Polyèdres et facettes

Dimension: px
Commencer à balayer dès la page:

Download "Polyèdres et facettes"

Transcription

1 Polyèdres et facettes ENSIIE Master MPRO Alain Faye 1

2 Introduction Problème en variables entières: Min cx s.c. xx où X={x:Axb}Z n Objectif: obtenir description de ConvX par un polyèdre P et résoudre le progr. linéaire: (PL) Min cx s.c. xp Ou au moins obtenir une bonne approximation P t.q. ConvXP On a vu différentes méthodes pour trouver inégalités valides pour X Les inégalités valides disponibles pour X et donc ConvX Sont-elles toutes indispensables? quelles sont celles vraiment utiles? Généralement nombreuses, on ne peut toutes les mettre dans (PL). Nécessité d un algorithme de coupes et résolution du pb de séparation. 2

3 Sommaire Espace affine Ensemble convexe Face Polyèdre Algorithme de coupes 3

4 Espace affine 4

5 Espace affine A R n, est un espace affine si: x,ya (1-)x+y A A R n un espace affine (non vide), il existe un unique sous-espace vectoriel L de R n t.q. A=L+x où x est un point de A quelconque Note: A=L+x ={ x=y+x : yl} L est le sous-espace parallèle à A. Exemple dans R 2 : A s obtient par translation de x de L A L x 0 5

6 Hyperplan Un hyperplan H est un espace affine de la forme: H={xR n : ax=b} Avec a0 Exemple: H={(x 1,x 2 ) : 2x 1 +x 2 =3} est un hyperplan de R 2 Tout espace affine () de R n est l intersection d un nombre fini d hyperplans 6

7 Enveloppe affine Déf: étant donné M R n, AffM, l'enveloppe affine de M, est le plus petit espace affine contenant M c'est-à-dire l'intersection de tous les espaces affines contenant M. AffM est l intersection de tous les hyperplans qui contiennent M Une combinaison affine de points x 1,, x p de R n est un point z de la forme: z = 1 x p x p avec p =1 AffM est l'ensemble des combinaisons affines de points de M. Exemple: l enveloppe affine des 2 points x, y est la droite en vert Aff {x,y} x + y + 0 7

8 Indépendance affine Déf: Des points x 1,, x p de R n sont affinement indépendants lorsque 1 x p x p =0 avec p =0 1 = = p =0 ou encore x 2 - x 1,, x p - x 1, sont linéairement indépendants Exercice: montrer que (1,0), (2,1),(3,3) sont affinement indépendants montrer que (1,0), (2,1),(3,2) ne sont pas affinement indépendants 8

9 Ensemble convexe 9

10 Ensemble convexe C R n, est convexe si: x,yc et 0 1(1-)x+y C Noter les conditions de non-négativité sur les coefficients Le segment [x,y] est l'ensemble des points z de la forme : z=(1-)x+ y avec 01 x convexe y pas convexe une partie du segment [x,y] n est pas dans C 10

11 Enveloppe convexe Déf: étant donné M R n, ConvM, l'enveloppe convexe de M, est le plus petit convexe contenant M c'est-à-dire l'intersection de tous les convexes contenant M. M ConvM = M+partie hachurée 11

12 Combinaison convexe Une combinaison convexe de points x 1,, x p de R n est un point z de la forme : z= 1 x p x p avec p =1 et 1 0,, p 0 Par rapport à une combinaison affine, noter la condition de nonnégativité sur les coefficients ConvM est l'ensemble des combinaisons convexes de points de M. zconvm z = 1 x p x p avec x 1,, x p M et p =1 et 1 0,, p 0 et p entier quelconque 12

13 Dimension Soit C un convexe de R n Déf: Soit p le nombre maximum de points affinement indépendants contenus dans C, la dimension de C est égale à p-1. Notation : dim(c) La dimension de C est la dimension de AffC le plus petit espace affine contenant C 13

14 Face d un convexe 14

15 Face d un convexe pour x,y R n le segment [x,y] est l'ensemble des points z de la forme z = (1-)x+ y avec 01. Le segment ouvert ]x,y[ est obtenu en restreignant à 0<<1 (les extrémités x, y sont exclues). Déf: soit C un convexe fermé de R n. F C est une face de C si F est convexe si pour tout x y de C t.q. le segment ouvert ]x,y[ rencontre F alors x, y F C lui-même est une face de C La partie verte n est pas une face x La partie verte est une face y 15

16 Points extrêmes, facettes Un point extrême est une face de dimension 0 Une facette de C est une face de C de dimension dim(c)-1. Point extrême = face de dim 0 La partie verte est une facette soient G, F faces d'un convexe C t.q. G est strictement contenue dans F alors dimg<dimf. une facette est une face propre (i.e. C) maximale (pour l'inclusion) 16

17 Faces et faces exposées Les faces exposés d un convexe C sont les parties de C de la forme suivante. Soit x 0 une inégalité valide pour C (i.e. C{x: x 0 }), Définition: F=C {x: x= 0 } est une face exposée de C. Remarquer le qui s est transformé en = Exercice: montrer qu une face exposée est une face 17

18 Toutes les faces ne sont pas forcément exposées. Face non exposée Face exposée {x : x=0} Face non exposée 18

19 Polyèdres 19

20 Polyèdre Un polyèdre est l ensemble des solutions d un système fini d inégalités linéaires P={x: a i xb i ii} (I fini) Un polyèdre est un convexe fermé. On peut démontrer que pour décrire les faces de P on peut ne considérer que les inégalités valides de la description initiale a i xb i Plus précisément F est une face de P ssi JI tel que F = P{x: a j x=b j jj} Le nombre de faces d un polyèdre est fini et borné par 2 I le nombre de façons de choisir J dans I. Note: l ensemble vide est une face Exercice: montrer que toutes les faces de P sont des faces exposées Indication: soit F = P{x: a j x=b j jj} face de P, construire x 0 en additionnant les inégalités de J et monter que F = P{x: x= 0 } 20

21 Points extrêmes Notation : Rang d un ensemble de vecteurs {a 1,,a p } est le rang de la matrice dont les colonnes sont les vecteurs a 1,,a p Les points extrêmes étant des faces de dimension 0, pour les obtenir il suffit de suivre la méthode suivante: Parmi les systèmes obtenus en parcourant les ensembles J I : a i x = b i ij I Choisir ceux ayant une unique solution i.e. n = rang{a i : ij} Les points extrêmes sont les solutions xp Les points extrêmes sont intéressants car lorsque l on maximise ou minimise une forme linéaire sur un polyèdre la solution optimale est atteinte en un point extrême 21

22 Exercice: trouver les points extrêmes du polyèdre de R 3 défini par (1) x 1 +x 2 1 (2) x 1 +2x 3 2 (3) x 2 +x 3 4 (4) x 1 +2x 2 x

23 Dans ce qui suit, on s intéressera à: Dimension d un polyèdre Représentation minimale d un polyèdre c est à-dire avec un minimum d égalités et d inégalités (facettes) 23

24 On partitionne I en I = et I de la façon suivante: i I : il existe un point de P qui satisfait l'inégalité i strictement xp a i x < b i i I = : l inégalité i satisfaite avec égalité par tous les points de P xp a i x = b i Donc P peut se décrire par le système suivant: a i x = b i i I = a i x b i i I Avec I = I = I et I = I = éventuellement I = ou I = = 24

25 Dimension d un polyèdre La dimension de P peut s obtenir de deux façons différentes: Façon 1 (définition): Chercher p le nombre maximum de points affinement indépendants dans P et poser Dim(P)=p-1 Façon 2: Déterminer le «rang» du système a i x = b i i I = dim(p) = n rang{a i : i I = } Exercice: soit P R 2 (1) x 1 +x 2 1 (2) x 1 x 2 1 (3) x 1 x 2 1 (4) x 1 0 (5) x 2 0 Donner I = et I. En déduire dim(p). 25

26 Inégalité redondante: on peut la retirer du système décrivant P sans rien changer Inégalité non redondante: si on la retire du système décrivant P on obtient un polyèdrep Les inégalités non redondantes correspondent aux facettes de P: si i I est l'indice d'une inégalité non redondante de P alors F=Px: a i (x) = b i est une facette de P (dim(f)=dim(p)1) Donc toute inégalité qui n induit pas une facette de P peut être retirée de la description de P car redondante 26

27 Exercice: soit le polyèdre P défini par: (1) x 3 x 1 0 (2) x 3 x 2 0 (3) x 1 +x 2 x 3 1 (4) x 1 1 (5) x Montrer que P est de dimension pleine par les façons 1 et Soit la face de P induite par (4) c est-à-dire F=Px: x 1 =1. - En observant le fait que F est un polyèdre, donner la dimension de F par la façon 2. - En déduire que F n est pas une facette de P. - Vérifier que (4) est redondante. 27

28 Comment prouver qu une face est une facette? soit j I et F = Px: a j x = b j Pour montrer que F face de P est une facette, on peut faire de deux façons: Façon 1 (définition) Chercher p le nombre maximum de points affinement indépendants dans F p-1 est la dimension de F donc si p-1=dim(p)-1 c est-à-dire p=dim(p) Alors F est une facette Façon 2: Utiliser le résultat suivant F est une facette de P ssi pour tout (g,) t.q. Fx: gx = il existe réels, i i I = t.q. (g,) = (a j, b j ) + ii = i (a i, b i ) Dans cette approche les points x de F sont les données et g, les inconnues du système gx =. F est une facette ssi les solutions de ce système sont de la forme (g,) = (a j, b j ) + ii = i (a i, b i ) 28

29 Exercice: à nouveau soit le polyèdre P défini par: (1) x 3 x 1 0 (2) x 3 x 2 0 (3) x 1 +x 2 x 3 1 (4) x 1 1 (5) x 2 1 On rappelle que P est de dimension pleine (ici 3) c est-à-dire P n est contenu dans aucun (hyper)plan 1. Soit la face de P induite par (3) c est-à-dire F=Px: x 1 +x 2 x 3 =1. - Montrer que F est une facette de P par la façon 2. - Montrer que F est une facette de P par la façon 1. 29

30 30 Soit le polytope Q=ConvM avec M={x 1,,x p } un ensemble de points de R n. ConvM est le plus petit convexe contenant M. C est aussi l ensemble des combinaisons convexes de points de M Théorème de Weyl : Q est un polyèdre de R n. Exercice soit un ensemble de 4 points de R 3. Ecrire un point (x,y,z) de ConvM comme combinaison convexe des 4 points avec i i=1,,4 les coefficients de la combinaison. Eliminer les variables du système. Donner la description de ConvM comme polyèdre de R 3 en les variables x, y, z , 1 0 0, 0 1 0, M Enveloppe convexe

31 Algorithme de coupes 31

32 On considère le problème discret suivant: (P) maximiser cx s.c. x X où X R n et de cardinal fini. On se ramène au problème continu: (PL) maximiser cx s.c. x ConvX Par le théorème de Weyl, Q=ConvX est un polyèdre i.e. Q={x : Axb} donc (PL) est un programme linéaire Exercice: montrer qu'il existe une solution optimale de (PL) qui est dans X. 32

33 Pourquoi un algorithme de coupes? Supposons Q=ConvX décrit par les ensembles I = et I d égalités et d inégalités Les égalités servent à décrire l enveloppe affine de Q, AffQ R n et donc I = n s il n y a pas d égalités redondantes I peut être très grand (devant n). Dans ce cas on ne peut résoudre (PL) avec toutes les inégalités On ne met que celles utiles 33

34 Algorithme de coupes 0. choisir un polyèdre initial P contenant Q=ConvX construit avec les égalités I = et quelques inégalités de I 1. soit x* solution du problème maximiser cx s.c. x P 2. ajouter à P quelques inégalités de I violées par x*, s'il n'en existe pas STOP (PL) est résolu 3. Aller en 1. La partie 2 consiste à rechercher des inégalités de I violées c est-à-dire non satisfaites par x* Généralement on ajoute à P les inégalités les plus violées. C est le problème de séparation. 34

IFT2505. Programmation Linéaire

IFT2505. Programmation Linéaire IFT 2505 Programmation Linéaire DIRO Université de Montréal http://www.iro.umontreal.ca/~bastin/ift2505.php Automne 2013 Solutions de base min c T x x s.c. Ax = b, x 0. Supposons m n et rang(a) = m. Sans

Plus en détail

Optimisation combinatoire Concepts fondamentaux

Optimisation combinatoire Concepts fondamentaux Optimisation combinatoire Concepts fondamentaux Décembre 2004 2 Table des matières Chapitre 1. Approches Polyédrales........................ 11 Ali Ridha MAHJOUB 1.1. Introduction..................................

Plus en détail

Ensembles convexes, polytopes et

Ensembles convexes, polytopes et Chapitre 12 Ensembles convexes, polytopes et polyèdres 12.1 Propriétés algébriques Définition 12.1 (Ensemble convexe). Un sous-ensemble C de R n est dit convexe si x, y C, λ [0, 1], λx + (1 λ)y C. Dans

Plus en détail

Modélisation en Programmation Linéaire

Modélisation en Programmation Linéaire Ecole Centrale Paris, vincent.mousseau@ecp.fr March 3, 2009 Contexte Modélisation du problème 1 Exemple de référence Contexte Modélisation du problème 2 Les 4 étapes Une seconde illustration 3 4 Définitions

Plus en détail

ESPACES VECTORIELS. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016)

ESPACES VECTORIELS. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016) ESPACES VECTORIELS Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016) 1. Espaces et sous-espaces vectoriels Dans ce qui suit, K est un corps, que l on

Plus en détail

HLMA101 : Algèbre linéaire et Analyse 1

HLMA101 : Algèbre linéaire et Analyse 1 HLMA101 : Algèbre linéaire et Analyse 1 PARTIE B Algèbre linéaire et Géométrie Chapitre B.2 Systèmes linéaires B.2.A) NOTION DE SYSTÈME LINÉAIRE. Recherche d intersection d espaces affines Exercice. Soit

Plus en détail

Calcul des équilibres de Nash pour un jeu stratégique à 2 joueurs

Calcul des équilibres de Nash pour un jeu stratégique à 2 joueurs Calcul des équilibres de Nash pour un jeu stratégique à 2 joueurs Basé sur chapitre 3 du livre Algorithmic Game Theory: Equilibrium Computation for two-player Games in strategic and extensive form de B.

Plus en détail

CM 1 Programmation linéaire Exemple

CM 1 Programmation linéaire Exemple CM 1 Programmation linéaire Exemple Cours Optimisation Discrète 24 février 2011 Friedrich Eisenbrand EPFL 1 Programmation linéaire Un exemple max x 1 + x 2 x 1 0 x 2 0 x 2 x 1 1 x 1 + 6x 2 15 4x 1 x 2

Plus en détail

Calculer une enveloppe convexe

Calculer une enveloppe convexe Calculer une enveloppe convexe Préparation à l agrégation - option Calcul formel Antoine Chambert-Loir 1. Introduction Soit A une partie du plan ; de nombreux problèmes géométriques requièrent de déterminer

Plus en détail

Simplexe. Recherche Opérationnelle et Optimisation Master 1 I2L. Sébastien Verel

Simplexe. Recherche Opérationnelle et Optimisation Master 1 I2L. Sébastien Verel Simplexe Recherche Opérationnelle et Optimisation Master 1 I2L Sébastien Verel verel@lisic.univ-littoral.fr http://www-lisic.univ-littoral.fr/~verel Université du Littoral Côte d Opale Laboratoire LISIC

Plus en détail

Programmation linéaire et Méthode du simplexe (en bref)

Programmation linéaire et Méthode du simplexe (en bref) Université de Versailles Saint-Quentin-en-Yvelines Tahar Z. BOULMEZAOUD boulmeza@math.uvsq.fr Programmation linéaire et Méthode du simplexe (en bref) On appelle programme linéaire un problème d optimisation

Plus en détail

Programmation linéaire. Méthode du simplexe.

Programmation linéaire. Méthode du simplexe. Programmation linéaire. Méthode du simplexe. S. EL BERNOUSSI 25 octobre 2010 Table des matières 1 Introduction. 2 2 Notion de programme linéaire. 2 2.1 Exemple................................ 2 2.2 Forme

Plus en détail

I - Programmation linéaire

I - Programmation linéaire EOAA - 2009/10 Préliminaires Formulation Exemple de problème bidimensionnel Généralisation Problème sous forme normale Résolution dans le cas général Programmation linéaire en nombres entiers Exercice

Plus en détail

et Systèmes d équations linéaires

et Systèmes d équations linéaires Opérations élémentaires et Systèmes d équations linéaires MPSI-Schwarz Prytanée National Militaire Pascal Delahaye 2 avril 2015 1 Les opérations élémentaires 11 Matrices associées aux OEL et aux OEC Lemme

Plus en détail

Table des matières 1/15

Table des matières 1/15 Table des matières Introduction : histoire et modernité...2 I- Généralités...3 - Définitions...3 2- Interprétations d'un système linéaire....3 a- Application linéaire u de Kp dans Kn...3 b- Vecteurs de

Plus en détail

Axiome du choix et conséquences. Tout espace vectoriel admet une base.

Axiome du choix et conséquences. Tout espace vectoriel admet une base. Axiome du choix et conséquences. Tout espace vectoriel admet une base. 1 Axiome du choix Definition 1.1. Etant donnée une famille (A i ) i I de parties d un ensemble E (c est à dire une application de

Plus en détail

Max z = cx Ax b x 0. x 1.. x n

Max z = cx Ax b x 0. x 1.. x n Chapitre 2 Dualité 21 Introduction Avant de donner la definition formelle d un problème dual, nous allons expliquer comment il s explique en terme de problème de production Une entreprise I fabrique n

Plus en détail

Espaces vectoriels notes de cours Licence Sciences et Technologies, L1, M 2

Espaces vectoriels notes de cours Licence Sciences et Technologies, L1, M 2 Espaces vectoriels notes de cours Licence Sciences et Technologies, L1, M 2 H. Le Ferrand, leferran@u-bourgogne.fr February 26, 2007 Contents 1 Espaces vectoriels 2 1.1 Définition.................................................

Plus en détail

Cours 4: Programmation linéaire

Cours 4: Programmation linéaire Cours 4: Programmation linéaire Position du problème Algorithme du simplexe générique Dualité. Dégénérescence et terminaison de l algorithme 1-1 Cours 4: Programmation linéaire Position du problème Algorithme

Plus en détail

Optimisation linéaire

Optimisation linéaire Cours 1 Optimisation linéaire L optimisation linéaire est un domaine de la recherche opérationnelle. Elle consiste à modéliser des problèmes de recherche opérationnelle à l aide d inégalités linéaires

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

Méthode. Montrer qu une famille est libre. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Méthode. Montrer qu une famille est libre. Laurent Garcin MPSI Lycée Jean-Baptiste Corot ESPACES VECTORIELS DE DIMENSION FINIE 1 Familles de vecteurs 1.1 Opérations sur une famille engendrant un sous-espace vectoriel Lemme 1.1 Soient E un K-espace vectoriel, A et B deux parties de E. Alors

Plus en détail

Systèmes d équations linéaires, Résumé

Systèmes d équations linéaires, Résumé Systèmes d équations linéaires, Résumé ycée Berthollet, PCSI1 2016-17 Exemple introductif (fil rouge) Exemple 1 On considère le système suivant : (S) x +2y 2z +3t = 2 2x +4y 3z +4t = 5 5x +10y 8z +11t

Plus en détail

Définition du problème

Définition du problème Analyse des contraintes p. 1 Définition du problème sous contraintes min x R nf(x) h(x) = 0, g(x) 0, x X. f : R n R, n > 0 h : R n R m, m 0 g : R n R p, p 0 X R n ensemble convexe Analyse des contraintes

Plus en détail

Formation CNAM 1. Plan du chapitre 4 Principes de base de la PL. 1. Introduction à la Programmation Linéaire. Exemple d un modèle de PL

Formation CNAM 1. Plan du chapitre 4 Principes de base de la PL. 1. Introduction à la Programmation Linéaire. Exemple d un modèle de PL Optimisation en Informatique RCP04 Cours 3 Principes de base de la Programmation Linéaire (PL) Plan du chapitre 4 Principes de base de la PL. Introduction à la programmation linéaire. Modélisation de problèmes

Plus en détail

RELAXATION LAGRANGIENNE

RELAXATION LAGRANGIENNE Chapitre 4 RELAXATION LAGRANGIENNE 4.1 Introduction La relaxation lagrangienne est une manipulation classique en optimisation sous contraintes. Bien qu intimement liée à la convexité, elle est couramment

Plus en détail

Chapitre X Programmation linéaire et méthode du simplexe

Chapitre X Programmation linéaire et méthode du simplexe Chapitre X Programmation linéaire et méthode du simplexe Notes de cours préparées par Anik Soulière avec l aide des documents de Julie Milot, Bruno Perron et Alain Tranchida. Modification par Marc-Élie

Plus en détail

Analyse en composantes principales

Analyse en composantes principales Analyse en composantes principales Gilles Gasso, Stéphane Canu INSA Rouen - Département ASI Laboratoire LITIS 1 17 septembre 01 1. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles

Plus en détail

Méthode du simplexe Analyse algébrique

Méthode du simplexe Analyse algébrique Analyse algébrique Illustration des théorèmes On reprend l exemple des ceintures de cuir, c- à-d maximiser z, avec : z = 4x + 3x 2 x + x 2 + s = 40 2x + x 2 + s 2 = 60 x, x 2, s, s 2 0 Solution optimale

Plus en détail

Notes du cours MTH1101 Calcul I Partie III: Optimisation

Notes du cours MTH1101 Calcul I Partie III: Optimisation Notes du cours MTH1101 Calcul I Partie III: Optimisation Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2016 Table des matières 1 Optimisation

Plus en détail

Cours PCSI ( ) Les systèmes linéaires Lycée Baimbridge

Cours PCSI ( ) Les systèmes linéaires Lycée Baimbridge Cours PCSI (203-204) Les systèmes linéaires Lycée Baimbridge Table des matières Introduction...2 - Des tablettes d'argile aux ordinateurs...2 2- Premiers systèmes linéaires...2 a- Système linéaire le plus

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Résumé 01 : Algèbre Linéaire (I)

Résumé 01 : Algèbre Linéaire (I) http://mpbertholletwordpresscom Résumé 1 : Algèbre Linéaire (I) Dans tout ce chapitre, K sera le corps R ou C, et E sera un espace vectoriel sur K Vous remarquerez les grandes similitudes qui existent

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

Recherche Opérationnelle Mercredi 06 Novembre Contrôle Terminal - Session 1

Recherche Opérationnelle Mercredi 06 Novembre Contrôle Terminal - Session 1 Master LT, MPM, MIR Pôle Lamartine - ULCO Recherche Opérationnelle Mercredi 06 Novembre 0 - Contrôle Terminal - Session Durée de l épreuve : h00 Documents interdits. Calculatrice autorisée Exercice - Correction

Plus en détail

Puissances n-ieme d une matrice. Application aux systèmes linéaires. x + 2y = 6 Exemple : soit à résoudre le système linéaire ( )

Puissances n-ieme d une matrice. Application aux systèmes linéaires. x + 2y = 6 Exemple : soit à résoudre le système linéaire ( ) II Application aux systèmes linéaires { x + 2y = 6 Exemple : soit à résoudre le système linéaire où x et y sont les inconnues x + 2y = 5 x 6 On forme ensuite les matrices suivantes : A =, X = et B = Donc

Plus en détail

Matroïdes. Le résultat suivant caractérise les structures pour lesquelles l algorithme glouton fournit une solution optimale

Matroïdes. Le résultat suivant caractérise les structures pour lesquelles l algorithme glouton fournit une solution optimale Matroïdes Définition Soit E un ensemble fini et soit F une famille de sous-ensembles de E. Le couple (E,F ) est un matroïde si (a) F (b) si F F et F F alors F F (c) si F, F F avec F = F +1, alors il existe

Plus en détail

NOM : Seconde AHIJ Devoir n 6- sujet A mercredi 8 février 2012

NOM : Seconde AHIJ Devoir n 6- sujet A mercredi 8 février 2012 NOM : Seconde HIJ Devoir n 6- sujet mercredi 8 février 0 Exercice : sur points y répondre directement sur cette feuille. Donner le coefficient directeur de la droite D : 4 3 D D 3 D. Donner une équation

Plus en détail

CONTRÔLE DE RECHERCHE OPÉRATIONNELLE

CONTRÔLE DE RECHERCHE OPÉRATIONNELLE CONTRÔLE DE RECHERCHE OPÉRATIONNELLE Tout objet électronique (smartphone, tablette, ordinateur, calculatrice, etc.) interdit. Tout document papier autorisé. 1. Production chimique Une usine de produits

Plus en détail

Optimisation dans les réseaux

Optimisation dans les réseaux Optimisation dans les réseaux Recherche Opérationnelle GC-SIE Le problème du flot maximal 1 Introduction Données : Graphe (N,A) Capacités : x ij [b ij,c ij ] Un nœud source s Un nœud puits t Problème :

Plus en détail

Déterminants. Chapitre 23. Objectifs. Plan

Déterminants. Chapitre 23. Objectifs. Plan Chapitre 23 Déterminants Objectifs Étudier le groupe des permutations de [[1n]] Définir les notions : de cycles, de transpositions, de décomposition en produit de cylces, de signature Définir les notions

Plus en détail

Espaces vectoriels. Structure d'espace vectoriel

Espaces vectoriels. Structure d'espace vectoriel MTB - ch2 Page 1/16 Espaces vectoriels Dans tout ce chapitre, K = R ou K = C. I Structure d'espace vectoriel I.1 Règles de calcul dans un espace vectoriel Dénition 1 Soit E un ensemble muni d'une opération

Plus en détail

UNIVERSITE SAAD DAHLAB DE BLIDA

UNIVERSITE SAAD DAHLAB DE BLIDA Cours 3 : Interrétation géométrique de la rogrammation linéaire Cours 3 : Interrétation géométrique de la Programmation Linéaire 27 On aelle " esace vectoriel V " un ensemble de vecteurs tel que la somme

Plus en détail

Cours : Généralités sur les fonctions

Cours : Généralités sur les fonctions I Ensemble Y et intervalles a) Définitions L'ensemble des abscisses des points d'une droite graduée est appelé l'ensemble des nombres réels. On note Y l'ensemble de tous ces nombres. Remarques : On note

Plus en détail

PARTIES GÉNÉRATRICES D'UN GROUPE. EXEMPLES

PARTIES GÉNÉRATRICES D'UN GROUPE. EXEMPLES PARTIES GÉNÉRATRICES D'UN GROUPE. EXEMPLES SOMMAIRE 1. Sous-groupe engendré par une partie non vide S 1 1.1. Définition : sous-groupe < S > engendré par une partie non vide S 2 1.2. Définition : partie

Plus en détail

Algorithme du Simplexe

Algorithme du Simplexe MATH-F-306 Optimisation chapitre 3 Algorithme du Simplexe 20 avril 2007 Optimisation MATH-F-306 MATH-F-306 3. Algorithme du Simplexe RAPPEL au TABLEAU : Algorithme du Simplexe TODO step 0 : step 1 : step

Plus en détail

FONCTIONS NUMÉRIQUES DE PLUSIEURS VARIABLES

FONCTIONS NUMÉRIQUES DE PLUSIEURS VARIABLES 29-3- 2011 J.F.C. Fnpv p. 1 TD 25 2010-2011 FONCTIONS NUMÉRIQUES DE PLUSIEURS VARIABLES Lundi 28 mars 2010 Exercice 1 ECRICOME 99 n est un élément de N. (x, y) R 2, f n (x, y) = (x n y) e x y. On se propose

Plus en détail

Saloua CHETTIBI Université de Jijel- Module : Optimisation Stochastique

Saloua CHETTIBI Université de Jijel- Module : Optimisation Stochastique Chapitre2 Programmation linéaire stochastique 1. Programmation linéaire 1.1 Définition PL : Un programme linéaire est un système d équations ou d inéquations non strictes appelés contraintes qui sont linéaires

Plus en détail

se trouve en un sommet de l ensemble convexe des solutions admissibles K = {x 0 Ax =

se trouve en un sommet de l ensemble convexe des solutions admissibles K = {x 0 Ax = Chapitre 3 Méthode du simplexe Comme toujours, on suppose que A une matrice de format m n et b R m. On notera les colonnes de A par [a 1, a 2,..., a n ]. Aussi, on fera l hypothèse que le rang de la matrice

Plus en détail

Arithmétique Algorithmique.

Arithmétique Algorithmique. Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie II Arithmétique rapide 1 Opérations de base sur les entiers longs 2 Polynômes à coefficients dans Z/2 w Z 3 Multiplication

Plus en détail

IFT1575 Modèles de recherche opérationnelle (RO) 2. Programmation linéaire a. Modélisation

IFT1575 Modèles de recherche opérationnelle (RO) 2. Programmation linéaire a. Modélisation IFT1575 Modèles de recherche opérationnelle (RO) 2. Programmation linéaire a. Modélisation Programmation linéaire (PL) Problème classique de planification : affecter des ressources limitées à plusieurs

Plus en détail

Chapitre 4 : Méthode des moindres carrés

Chapitre 4 : Méthode des moindres carrés Chapitre 4 : Méthode des moindres carrés Table des matières 1 Introduction 2 11 Généralités 2 12 Notion de modèle et de regression linéaire multiple 2 2 Critère des moindres carrés - formulation 2 21 Critère

Plus en détail

Séance 2 : Exercices corrigés FONCTIONS CONVEXES

Séance 2 : Exercices corrigés FONCTIONS CONVEXES Mathématiques 2 1 Séance 2 : Exercices corrigés FONCTIONS CONVEXES Question 1 Un circuit électrique : exemple de système non linéaire Montrer que les lois de Kirchhoff (la somme des intensités arrivant

Plus en détail

Optimisation linéaire

Optimisation linéaire Optimisation linéaire Recherche opérationnelle GC-SIE Algorithme du simplexe 1 Rappel Si un problème de programmation linéaire en forme standard possède une solution optimale, alors il existe une solution

Plus en détail

Seconde Supposons que x,y sont des nombres et vérifient la conjonction des égalités de S alors

Seconde Supposons que x,y sont des nombres et vérifient la conjonction des égalités de S alors Seconde 06 04 2016 3x + 2y = 5 { y = 4x + 1 Signé RD 5-2(4x+1) = 3x + 2y 2y = 3x 5-8x-2 = 3x 11x = 3 x = 3/11 9/11 + 2y = 5 2y = (55-9) / 22 = 23/11 Résoudre 7x + y = 93 S { 95x y = 5 Supposons que x,y

Plus en détail

Espaces de dimension finie

Espaces de dimension finie [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1 Espaces de dimension finie Bases en dimension finie Dimension d un espace Exercice 1 [ 01634 ] [Correction] Soit E l ensemble des fonctions

Plus en détail

CH V : Généralités sur les suites réelles

CH V : Généralités sur les suites réelles CH V : Généralités sur les suites réelles I. Notion de suite I.1. Définition générale Définition Une suite de nombre réels u est une application de N dans R i.e. une fonction de N dans R telle que tout

Plus en détail

Exercices Corrigés Applications linéaires. Exercice 1 On considère l application linéaire :

Exercices Corrigés Applications linéaires. Exercice 1 On considère l application linéaire : Exercices Corrigés Applications linéaires Exercice 1 On considère l application linéaire : f : R 4 R 2, x 1, x 2, x 3, x 4 x 1 + x 2 + x 3 + x 4, x 1 + 2x 2 + 3x 3 + 4x 4 1 Quelle est la matrice de f dans

Plus en détail

Introduction à l optimisation

Introduction à l optimisation Introduction à l optimisation Programmation linéaire Hugues Talbot Laboratoire A2SI 17 mars 2008 Plan Intervenants Hugues Talbot : Introduction, programmation linéaire, simplexe. Hugues Talbot : Programmation

Plus en détail

Programmation mathématique pour l Optimisation Combinatoire

Programmation mathématique pour l Optimisation Combinatoire Master d Informatique - Spécialité Androide Module MAOA Programmation mathématique pour l Optimisation Combinatoire Pierre Fouilhoux Université Pierre et Marie Curie 2015-2016 2/104 Avant-propos Avant-propos

Plus en détail

Préparation à l'agrégation Interne Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME 1

Préparation à l'agrégation Interne Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME 1 Préparation à l'agrégation Interne 2005-2006 F. Dupré Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME On notera N n l'ensemble des entiers compris entre et n, n désignant un

Plus en détail

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations 4 Définitions et notations CHAPITRE 4 Matrices 4 Définitions et notations On désigne par K un des deux ensembles R ou C et par n et p deux entiers strictement positifs 4 Matrices Définition On appelle

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Espaces vectoriels de dimension finie 1.1) Famille génératrice (rappel) Exemple 1 On considère par exemple l'espace vectoriel R² et les vecteurs 1,1, 1, et,3. Soit un élément quelconque de R²,,. Peut-on

Plus en détail

a 11 a 1n A = (a ij ) = ... a m1 a mn

a 11 a 1n A = (a ij ) = ... a m1 a mn Chapitre 4 Les matrices 4 Notions de bases Définition Une matrice est un tableau rectangulaire contenant des nombres : a a n A a ij a m a mn Les matrices peuvent représenter toutes sortes d informations

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Analyse et calcul différentiel Examen

Analyse et calcul différentiel Examen Analyse et calcul différentiel Examen Corrigé Université De Metz 2006-2007 1 Premier exercice C est une application directe du cours. Il suffit de connaître le cours et de faire les calculs soigneusement.

Plus en détail

[ [ [ ] 1. Définitions et Vocabulaire. Chapitre 3 Calcul matriciel. a. Définitions d'une matrice

[ [ [ ] 1. Définitions et Vocabulaire. Chapitre 3 Calcul matriciel. a. Définitions d'une matrice Chapitre Calcul matriciel. Définitions et Vocabulaire a. Définitions d'une matrice Définition Une matrice de dimension n p est un tableau de nombres comportant n lignes et p colonnes s [ 8 6 0 [ 6 8 0

Plus en détail

3. SYSTEMES LINEAIRES

3. SYSTEMES LINEAIRES 3 SYSTEMES LINEAIRES 31 Définition Un système linéaire est un ensemble de m équations linéaires à n variables Il a la forme générale suivante : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

J.F.C. p. 1. Ceci est un premier jet et a besoin encore de relectures pour bien tenir la route. EDHEC 2014 EXERCICE 1. Φ ( x) + Φ ( x) ).

J.F.C. p. 1. Ceci est un premier jet et a besoin encore de relectures pour bien tenir la route. EDHEC 2014 EXERCICE 1. Φ ( x) + Φ ( x) ). 3-- 4 JFC p JF COSSUTTA jean-francoiscossutta@wanadoofr Ceci est un premier jet et a besoin encore de relectures pour bien tenir la route EDHEC 4 EXERCICE a U est une variable aléatoire réelle sur Ω, A,

Plus en détail

Chapitre 4. Systèmes linéaires

Chapitre 4. Systèmes linéaires ECE 1 - Année 016-017 Lycée français de Vienne Mathématiques - F. Gaunard http://frederic.gaunard.com Chapitre 4. Systèmes linéaires L objectif de ce court chapitre est d introduire et de résoudre des

Plus en détail

Systèmes linéaires et échelonnement

Systèmes linéaires et échelonnement Systèmes linéaires et échelonnement 1 Systèmes linéaires, résolution de systèmes échelonnés. 1 1.1 Équations linéaires........................................... 1 1.2 Systèmes linéaires...........................................

Plus en détail

Exercices : déterminants

Exercices : déterminants Propriétés générales Exercices : déterminants Exercice 1: Soit n un entier non nul impair et soit A M n (K) une matrice antisymétrique 1 Exprimer de deux façons det(a T ) en fonction de det(a) 2 Que peut-on

Plus en détail

4 Base & dimension d un espace vectoriel

4 Base & dimension d un espace vectoriel 4 Base & dimension d un espace vectoriel Famille génératrice Une famille finie F = (e e... e n ) de vecteurs d un espace vectoriel E est dite génératrice si E = e e... e n, c est-à-dire si tout vecteur

Plus en détail

Seconde. Eric Leduc 2014/2015

Seconde. Eric Leduc 2014/2015 Seconde Lycée Jacquard 2014/2015 Rappel du plan 1 2 3 Équation courbe Définition n o 1: courbe Une équation de courbe est une relation qui lie les coordonnées de tous les points de la courbe. Autrement

Plus en détail

Fiche n 2. Transformations affines, barycentres, convexité

Fiche n 2. Transformations affines, barycentres, convexité Université de Rouen Mathématiques Géométrie (L3-S2) Année 2008-2009 Fiche n 2. Transformations affines, barycentres, convexité Exercice 1. (a) Montrer que des points A 0,..., A k sont affinement indépendants

Plus en détail

Optimisation dans les réseaux

Optimisation dans les réseaux Optimisation dans les réseaux Recherche Opérationnelle GC-SIE Le problème de transbordement Énoncé sous contraintes Transbordement ichel Bierlaire Lagrangien Dualité Fonction duale Transbordement ichel

Plus en détail

APPLICATIONS LINÉAIRES ET MATRICES. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016)

APPLICATIONS LINÉAIRES ET MATRICES. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016) APPLICATIONS LINÉAIRES ET MATRICES Résumé de cours d algèbre linéaire L de B. Calmès, Université d Artois (version du er février 206). Applications linéaires Soient E et F des espaces vectoriels sur K...

Plus en détail

Sommes et sommes directes de sous-espaces vectoriels d un espace vectoriel, cours de premier cycle uiversitaire.

Sommes et sommes directes de sous-espaces vectoriels d un espace vectoriel, cours de premier cycle uiversitaire. Sommes et sommes directes de sous-espaces vectoriels d un espace vectoriel, cours de premier cycle uiversitaire. F.Gaudon 29 juillet 2005 Table des matières 1 Sommes et sommes directes de sous espaces

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Bibliothèque d exercices Énoncés L Feuille n 9 Espaces vectoriels de dimension finie Base Exercice Montrer que les vecteurs {,, 0 } forment une base de R. Calculer les coordonnées respectives des vecteurs

Plus en détail

Matrices symétriques réelles. Exercice 2 Le produit de deux matrices symétriques réelles est-il symétrique? R n = ker (u) Im (u)

Matrices symétriques réelles. Exercice 2 Le produit de deux matrices symétriques réelles est-il symétrique? R n = ker (u) Im (u) Matrices symétriques réelles 1 Préliminaires On se place dans (R n, ) euclidien, le produit scalaire canonique étant défini par : (x, y) R n R n, x y = t x y = x k y k On note : M n (R) l algèbres des

Plus en détail

Représentation de Jordan

Représentation de Jordan Représentation de Jordan Soit M une matrice carrée réelle de dimension n. On suppose dans ce projet que le polynôme caractéristique de M a n racines réelles. Certaines racines sont multiples. 1 Nombre

Plus en détail

ALGÈBRE LINEAIRE Module 2 Structure Euclidienne PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

ALGÈBRE LINEAIRE Module 2 Structure Euclidienne PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE LINEAIRE Module 2 Structure Euclidienne PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé December 5, 2008 Table des Matières Espaces euclidiens Orthogonalité - Espaces euclidiens..............................

Plus en détail

MATHÉMATIQUES I : Algèbre linéaire et calcul MAT102 VIRGINIE CHARETTE DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ DE SHERBROOKE

MATHÉMATIQUES I : Algèbre linéaire et calcul MAT102 VIRGINIE CHARETTE DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ DE SHERBROOKE ATHÉATIQUES I : Algèbre linéaire et calcul AT2 VIRGINIE CHARETTE DÉPARTEENT DE ATHÉATIQUES UNIVERSITÉ DE SHERBROOKE Hiver 29 Remarques sur le texte. Voici un extrait des notes de cours utilisées en AT2

Plus en détail

Exercices. Programmes linéaires modélisation et géométrie

Exercices. Programmes linéaires modélisation et géométrie Exercices Programmes linéaires modélisation et géométrie Exercice 1. Vous avez décidé ouvrir une fabrique de bonbons. Vous envisagez de produire deux types de bonbons : Slugger et Cool Breeze, les deux

Plus en détail

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment Chapitre : Géométrie plane 1 Calcul vectoriel 1.1 coordonnées d un vecteur dans un repère Définition 1. Soit #» u un vecteur du plan. Pour tout point O du plan, il existe un unique point M tel que OM #»

Plus en détail

À propos des transvections

À propos des transvections À propos des transvections Antoine Ducros Préparation à l agrégation de mathématiques 1 Les transvections : aspect matriciel On fixe pour toute la suite du texte un corps commutatif k. (1.1) Définition.

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Méthodes directes de résolution du système linéaire Ax = b

Méthodes directes de résolution du système linéaire Ax = b Chapitre 3 Méthodes directes de résolution du système linéaire Ax = b 3.1 Introduction Dans ce chapitre, on étudie quelques méthodes directes permettant de résoudre le système Ax = b (3.1) où A M n (R),

Plus en détail

Optimisation Linéaire

Optimisation Linéaire Optimisation Linéaire Cours 2 : algorithme du simplexe Adrien Goëffon Bureau H207 / adrien.goeffon@univ-angers.fr Algorithme du simplexe On souhaite résoudre le programme linéaire suivant (ici sous forme

Plus en détail

Espaces vectoriels. I Espaces vectoriels. λ x = 0 E λ = 0 ou x = 0 E. (λ x 1,λ x 2,...,λ x n )

Espaces vectoriels. I Espaces vectoriels. λ x = 0 E λ = 0 ou x = 0 E. (λ x 1,λ x 2,...,λ x n ) Espaces vectoriels Notations du chapitre Dans ce chapitre désigne ou. I Espaces vectoriels Propriété 1.2 Soit E un espace vectoriel. 1) Pour tout vecteur x de E : 0. x = 0 E. 2) Pour tout scalaire λ :

Plus en détail

Corrigé de l Examen d optimisation combinatoire, M1 MIAGE Classique Durée 2h - le 11 avril Aucun document autorisé

Corrigé de l Examen d optimisation combinatoire, M1 MIAGE Classique Durée 2h - le 11 avril Aucun document autorisé 1 Corrigé de l Examen d optimisation combinatoire, M1 MIAGE Classique Durée 2h - le 11 avril 2008 -Aucun document autorisé Exercice 1 Question de cours 1 Qu est-ce qu une relaxation d un problème d optimisation,

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

CHAÎNES DE MARKOV. Master MIMSE Bordeaux

CHAÎNES DE MARKOV. Master MIMSE Bordeaux CHAÎNES DE MARKOV MICHEL BONNEFONT Master MIMSE Bordeaux Dans tout ce cours on se placera sur un espace d états E fini ou dénombrable. Dans ce chapitre, on va s intéresser à l étude de phénomènes aléatoires

Plus en détail

LES ESPACES VECTORIELS

LES ESPACES VECTORIELS LES ESPACES VECTORIELS Objectifs Savoir ce qu'est un espace vectoriel. Savoir ce qu'est un sous-espace vectoriel. Savoir ce qu'est une base. Le travail sur les espaces vectoriels de dimension nie Dans

Plus en détail

Licence MIASHS 1 ère année Mathématiques S2 (MI005AX) Feuille de T.D. n 1 Besoin d'espace (vectoriel)

Licence MIASHS 1 ère année Mathématiques S2 (MI005AX) Feuille de T.D. n 1 Besoin d'espace (vectoriel) UTJ Département de Mathématiques et Informatique Année 5-6 Licence MIASHS ère année Mathématiques S MI5AX Feuille de TD n Besoin d'espace vectoriel emmanuel bureau GS56 tél : 5 6 5 8 9 hallouin@univ-tlsefr

Plus en détail

CHAPITRE 2 MATRICES ET RÉSOLUTION DE SYSTÈMES D ÉQUATIONS LINÉAIRES EXERCICE 1 (CHAPITRE 2-I) 1

CHAPITRE 2 MATRICES ET RÉSOLUTION DE SYSTÈMES D ÉQUATIONS LINÉAIRES EXERCICE 1 (CHAPITRE 2-I) 1 CHAPITRE 2 MATRICES ET RÉSOLUTION DE SYSTÈMES D ÉQUATIONS LINÉAIRES EXERCICE 1 (CHAPITRE 2-I) 1 Déterminer les matrices élargies des systèmes S1, S2, S5 et S6 du chapitre précédent. La matrice élargie

Plus en détail

(i) Le nombre de travailleurs commencant leur service est positif ou nul : x i 0 i = 1,...,7

(i) Le nombre de travailleurs commencant leur service est positif ou nul : x i 0 i = 1,...,7 Chapitre 1 Modelisation 11 Exemples de Problèmes 111 La Cafétaria Cafétaria ouverte toute la semaine Statistique sur le personnel requis : Jour Lundi Mardi Mercredi Jeudi Vendredi Samedi Dimanche Nombre

Plus en détail

Cours de remise à niveau Maths 2ème année. Espaces vectoriels

Cours de remise à niveau Maths 2ème année. Espaces vectoriels Cours de remise à niveau Maths 2ème année Espaces vectoriels C. Maugis-Rabusseau GMM Bureau 116 cathy.maugis@insa-toulouse.fr C. Maugis-Rabusseau (INSA) 1 / 33 Plan 1 Généralités 2 Sous-espace vectoriel

Plus en détail

Chapitre 2: Espaces vectoriels

Chapitre 2: Espaces vectoriels ESPACES VECTORIELS 33 Chapitre 2: Espaces vectoriels 2.1 Introduction et mise en garde Introduction : Beaucoup de problèmes de mathématique ou de physique vérifient la propriété suivante : si u et v sont

Plus en détail