Insuffisance dans R Résoudre dans R, l équation ax² + bx + c = 0 Le calcul de = b² - 4ac suggère les cas suivants : 1 er cas : 0, l équation a des racines

Plus en détail

Terminale STI-GE

Terminale STI-GE Le programme : Les premiers éléments de l'étude des nombres complexes ont été mis en place en première. L'objectif est de compléter cet acquis pour fournir des outils utilisés en algèbre, en trigonométrie

Plus en détail

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice.

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice. Les matrices chapitre 2 : calcul matriciel I / Définitions Soit n et p deux entiers naturels non nuls Une matrice n p (on dit aussi de format n ; p ( ) est un tableau de nombres réels à n lignes et p colonnes

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 1 Un peu d histoire En 157, l italien NICCLÓ FNTANA dit TARTAGLIA le bègue) découvre une méthode de résolution d équations du troisième degré. Il la dévoile à CARDAN. Celui que les

Plus en détail

1) Donner une valeur en radians pour les angles : ( i, OMi ) pour i de 1 à 8. 2) Placer sur le cercle les points tels que :

1) Donner une valeur en radians pour les angles : ( i, OMi ) pour i de 1 à 8. 2) Placer sur le cercle les points tels que : GÉOMÉTRIE Nombres complexes Connaissances nécessaires à ce chapitre Factoriser une expression Utiliser les formules de géométrie dans les repères Représenter des angles sur un cercle trigonométrique Connaître

Plus en détail

Nombres complexes. Représentation géométrique. Notation exponentielle.

Nombres complexes. Représentation géométrique. Notation exponentielle. Nombres complexes. Représentation géométrique. Notation exponentielle. 1. Représentation géométrique d'un nombre complexe... P2 4. Propriétés... P15 2. Module d'un nombre complexe... p7 5. Compléments...

Plus en détail

Les nombres complexes

Les nombres complexes Exercices 9 novembre 014 Les nombres complexes Aspect géométrique Exercice 1 1) D est le point de coordonnées ( 3; 3). Quel est son affixe? ) On donne les points A, B, C d affixes respectives : z A = 3+i,

Plus en détail

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths Géométrie BAC MATHS δmaths M. Ezeddine ABDA DeltaMaths Nombres complexes * +. Si, alors il existe un unique couple tel que. est la forme algébrique du nombre complexe. : la partie réelle de. : la partie

Plus en détail