Leçon 2 Les probabilités

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Leçon 2 Les probabilités"

Transcription

1 Leçon Les probabilités Le champ d application des probabilités est très large. Sciences et économie les utilisent beaucoup. En 1 re ES, il s agit de prendre contact avec le vocabulaire et les techniques de base car le principal du cours se fait en Terminale où nous reprenons tout généralement de A à Z. Lycée Elève : Classe : Fiche Leçon Les probabilités Première ES Exercice 1 Dans un sac contenant 3 boules rouges et boules noires, on tire boules l une après l autre sans remettre la boule tirée dans le sac. Déterminer le nombre total de tirages possibles Soit A : «tirer deux rouges» et B : «tirer au moins une rouge». Calculer P(A) et P(B) C : «tirer deux boules de la même couleur» et D : «faire un tirage bicolore». Calculer P(C) et P(D). Exercice On peut aborder un jeu truqué, l exemple le plus classique est le dé pipé. Supposons un dé où la face 1 a été lestée de façon à faire sortir plus souvent la face 6. On a P(«6») = 0,8 et P(«1») = 0,0. On considère que les autres faces sont équiprobables. Calculer la probabilité d avoir un nombre pair. Exercice 3 Soit une course de chevaux à 15 partants, chercher le nombre total de tiercés possibles, le nombre total de quartés et de quintés. Exercice 4 (Notion de variable aléatoire) On considère une loterie à la foire avec 30 billets dont 5 billets gagnent 15 et billets gagnent 50, le reste étant des billets perdants. On tire deux billets simultanément. a) Donner les diverses valeurs possibles de la variable aléatoire X décrivant tous les gains possibles.(on ne tiendra pas compte de la mise, prix d achats des deux billets) b) Donner la loi de probabilité de X. c) Calculer l espérance mathématique de X. A quel prix doit-on mettre le billet pour que cette loterie soit équitable.

2 Correction Exercice 1 La première chose est de donner l univers, ce n est pas le sac mais l action faîte dans le sac pour cet exercice. E = {(x ; y) x et y étant deux boules différentes du sac}.attention,l ordre intervient dans le tirage des boules. Ensuite le cardinal de l univers c est-à-dire le nombre total de tirages possibles ou si on le dit plus généralement, le nombre total d éventualités. Card E = 5 4 = 0 tirages possibles (Nous avons 5 choix possibles pour la première boule et 4 pour la suivante car nous n avons pas remis la première boule tirée.) Pour compter les éventualités, en Terminale ES, on apprend des formules (Nombres de p- listes, arrangements ou combinaisons) mais en première, on se contente de faire un tableau ou un arbre. Le tableau r 1 r r 3 n 1 n r 1 **** (r ;r 1 ) Etc. r (r 1 ;r ) **** r 3 (r 1 ;r 3 ) *** n 1 Etc. *** n *** Horizontalement, la première boule tirée et verticalement, la deuxième. La diagonale est interdite ici. (r 1 ;r ) signifie que l on a tiré en premier une boule rouge et en deuxième une deuxième boule rouge. Il y a bien 0 cases à remplies. L arbre r.(r 1 ; r ) r (r 1 ; r 3 ) r 1 n (r 1 ; n 1 ) n (r 1 ; n ) r (r ; r 1 ) r (r ; r 3 ) r n (r ; n 1 ) n (r ; n ) r 3 etc. n 1 n etc. Nous trouvons bien 0 «branches».

3 Dans cet exercice, chaque tirage est équiprobable c est-à-dire dû au pur hasard et nous allons appliquer la formule Pascal : Soit A un événement alors P(A) = card A. card E Card A, le nombre de tirages donnant A Card E, le nombre total d éventualités. Cette formule s apparente à la formule donnant la fréquence d apparition en % d une variable statistique P(A) = = = = 0,3 = 30 % (Pour le cardinal de A, on peut compter les cases ou bien raisonner en disant, on a 3 choix possibles pour la première rouge et choix possibles pour la deuxième) (Il y a trois façons de donner la réponse, en quotient irréductible, en décimal ou en pourcentage). Propriété importante : A, 0 P(A) 1. 0 est la probabilité de l événement impossible (ici, par exemple tirer une rouge et une blanche) et 1 celle de l événement certain (ici, tirer deux boules). B est composé de deux évènements, B 1 : «tirer une rouge et une noire» et A : «tirer deux rouges». Nous écrivons B = B 1 A. Ces deux évènements sont incompatibles (B 1 A = ) cela veut dire qu ils ne peuvent pas se produire en même temps c est-à-dire ils n ont pas d éventualités en commun. Nous avons une formule, si on a deux évènements incompatibles alors P(A B) = P(A) + P(B). Remarque, si les deux évènements ne sont pas incompatibles alors : P(A B) = P(A) + P(B) P(A B). C est une formule qui vient des ensembles, si on a deux ensembles qui ont une intersection, c est-à-dire une partie commune, alors si on les réunit, l intersection est comptée deux fois et donc : Card(A B) = Card(A) + Card(B) Card(A B) Card(A) = 5 Card(A B)= Card(B) = 3 A B Nous avons bien sur cet exemple (Attention, ce n est pas une démonstration) : Card(A B) = = 6. Nous voyons que les probabilités utilisent beaucoup le langage et les propriétés des ensembles. Ici, nous avons donc, P(B) = P(B 1 ) + P(A). P(B 1 ) = P(«tirer la rouge puis la noire» + P(«tirer la noire puis la rouge») = = = (On dit 3 chances sur 5 soit 60 %). 0 5

4 3 3 9 P(B) = + =. C est un événement très probable (90% de chance de se produire) Remarques a) Nous pouvons vérifier en comptant les cases ou les branches de l arbre (18 sur 0). b) Nous pouvons utiliser pour cette question l événement contraire. Définition et théorème Tout événement A possède son événement contraire noté A. ( A A= E ; A A = ) et nous avons P(A) = 1 P( A ). Dans cette question, l événement contraire de B est B : «tirer noires» x P( B ) = = et on a bien P(B) = 1 = C : «tirer deux boules de la même couleur» P(C) = P(«tirer rouges») + P(«tirer noires») = = = (ou 0,4 ou 40 %) D est l événement contraire de C et donc P(D) =1 P(C) = 5 3. Exercice E = {{a}, une des faces du dé} ({a} s appelle un singleton) Propriété, P(E) = 1 or ici, P(E) = P(«1») + P() + P(«3») + P(«4») + P(«5») + P(«6»). Posons x = P() = P(«3») = P(«4») = P(«5») et donc, 4x + 0,0 + 0,8 = 1 et donc 4x = 0,18 donc x = 0,045. P(«avoir un nombre pair») = P() + P(«4») + P(«6») (Evènements incompatibles) P(«avoir un nombre pair») = 0, , ,8 = 0,89 soit 89 %! alors que si le dé n est pas truqué, la probabilité est = 1 = 0,5 soit 50 %. Exercice 3 Cet exercice montre que le calcul des probabilités utilise le dénombrement c est-à-dire le fait de compter les éventualités. En Terminale, le cours commence par les techniques de dénombrement. Dans un tiercé, l univers est E ={(a,b,c) a,b et c trois chevaux différents} L ordre intervient sinon nous écririons {a,b,c}. Card E = = 730 tiercés possibles. 15 choix possibles pour le premier cheval puis 14 et enfin 13 pour le troisième. Attention, 4, 5, 1 est compté différent de 5, 4, 1. Si nous jouons toutes les combinaisons, nous allons gagner plusieurs fois, une fois dans l ordre et 5 fois dans le désordre.

5 6 Remarque : quelles sont nos chances da gagner dans l ordre ou le désordre, P(G) = = 730 0,001 soit 0, %. La probabilité de gagner est donc faible! On suppose en plus que le résultat de la course est dû au pur hasard, cela n est par si sûr! Pour les quartés, Card (Quartés) = = éventualités. Pour les quintés, Card (Quintés) = = éventualités. Cela devient très dur! Exercice 4 a) E = {{a ; b} a et b deux billets différents du sac} (Le mot simultanément implique que l ordre n intervient pas) 30 9 Card E = = éventualités. En effet, on tire simultanément les deux billets, c est-à-dire que a puis b est considéré comme le même tirage que b puis a et en fait, on a un ensemble de deux billets c est-à-dire une paire {a ; b}. 30 choix possibles pour le premier billet puis 9 pour le deuxième mais on divise par car un ensemble de deux billets correspond à couples. X, variable aléatoire est une application de l ensemble des évènements dans R, elle prend ici les valeurs suivantes : 0, on a deux billets perdants. 15, on a un billet à 15 et un billet perdant. 30, on a deux billets à , on a un billet à 50 et un billet perdant. 65, on a un billet à 50 et un billet à , on a deux billets à 50. On écrit généralement E = {0 ; 15 ; 30 ; 50 ; 65 ; 100} b) Cherchons la loi de probabilité de X. 3 P(X = 0) = 53 =. On a 3 billets perdants, on divise par pour la même raison vue ci-dessus) ( 5 3) + (3 5) P(X = 15) = 115 =. On garde 115 pour additionner à la fin, on raisonne d abord s il y avait un ordre dans les tirages c est-à-dire on peut tirer le billet gagnant 15 en premier ou en deuxième. 5 4 P(X = 30) = 10 =. ( 3) + (3 ) P(X = 50) = 46 =. Même raisonnement que pour X = 15.

6 ( 5) + (5 ) P(X = 65) = 1 P(X = 100) = 1 =. 10 =. Remarque, on a Σ P(X=i) = 1. En effet, on a la somme des probabilités de toutes les possibilités donc nous obtenons P(E). c) Définition de l espérance mathématique Soit une variable aléatoire X, on appelle espérance mathématique de X : E(X) = i P(X = i) i C est en fait une moyenne et souvent dans les exercices, elle permet d estimer le gain moyen que l on peut espérer si nous étudions un jeu d argent. Si E(X) = 0, on dit que le jeu est équitable. Supposons ici que le prix d un billet est a, a > 0, alors les gains seront : a (C est une perte) ou 15 a ou 30 a ou 50 a ou 65 a ou 100 a. Calculons E(X) E(X) = ( a ) + (15 a) + (30 a) + (50 a) + (65 a) a (100 a) = a La loterie sera équitable si et seulement si = 0 soit a = 0 a = 5, Il faudra fixer le prix du billet à 5,83 pour être très prêt de rendre cette loterie équitable.

7 Un plus Il y a un lien entre probabilités et statistiques, en effet, souvent, pour étudier une situation, on effectue une simulation sur ordinateur. Appelons P(A) la probabilité de la situation A étudiée et f(a) sa fréquence d apparition constatée dans la simulation. Théorème Si on appelle N, le nombre de fois que la situation est testée, alors : f (A) P(A) 1 ; P(A) + N Montrons un exemple : On peut simuler une famille de 4 enfants avec un tirage aléatoire de 4 entiers compris entre 0 et 9(0,, 4, 6, 8 représentant les enfants de sexe masculin et 1, 3, 5, 7, 9 ceux de sexe féminin car nous voulons 50% et 50%). Par exemple 45 représente une famille ayant 3 garçons et une fille. On veut étudier les familles ayant 4 enfants de même sexe (Evénement A). Cherchons P(A). On peut écrire toutes les situations : (Nous pouvons aussi faire un arbre ) G G G G G..GGGG G G G F G F...GGGF G G F G G G F F G G...GGFG G F G G F G F G F G G F...GGFF G F F G F etc. G F F F F F G G G F G G F G F G F G F G F F F (à vous de compléter) F F G G F F F G F F F F G F F F F Les feuilles de cet arbre donnent toutes les solutions. Nous comptons donc 16 situations différentes et seulement donnent 4 enfants de même sexe donc P(A) = = 0, 15 soit 1,5 % 16 Si on effectue 30 tirages de 4 nombres ou bien si on demande à la classe, à chaque élève de donner un nombre de 4 chiffres, que va-t-il se passer? Nous risquons d avoir une mauvaise simulation en effet : 1 1 f(a) 0,15 ; 0,15 + c est-à-dire f(a) [ 0,06 ; 0,308 ]! donc [0% ; 31%], rien de précis. 1 N

8 Il faut donc faire un grand nombre d expériences, par exemple 5000 dans un tableur et on aura alors une simulation valable : 1 1 f(a) 0,15 ; 0,15 + soit f(a)entre 11% et 14% C est la loi des grands nombres, la simulation permet d approcher la probabilité si N est très grand.

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Chapitre Ce que dit le programme : Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Objectifs visés par l enseignement des statistiques et probabilités à l occasion de résolutions de problèmes dans

Plus en détail

LE GUIDE DES PARIS AU PMU LE QUINTE +

LE GUIDE DES PARIS AU PMU LE QUINTE + LE QUINTE + Principe du Quinté + : trouver les 5 premiers chevaux de l'arrivée en précisant l'ordre. Nombre de chevaux à désigner = 5 Mise de base = 2 euros Fréquence = 1 fois par jour Vous gagnez au Quinté

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

Les trois sortes de tirages

Les trois sortes de tirages DERNIÈRE IMPRESSION LE 29 juin 2015 à 19:20 Les trois sortes de tirages Introduction Comme nous l avons vu, dans une loi équirépartie, il est nécessaire de dénombrer les cas favorables et les cas possibles.

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

Probabilités. I - Expérience aléatoire. II - Evénements

Probabilités. I - Expérience aléatoire. II - Evénements Probabilités Voici le premier cours de probabilités de votre vie. N avez-vous jamais eut envie de comprendre les règles des grands joueurs de poker et de les battre en calculant les probabilités d avoir

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes.

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. Dénombrement Exercices 1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. (a) Combien y a-t-il de manières de les disposer autour d une table ronde, en ne tenant compte que de leurs positions

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J.

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J. Année 2013-2014 UNIVERSIÉ DE CERGY LICENCE d ÉCONOMIE et FINANCE LICENCE de GESION Seconde année - Semestre 3 PROBABILIÉS Cours de M. J. Stéphan ravaux Dirigés de Mme M. Barrié, M. J-M. Chauvet et M. J.

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Ensembles et applications. Motivations. Exo7

Ensembles et applications. Motivations. Exo7 o7 nsembles et applications Vidéo partie 1. nsembles Vidéo partie 2. Applications Vidéo partie 3. Injection, surjection, bijection Vidéo partie 4. nsembles finis Vidéo partie 5. Relation d'équivalence

Plus en détail

Cours de Probabilités 1. Dénombrement 2. Probabilités 3. Variables aléatoires réelles

Cours de Probabilités 1. Dénombrement 2. Probabilités 3. Variables aléatoires réelles Cours de Probabilités 1. Dénombrement 2. Probabilités 3. Variables aléatoires réelles Pour BCPST 1 Année scolaire : 2004/2005 16 juin 2005 Mohamed TARQI Table des matières 1 Dénombrement 3 1.1 Généralités.

Plus en détail

Cogmaster, Probabilités discrètes. Feuille de TD n o 1 - Événements et probabilités

Cogmaster, Probabilités discrètes. Feuille de TD n o 1 - Événements et probabilités Cogmaster, Probabilités discrètes Feuille de TD n o 1 - Événements et probabilités Exercice 1 Parmi les ensembles suivants, lesquels sont égaux entre eux? A = {n + 4, n N}, B = {n, n = k + 4, k N}, C =

Plus en détail

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

TD: Ensembles, applications, dénombrement

TD: Ensembles, applications, dénombrement Université de Provence Année 011/1 Licence Math Info ème année S3 Fondements de l Informatique 1 Ensembles et fonctions TD: Ensembles, applications, dénombrement 1. On suppose que l ensemble de tous les

Plus en détail

SESSION 2006. NOM, Prénom : PROBABILITES 2006 T ES. France septembre 2005 (5 points)

SESSION 2006. NOM, Prénom : PROBABILITES 2006 T ES. France septembre 2005 (5 points) SESSION 2006 France septembre 2005 (5 points) Parmi les stands de jeux d une fête de village, les organisateurs ont installé une machine qui lance automatiquement une bille d acier lorsque le joueur actionne

Plus en détail

Baccalauréat S Probabilités Index des exercices de probabilité de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Probabilités Index des exercices de probabilité de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Probabilités Index des exercices de probabilité de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date P. condi- Variable Loi bino- Loi uni- Loi expo- Suite tionelle aléatoire

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

Calculer la probabilité d un événement

Calculer la probabilité d un événement THEME : CORRIGE DES EXERCICES PROBABILITES Calculer la probabilité d un événement Exercice n : Un sachet contient bonbons à la menthe, à l orange et au citron. On tire, au hasard, un bonbon du sachet et

Plus en détail

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. Corrigé du Prétest 1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. a) Obtenir un nombre inférieur à 3 lors du lancer d un dé. U= { 1, 2,

Plus en détail

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités Master Génie des Systèmes Industriels, mentions ACCIE et RIM Université du Littoral - Côte d Opale, La Citadelle Laurent SMOCH (smoch@lmpa.univ-littoral.fr)

Plus en détail

YANN ROUDAUT - Professeur de l Ecole Française de Poker - roudaut@ecolefrancaisedepoker.fr - 06 28 76 48 93

YANN ROUDAUT - Professeur de l Ecole Française de Poker - roudaut@ecolefrancaisedepoker.fr - 06 28 76 48 93 MODULE LES MATHEMATIQUES DU POKER Probabilités et Notions de Cotes - Partie 1 YANN ROUDAUT - Professeur de l Ecole Française de Poker - roudaut@ecolefrancaisedepoker.fr - 06 28 76 48 93 A/ POKER ET MATHEMATIQUES

Plus en détail

POKER ET PROBABILITÉ

POKER ET PROBABILITÉ POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main

Plus en détail

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient

Plus en détail

Séquence 8. Calcul de probabilité Échantillonnage. Sommaire

Séquence 8. Calcul de probabilité Échantillonnage. Sommaire Séquence 8 Calcul de probabilité Échantillonnage Sommaire 1. Prérequis 2. Calcul de probabilité 3. Échantillonnage 4. Algorithmique 5. Synthèse de la séquence 6. Exercices d approfondissement 1 1 Prérequis

Plus en détail

Correction des exemples. Mathieu EMILY

Correction des exemples. Mathieu EMILY Correction des exemples Mathieu EMILY Novembre 2005 Table des Matières Exemple_Exercice 1 Page 2 Exemple_Exercice 2 Page 3 Exemple_Exercice 3 Page 5 Exemple_Exercice 4 Page 6 Exemple_Exercice 5 Page 7

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

P1 : Corrigés des exercices

P1 : Corrigés des exercices P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à

Plus en détail

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Formules d inclusion-exclusion

Formules d inclusion-exclusion Université de Rouen L1 M.I.EEA 2011 2012 Mathématiques discrètes Formules d inclusion-exclusion Je présente ici une correction détaillée de l Exercice 5 de la Feuille d exercices 1, en reprenant le problème

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015 Indépendance de deux évènements Chapitre 2 : Le modèle probabiliste - Indépendance d évènements 15 janvier 2015 Sommaire 1 Indépendance de deux évènements 2 Indépendance de deux évènements Approche intuitive

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

1.1 Probabilité, événements

1.1 Probabilité, événements T le ES - programme 0 mathématiques ch.4 cahier élève Page sur 3 Ch.4 Probabilités conditionnelles. Probabilité, événements Probabilité d'un événement On note a,a,, a n les événements élémentaires d'une

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

8 Probabilités. Les notions étudiées dans ce chapitre CHAPITRE. 1. Expérience aléatoire 2. Loi de probabilité 3. Probabilité d'un événement

8 Probabilités. Les notions étudiées dans ce chapitre CHAPITRE. 1. Expérience aléatoire 2. Loi de probabilité 3. Probabilité d'un événement CHAPITRE Probabilités Les notions étudiées dans ce chapitre Le mot hasard vient de l'arabe al zhar qui désigne un dé à jouer. Les jeux de hasard sont connus depuis la plus haute Antiquité. Déjà les romains

Plus en détail

Références. Compter les mots. Le langage comme donnée. Communication Langagière Ingénierie des langues et de la parole

Références. Compter les mots. Le langage comme donnée. Communication Langagière Ingénierie des langues et de la parole Communication Langagière Ingénierie des langues et de la parole 1. Introduction générale 2. Ingénierie des langues 2.1 Représentation et codage des textes 2.2 Théorie de l information et probabilités 2.3

Plus en détail

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Exercice 1 (4 points) Dans une classe de terminale STAV de 5 élèves, chaque élève possède une

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

DOCUMENT DE RÉVISION MAT-4104

DOCUMENT DE RÉVISION MAT-4104 CENTRE D ÉDUCATION DES ADULTES DOCUMENT DE RÉVISION MAT-4104 ÉLABORÉ PAR RICHARD ROUSSEAU, ENSEIGNANT EN MATHÉMATIQUES, CENTRE D ÉDUCATION DES ADULTES L ESCALE COMMISSION SCOLAIRE DE L AMIANTE MAI 005

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Prétest A QUESTIONNAIRE

Prétest A QUESTIONNAIRE MATHÉMATIQUES MAT5103 Probabilités II Prétest A QUESTIONNAIRE NE PAS ÉCRIRE SUR CE DOCUMENT Version du 16 décembre 2004 Rédigé par Denise Martin (martindenise@csdgsqcca) Centre L Envol 1 Un jeu consiste

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

2. Un jeu de trente-deux cartes est constitué de huit cartes de chacune des quatre couleurs. Combien de cartes faut-il tirer au minimum pour

2. Un jeu de trente-deux cartes est constitué de huit cartes de chacune des quatre couleurs. Combien de cartes faut-il tirer au minimum pour Chapitre 8 PROBABILITE 8.1 Exercices introductifs 1. On tire une carte d un paquet bien mélangé et on note la couleur de cette carte: coeur, carreau, pique, trèfle. Parmi les adjectifs possible, certain

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Chapitre 3 : Introduction aux probabilités

Chapitre 3 : Introduction aux probabilités IUT de Sceaux Département TC1 Mathématiques Chapitre 3 : Introduction aux probabilités 1. Évènements Les événements élémentaires sont les issues possibles d'une expérience aléatoire. Un événement est un

Plus en détail

Calcul élémentaire des probabilités

Calcul élémentaire des probabilités Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire Variables aléatoires. Exemple 1. (Jeu d argent) Exemple 2. Loi de

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Bases d algorithmique

Bases d algorithmique Bases d algorithmique Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Un peu de vocabulaire 2 1.1 Qu est-ce qu un algorithme?....................................... 2 1.2 Variable, affectation...........................................

Plus en détail

NOTIONS DE PROBABILITÉS

NOTIONS DE PROBABILITÉS NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année

Plus en détail

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Ch. 1 : Bases de programmation en Visual Basic

Ch. 1 : Bases de programmation en Visual Basic Ch. 1 : Bases de programmation en Visual Basic 1 1 Variables 1.1 Définition Les variables permettent de stocker en mémoire des données. Elles sont représentées par des lettres ou des groupements de lettres

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée 1. On tire successivement et sans remise deux cartes d un jeu de 52 cartes. Soit A l événement

Plus en détail

8 Chevaux au Quinté +?

8 Chevaux au Quinté +? La Gazette du Turf Comment Jouer 8 Chevaux au Quinté +? Sans Base Sans Condition! INCROYABLE! FACILE! Les astuces pour Gagner plus et plus souvent au Quinté! Découvrez comment bien jouer au quinté! 1 AVERTISSEMENT

Plus en détail

indépendance, indépendance conditionnelle

indépendance, indépendance conditionnelle Plan du cours 1.2 RFIDEC cours 1 : Rappels de probas/stats (2/3) Christophe Gonzales LIP6 Université Paris 6, France 1 probabilités : événements, définition 2 probabilités conditionnelles 3 formule de

Plus en détail

Leçon N 4 : Statistiques à deux variables

Leçon N 4 : Statistiques à deux variables Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d

Plus en détail

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS Jean Luc Bovet, Auvernier Notre merveilleuse manière d écrire les nombres, due, dit-on, aux Indiens via les Arabes, présente en

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Guide. des paris. Comment ça marche? www.pmur.ch

Guide. des paris. Comment ça marche? www.pmur.ch www.pmur.ch Comment ça marche? Cayenne.ch Illustrations: Alain Robert des paris 9 Guide Pari Mutuel Urbain Romand Société de la Loterie de la Suisse Romande Rue Marterey 13, Case postale 6744, 1002 Lausanne

Plus en détail

Cours de Probabilités. Jean-Yves DAUXOIS

Cours de Probabilités. Jean-Yves DAUXOIS Cours de Probabilités Jean-Yves DAUXOIS Septembre 2013 Table des matières 1 Introduction au calcul des probabilités 7 1.1 Espace probabilisable et loi de variable aléatoire........ 8 1.1.1 Un exemple

Plus en détail

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch 2. Probabilité 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance Probabilité et Statistiques I Chapître 2 1 2.1 Espaces de Probabilité Contenu Exemples élémentaires de probabilité,

Plus en détail

Leçon N 1 : Taux d évolution et indices

Leçon N 1 : Taux d évolution et indices Leçon N : Taux d évolution et indices En premier un peu de calcul : Si nous cherchons t [0 ;+ [ tel que x 2 = 0,25, nous trouvons une solution unique x = 0, 25 = 0,5. Nous allons utiliser cette année une

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

La simulation probabiliste avec Excel

La simulation probabiliste avec Excel La simulation probabiliste avec Ecel (2 e version) Emmanuel Grenier emmanuel.grenier@isab.fr Relu par Kathy Chapelain et Henry P. Aubert Incontournable lorsqu il s agit de gérer des phénomènes aléatoires

Plus en détail

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52.

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52. Probabilités 3 3 Exercices 3.1 Probabilités simples Exercice 1 On tire au hasard une carte parmi un jeu de 52. Calculer la probabilité d obtenir : 1. un roi 2. le valet de trèfle 3. l as de coeur ou la

Plus en détail

Arbre de probabilité(afrique) Univers - Evénement

Arbre de probabilité(afrique) Univers - Evénement Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer

Plus en détail

S initier aux probabilités simples «Question de chance!»

S initier aux probabilités simples «Question de chance!» «Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif

Plus en détail

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile. Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir

Plus en détail

Algorithmes et programmation en Pascal

Algorithmes et programmation en Pascal Algorithmes et programmation en Pascal Faculté des Sciences de Luminy Edouard Thiel TP Deug 1 Mass MA Module de 75 heures 1997 à 2004 2 Algorithmes et programmation en Pascal Edouard Thiel Table des matières

Plus en détail

Théorie des ensembles

Théorie des ensembles Théorie des ensembles Cours de licence d informatique Saint-Etienne 2002/2003 Bruno Deschamps 2 Contents 1 Eléments de théorie des ensembles 3 1.1 Introduction au calcul propositionnel..................

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

Petits jeux de probabilités (Solutions)

Petits jeux de probabilités (Solutions) Petits jeux de probabilités (Solutions) Christophe Lalanne En famille 1. Mon voisin a deux enfants dont l un est une fille, quelle est la probabilité pour que l autre soit un garçon? Une famille de deux

Plus en détail

Séquence 3. Probabilité : conditionnement. Sommaire

Séquence 3. Probabilité : conditionnement. Sommaire Séquence 3 Probabilité : conditionnement Objectifs de la séquence Dans cette première séquence sur les probabilités, on complète les connaissances des années précédentes en introduisant une notion nouvelle

Plus en détail

9 5 2 5 Espaces probabilisés

9 5 2 5 Espaces probabilisés BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire

Plus en détail

Probabilités (méthodes et objectifs)

Probabilités (méthodes et objectifs) Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d

Plus en détail

1 Exercices d introdution

1 Exercices d introdution 1 Exercices d introdution Exercice 1 (Des cas usuels) 1. Combien y a-t-il de codes possibles pour une carte bleue? Réponse : 10 4. 2. Combien y a-t-il de numéros de téléphone commençant par 0694? Réponse

Plus en détail

Fx-92 Collège 2D+ à l école

Fx-92 Collège 2D+ à l école Utiliser sa calculatrice Fx-92 Collège 2D+ à l école Par Christophe Escola www.casio-education.fr 2 Sommaire I Mode COMP (w1) Application 1 : Calculs numériques avec des écritures fractionnaires. Application

Plus en détail