Chapitre 2 : Plan du chapitre. 2. Le régime sinusoïdal 3. Représentation ti de Fresnel 4. Puissance en régime AC 5. Récapitulatif

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 2 : Plan du chapitre. 2. Le régime sinusoïdal 3. Représentation ti de Fresnel 4. Puissance en régime AC 5. Récapitulatif"

Transcription

1 Chapitre 2 : Le régime alternatif (AC 1 Plan du chapitre 1. Grandeur alternative 2. Le régime sinusoïdal 3. Représentation ti de Fresnel 4. Puissance en régime AC 5. Récapitulatif 2

2 Plan du chapitre 1. Grandeur alternative 2. Le régime sinusoïdal 3. Représentation ti de Fresnel 4. Puissance en régime AC 5. Récapitulatif 3 1. Grandeur alternative 1.1 Exemple Introduction ti : n courant continu est un courant dont le sens est toujours le même au cours du temps. n courant alternatif est un courant dont le sens change au cours du temps. Exemple d un signal alternatif périodique 4

3 1. Grandeur alternative 1.2 Caractéristiques Cas général : On définit les grandeurs suivantes associées à ce type de signaux : l'amplitude ou valeur crête-à-crête la fréquence, la valeur moyenne, la valeur efficace Grandeur alternative 1.2 Caractéristiques Cas général : On définit les grandeurs suivantes associées à ce type de signaux : l'amplitude ou valeur crête-à-crête la fréquence, la valeur moyenne, la valeur efficace. 6

4 1. Grandeur alternative 1.2 Caractéristiques Cas général : On définit les grandeurs suivantes associées à ce type de signaux : l'amplitude ou valeur crête-à-crête la fréquence, la valeur moyenne, la valeur efficace. Définie comme l inverse de la période (unité le Hertz-H f 1 T 7 1. Grandeur alternative 1.2 Caractéristiques Cas général : On définit les grandeurs suivantes associées à ce type de signaux : l'amplitude ou valeur crête-à-crête la fréquence, la valeur moyenne, la valeur efficace. T moy T 1 u( t dt Il s agit de la valeur la tension u 0 ( autour de laquelle oscille 8

5 1. Grandeur alternative 1.2 Caractéristiques Cas général : On définit les grandeurs suivantes associées à ce type de signaux : l'amplitude ou valeur crête-à-crête la fréquence, la valeur moyenne, la valeur efficace. eff T 1 u T 0 2 ( t dt 9 Plan du chapitre 1. Grandeur alternative 2. Le régime sinusoïdal 3. Représentation ti de Fresnel 4. Puissance en régime AC 5. Récapitulatif 10

6 2. Régime sinusoïdal 2.1 Importance du régime sinusoïdal La plus grande partie de l énergie électrique est produite sous forme de courant alternatif sinusoïdal ; Les fonctions sinusoïdales sont simples à manipuler mathématiquement et électriquement ; Toute fonction périodique de forme quelconque peut être décomposée en une somme de signaux sinusoïdaux (décomposition en série de Fourier Régime sinusoïdal 2.2 Fonction sinusoïdal Définition : ne tension sinusoïdale est une grandeur périodique et alternative pouvant s écrire sous la forme : u( t max sin( t u 12

7 2. Régime sinusoïdal 2.2 Fonction sinusoïdal Définition : t est le temps en secondes (s w est la pulsation en radians par seconde (rad.s-1 ; wt + u est la phase instantanée en radians (rad ; u est la phase à l origine en radians (rad. u( t max sin( t u Régime sinusoïdal 2.2 Fonction sinusoïdal Caractéristiques: La valeur moyenne d un tel signal est nulle La valeur efficace est donnée par la relation : eff Max 2 La période est par définition la grandeur T telle que u(t+kt=u(t pour k entier. Il en découle que : T 2 14

8 Plan du chapitre 1. Grandeur alternative 2. Le régime sinusoïdal 3. Représentation ti de Fresnel 4. Puissance en régime AC 5. Récapitulatif Représentation de Fresnel 3.1 Définition La représentation de Fresnel est une représentation vectorielle des grandeurs sinusoïdales 16

9 3. Représentation de Fresnel 3.2 Représentation d un vecteur En coordonnées cartésiennes il faut la position (x; y de son extrémité par rapport à son origine. (x ; y En coordonnées polaires, il faut sa longueur et l angle qu il fait avec un axe d origine. ( ; u NB: Les vecteurs peuvent être notés soit avec une flèche soit en gras Représentation de Fresnel 3.3 Fresnel Toute grandeur sinusoïdale (tension ou courant sera représentée par un vecteur de longueur sa valeur efficace et d angle sa phase à l origine. 18

10 3. Représentation de Fresnel 3.3 Fresnel Considérons un dipôle Z traversé par un courant i et ayant entre ses bornes une tension u Représentation de Fresnel 3.3 Fresnel Pour la tension : u( t eff 2 sin( i( t ( u Pour l intensité : i( t I eff 2 sin( t i 20

11 3. Représentation de Fresnel 3.3 Fresnel u i Il s agit du déphasage de u par rapport à i u t eff 2 sin( t i t I eff 2 sin( t ( u ( i Représentation de Fresnel 3.3 Fresnel Si l on prend i comme référence de phase : u( t 2 sin( t eff Pour l intensité : i( t Ieff 2 sin( t 22

12 3. Représentation de Fresnel 3.4 Lois des mailles De manière instantanée, en régime sinusoïdal, la loi s écrit : u ( 2 t u1( t u ( t Les trois signaux ont la même période T Représentation de Fresnel 3.4 Lois des mailles De manière générale, la loi des mailles devient vectorielle : = En aucun cas il ne faut fairelasomme algébrique des valeurs efficaces de u 1 et de u 2. eff <> 1eff + 2eff NB: Idem pour la loi des noeuds 24

13 3. Représentation de Fresnel 3.5 Notation complexe La notation complexe est un outil de calcul permettant de traiter simplement les grandeurs sinusoïdales Principe : A une grandeur sinusoïdale considérée, on associe une grandeur complexe telle que : u ( t max sin( t e j( t maxe Représentation de Fresnel 3.5 Notation complexe Exemple d application : Considérons un circuit RL série alimenté par une tension sinusoïdale : i(t u(t ~ u R (t u L (t Application de la loi des mailles u( t u ( t u ( t Ri( t R L L di( t dt 26

14 3. Représentation de Fresnel 3.5 Notation complexe Exemple d application : En notation complexe, cette équation devient : j t j ( t jt d( I maxe maxe R. Ie L dt max e j t R. Ie Lj. I maxe j ( t j t j 2 R. I jl. I R. I e L. I Représentation de Fresnel 3.5 Notation complexe Conséquences : j 2 R. I jl. I R. I e L. I L équation ne fait plus intervenir de dérivées difficilement exploitables On peut définir pour la bobine une impédance complexe Z=jLω dont le module vaut Z =Lω (exprimée en Ohms Le terme e jπ/2 caractérise l existence d un dun déphasage de π/2 rad (90 entre la tension et l intensité aux bornes d une bobine (l intensité étant prise comme référence de phase 28

15 3. Représentation de Fresnel 3.5 Notation complexe Vectoriellement : R. I jl. I f jlwi Référence de phase RI I Représentation de Fresnel 3.5 Notation complexe Généralisation: Le tableau ci-dessous est une généralisation de ces résultats aux différents dipôles vus précédemment : Pas de déphasage Déphasage de -90 (intensité pour Déphasage de 90 référence (intensité pour référence 30

16 Plan du chapitre 1. Grandeur alternative 2. Le régime sinusoïdal 3. Représentation ti de Fresnel 4. Puissance en régime AC 5. Récapitulatif Puissance en régime AC 4.1. Puissance(s Définitions : Par définition, la puissance instantanée consommée (ou reçue est tdonnée par la relation suivante : p ( t u ( t. i ( t max sin( t. I max sin( t Soit : max. I max max. I max p( t cos 2 2 cos(2t n terme constant n terme variant périodiquement 32

17 4. Puissance en régime AC 4.1. Puissance(s Définitions : Par définition, la puissance consommée (ou reçue est donnée par la relation suivante : T 1 P p ( t dt T 0 Facteur de puissance Il vient donc que : P eff I eff cos Il s agit de la puissance active. Elle s exprime en Watt (W Puissance en régime AC 4.1. Puissance(s Définitions : La puissance active ne permet cependant pas de mettre en évidence tous les phénomènes physiques liés aux bobines bi et aux condensateurs (qui ne consomment pas de réactif. On définit donc la puissance réactive Q (unité le Volt Ampère Réactif VAR permettant cette prise en compte Q eff I eff sin Ce qui amène à considérer la puissance apparente S (Volt Ampère VA telle que : S P 2 Q 2 I eff eff 34

18 4. Puissance en régime AC 4.2. Triangle des puissances Définition : Les trois puissances décrites précédemment peuvent se traduire par une figure géométrique éti appelée ti triangle des puissances : Si φ est positif, on parle de circuit inductif Si φ est négatif, on parle de circuit capacitif 35 Plan du chapitre 1. Grandeur alternative 2. Le régime sinusoïdal 3. Représentation ti de Fresnel 4. Puissance en régime AC 5. Récapitulatif 36

19 5. Récapitulatif 37

Chapitre 2 : Le régime alternatif (AC)

Chapitre 2 : Le régime alternatif (AC) Chapitre 2 : Le régime alternatif (AC) 1 Plan du chapitre 1. Grandeur alternative 2. Le régime sinusoïdal 4. Puissance en régime AC 5. Récapitulatif 2 1 Plan du chapitre 1. Grandeur alternative 2. Le régime

Plus en détail

Grandeurs sinusoïdales

Grandeurs sinusoïdales I. Les différents types de signaux Grandeurs sinusoïdales ignal variable En régime variable, les courants et les tensions sont des signaux variant avec le temps ignal périodique n signal est périodique

Plus en détail

I. Signaux sinusoïdaux. I.1. Expression de la valeur instantanée (ou équation horaire)

I. Signaux sinusoïdaux. I.1. Expression de la valeur instantanée (ou équation horaire) 1/10 I. Signaux sinusoïdaux. I.1. Expression de la valeur instantanée (ou équation horaire) v (t) avec : u (t) :.. du signal en volt Vˆ : du signal ou valeur crête en volt :. du signal u(t) en : en. :

Plus en détail

Chapitre 4. Réseaux électriques en régime alternatif

Chapitre 4. Réseaux électriques en régime alternatif Chapitre 4 Réseaux électriques en régime alternatif 35 Introduction Dans les premiers chapitres d électrocinétique, nous avons travaillé sur les régimes contenu des circuits électriques simples et complexes,

Plus en détail

Chapitre 2 : Courant alternatif

Chapitre 2 : Courant alternatif Chapitre 2 : Courant alternatif I. Définition Un courant alternatif est un courant dont l intensité : varie périodiquement en fonction du temps =+ avec la période présente alternativement des valeurs positives

Plus en détail

CIRCUITS EN RÉGIME SINUSOÏDAL FORCÉ

CIRCUITS EN RÉGIME SINUSOÏDAL FORCÉ CICUIS EN ÉGIME SINUSOÏDAL FOCÉ Dans ces circuits électriques, les sources d énergie fournissent des tensions ou des courants alternatifs sinusoïdaux qui, après un bref régime transitoire, imposent leur

Plus en détail

CIRCUITS LINEAIRES EN REGIME SINUSOIDAl FORCE CIRCUIT RLC ET RESONANCE

CIRCUITS LINEAIRES EN REGIME SINUSOIDAl FORCE CIRCUIT RLC ET RESONANCE ELECTROCNETQE Lycée F.BSSON PTS CRCTS LNEARES EN REGME SNSODAl FORCE CRCT RLC ET RESONANCE Nous allons étudier la réponse des circuits soumis à un signal i t ou u t de forme sinusoïdale, on parle de signaux

Plus en détail

Etude des structures électroniques en régime variable

Etude des structures électroniques en régime variable Etude des structures électroniques en régime variable ) Définitions Les signaux reçus ou générés par les structures électroniques peuvent êtres très divers. Il est donc important de les caractériser convenablement,

Plus en détail

Chapitre 1 Partie 2 : Rappels AC

Chapitre 1 Partie 2 : Rappels AC PHYS-F-314 Electronique Chapitre 1 Partie 2 : Rappels AC Références et illustrations: HECHT «PHYSIQUE-2. Electricité et magnétisme» Ed. de boek Th. L. Floyd «Electronique, Composants et systèmes d application»

Plus en détail

C I R C U I T S L I N E A I R E S E N R E G I M E S I N U S O I D A L F O R C E C I R C U I T R L C E T R E S O N A N C E

C I R C U I T S L I N E A I R E S E N R E G I M E S I N U S O I D A L F O R C E C I R C U I T R L C E T R E S O N A N C E ELECTROCINETIQE R.Duperray Lycée F.BISSON PTSI C I R C I T S L I N E A I R E S E N R E G I M E S I N S O I D A L F O R C E C I R C I T R L C E T R E S O N A N C E Nous allons étudier la réponse des circuits

Plus en détail

Nous avons précédemment vu qu'en alternatif sinusoïdal, il y avait 3 dipôles élémentaires :

Nous avons précédemment vu qu'en alternatif sinusoïdal, il y avait 3 dipôles élémentaires : PIFFRET JBS PUISSANCES EN REGIME SINUSOÏDAL COURS 5 T CAP E Elec Objectif terminal : Définir les différentes puissances en alternatif sinusoïdal et déterminer les différentes grandeurs mises en jeu dans

Plus en détail

Chapitre 1 : Régime sinusoïdal

Chapitre 1 : Régime sinusoïdal I Généralités 1. Définition a) amplitude b) pulsation c) phase à l origine 2. valeur moyenne 3. valeur efficace 4. représentation de Fresnel 5. complexe associé Chapitre 1 : Régime sinusoïdal II Etude

Plus en détail

CIRCUITS ELECTRIQUES EN REGIME SINUSOIDAL MONOPHASE

CIRCUITS ELECTRIQUES EN REGIME SINUSOIDAL MONOPHASE CIRCUITS ELECTRIQUES EN REGIME SINUSOIDAL MONOPHASE I TENSIONS ET INTENSITES ALTERNATIVES INSTANTANEES 1 Sinusoïde et vecteur de FRESNEL 2 Période, fréquence et pulsation 3 Tension maximum -Tension efficace

Plus en détail

Module d Electricité Chapitre 1 Introduction L Electrocinétique est la partie de l Electricité qui étudie les courants électriques.

Module d Electricité Chapitre 1 Introduction L Electrocinétique est la partie de l Electricité qui étudie les courants électriques. Module d Electricité Chapitre 1 Introduction L Electrocinétique est la partie de l Electricité qui étudie les courants électriques. 1- Courant électrique 1-1- Définitions Définition : un courant électrique

Plus en détail

Contact.

Contact. Contact Mail : el-hassane.aglzim@u-bourgogne.fr http://sites.google.com/site/isataglzim Bureau : R175 1 Electronique de puissance 1) Rappels et généralités El-Hassane AGLZIM MCF 63 2A Semestre 1 2017/2018

Plus en détail

AL Les sources d énergie Cours AL-1 forme énergie électrique Les formes de l énergie électrique

AL Les sources d énergie Cours AL-1 forme énergie électrique Les formes de l énergie électrique Les formes de l énergie électrique Compétences attendues: RESOUDRE : - Construire graphiquement les lois de l électricité à partir des vecteurs de Fresnel - Déterminer les courants et les tensions dans

Plus en détail

DC21 Modélisation en régime sinusoïdal établi, utilisation des nombres complexes IMPEDANCES / BILAN DE PUISSANCE

DC21 Modélisation en régime sinusoïdal établi, utilisation des nombres complexes IMPEDANCES / BILAN DE PUISSANCE L usage des nombres complexes est incontournable en ce qui concerne l étude des circuits électriques : du point de vue énergétique (bilan de puissance et dimensionnement d un réseau de distribution électrique,

Plus en détail

UTILISATION DES NOMBRES COMPLEXES EN ALTERNATIF SINUSOIDAL.

UTILISATION DES NOMBRES COMPLEXES EN ALTERNATIF SINUSOIDAL. TLSATON DES NOMBRES COMPLEXES EN ALTERNATF SNSODAL. NTRODCTON : Comme il a été établi précédemment, à toute grandeur alternative sinusoïdale, nous pouvons associer un vecteur de Fresnel. Ce vecteur a pour

Plus en détail

Le déphasage. Sommaire

Le déphasage. Sommaire Lycées Paul Mathou Le déphasage S0.2 circuits parcourus par un courant alternatif Sommaire 1) En continu... 2 2) En alternatif... 2 Rappels : Grandeurs caractéristiques du réseau monophasé... 2 Le déphasage

Plus en détail

Chapitre 8 : Dipôles linéaires en régime sinusoïdal

Chapitre 8 : Dipôles linéaires en régime sinusoïdal Chapitre 8 : Dipôles linéaires en régime sinusoïdal I / Introduction 1. position du problème 2. montage II / Résistance 1. Etude théorique 2. Etude expérimentale 3. généralisation 4. application III /

Plus en détail

Electrocinétique Circuits magnétiques Bobine à noyau de fer Transformateur Systèmes triphasés Machine Synchrone

Electrocinétique Circuits magnétiques Bobine à noyau de fer Transformateur Systèmes triphasés Machine Synchrone Julien Seigneurbieux Conversion d énergie Présentation Générale Semestre 1 Electrocinétique Circuits magnétiques Bobine à noyau de fer Transformateur Systèmes triphasés Machine Synchrone 1 Rappels d électrocinétique

Plus en détail

Les circuits linéaires

Les circuits linéaires Les circuits linéaires Révisé et compris Chapitre à retravaillé Chapitre incompris DEF Soit une tension sinusoïdale u(t)= U 2 sin (wt + ϕ) u(t) : tension instantanée à l instant t, exprimé en Volts U :

Plus en détail

Chapitre I Nombres complexes 2

Chapitre I Nombres complexes 2 Chapitre I Nombres complexes 11 septembre 007 Table des matières 1 Nombres complexes en électricité.................... a ) Introduction de la notation.................... b ) Intêret de la notation :

Plus en détail

Table des matières. 2.1 Amplitude, phase, pulsation et fréquence. MPSI - Électrocinétique II - Régime sinusoïdal forcé page 1/7

Table des matières. 2.1 Amplitude, phase, pulsation et fréquence. MPSI - Électrocinétique II - Régime sinusoïdal forcé page 1/7 MPSI - Électrocinétique II - égime sinusoïdal forcé page /7 égime sinusoïdal forcé Table des matières ôle générique pour l étude des régimes périodiques forcés Signau sinusoïdau. Amplitude, phase, pulsation

Plus en détail

LA THEORIE SUR L ELECTRICITE

LA THEORIE SUR L ELECTRICITE Cours d électricité LA THEORIE SUR L ELECTRICITE LES NOTIONS DE BASE Le courant alternatif PARTIE N 3 : LES PUISSANCES TABLE DES MATIERES 1. La puissance en courant alternatif... 1.1. La puissance instantanée...

Plus en détail

III COURANT ALTERNATIF SINUSOÏDAL :

III COURANT ALTERNATIF SINUSOÏDAL : III COURANT ALTERNATIF SINUSOÏDAL : III-1 Définition : Le courant alternatif (qui peut être abrégé par CA) est un courant électrique périodique qui change de sens deux fois par période et qui transporte

Plus en détail

3.1 Introduction. 3.2 Grandeurs électriques variables. Exemple : Qualifier chacune des grandeurs ci-dessous

3.1 Introduction. 3.2 Grandeurs électriques variables. Exemple : Qualifier chacune des grandeurs ci-dessous 3.1 Introduction La tension délivrée par le secteur n est pas une tension continue. Sa valeur varie au cours du temps. Les centrales électriques utilisent des alternateurs fournissant une tension variant

Plus en détail

PIFFRET LES GRANDEURS SINUSOIDALES Elec Objectif terminal : Connaître et définir les grandeurs caractéristiques d'un signal sinusoïdal.

PIFFRET LES GRANDEURS SINUSOIDALES Elec Objectif terminal : Connaître et définir les grandeurs caractéristiques d'un signal sinusoïdal. PIFFRET JBS LES GRANDEURS SINUSOIDALES Elec Objectif terminal : Connaître et définir les grandeurs caractéristiques d'un signal sinusoïdal. Domaine : S0.2, grandeurs fondamentales d'un courant sinusoïdal

Plus en détail

Chapitre 1 : Rappels d électricité

Chapitre 1 : Rappels d électricité Chapitre 1 : Rappels d électricité i é Plan du chapitre 2. Lois de Kirshhoff s 4. Le régime DC Plan du chapitre 2. Lois de Kirshhoff s 4. Le régime DC 1.1 Généralités Notion de circuit électrique : Un

Plus en détail

Circuits linéaires en régime sinusoïdal forcé. Contents. Chapitre 8. Les prérequis du lycée. Les prérequis de la prépa

Circuits linéaires en régime sinusoïdal forcé. Contents. Chapitre 8. Les prérequis du lycée. Les prérequis de la prépa Chapitre 8 Circuits linéaires en régime sinusoïdal forcé Contents 1 De l'intérêt du régime sinusoïdal forcé et de l'étude harmonique 3 1.1 Mis en évidence du rôle privilégié du signal sinusoïdal....................

Plus en détail

Thème II : analyse du signal

Thème II : analyse du signal Thème II : analyse du signal Importance du sinusoïdal 2 ième partie : Le signal sinusoïdal Figure Les signaux sinusoïdaux ont une grande importance en physique. En électrotechnique : la majeure partie

Plus en détail

P U I S S A N C E E N R E G I M E S I N U S O I D A L

P U I S S A N C E E N R E G I M E S I N U S O I D A L ELECROCINEIQUE R.Duperray Lycée F.BUISSON PSI P U I S S A N C E E N R E G I M E S I N U S O I D A L I Puissance instantanée On se place dans ce chapitre en convention récepteur. Source sinusoïdale Ex :

Plus en détail

Série : Oscillation électrique en régime sinusoïdale forcée

Série : Oscillation électrique en régime sinusoïdale forcée Exercice n 1 On considère un circuit électrique série constitué par un G.B.F délivrant une tension sinusoïdale U(t) = U m sin (2πNt), un condensateur de capacité C, un résistor de résistance R = 80 Ω et

Plus en détail

FICHE REVISION : ELECTRICITE 1 - Le courant

FICHE REVISION : ELECTRICITE 1 - Le courant Dpt Mesures Physiques FCHE REVSON : ELECTRCTE 1 - Le courant CORANT ELECTRQE e - Courant électrique : mouvement d ensemble des électrons libres du métal conducteur Tous les électrons se mettent en mouvement

Plus en détail

Introduction à la théorie du courant alternatif

Introduction à la théorie du courant alternatif Chapitre 6 Introduction à la théorie du courant alternatif Objectifs 1. Connaître les quantités électriques utilisées dans la théorie du courant alternatif 2. Savoir comment les éléments passifs R,L et

Plus en détail

Résonance électrique

Résonance électrique lectrocinétique 5 ésonance électrique I. éponse du dipôle LC série à une excitation sinusoïdale Soit un circuit LC série, et un générateur de tension e(t) = cos t de résistance interne négligeable. A t

Plus en détail

TD Electricité générale :

TD Electricité générale : TD Electricité générale : Rappels : Conventions : Masse : Par convention, son potentiel est nul ( V masse 0V Source alternative Source continue Période d une source électrique sinusoïdale : T f Exemple

Plus en détail

Introduction. Définition. Les tensions simples & composées

Introduction. Définition. Les tensions simples & composées Introduction Les réseaux triphasés sont très répandus dans le monde industriel en raison de leurs nombreuses propriétés favorables à la production, au transport et à l utilisation des grandeurs électriques.

Plus en détail

Centres d intérêt A B C D Thèmes associés A1 B11 C11 D1

Centres d intérêt A B C D Thèmes associés A1 B11 C11 D1 DOCUMENT SYNTHESE Centres d intérêt Savoirs 1 2 3 4 5 6 7 8 9 10 11 12 A B C D Thèmes associés A1 B11 C11 D1 AF1 R1 E1 E8 E11 E13 E4 E5 I3 I1 I6 I12 A2 B12 C12 D2 AF2 R2 E2 E9 E12 E18 E7 E6 I4 I2 I7 B21

Plus en détail

LA THEORIE SUR L ELECTRICITE

LA THEORIE SUR L ELECTRICITE Cours d électricité LA THEORIE SUR L ELECTRICITE LES NOTIONS DE BASE Le courant alternatif La théorie sur l électricité - les notions de base - AC - Table des matières générales TABLE DES MATIERES PARTIE

Plus en détail

PUISSANCES EN REGIME SINUSOÏDAL

PUISSANCES EN REGIME SINUSOÏDAL RENOM : CLAE : ANCE EN REGME NOÏDAL AGE : 1/6 ANCE NTANTANEE Lorsqu un dipôle linéaire est soumis à une tension u sinusoïdale, le courant i qui le traverse est lui aussi sinusoïdal. (A) (W) (V) i u Dipôle

Plus en détail

ETUDE DES GRANDEURS EN RÉGIME SINUSOÏDAL

ETUDE DES GRANDEURS EN RÉGIME SINUSOÏDAL EUDE DES GRANDEURS EN RÉGIME SINUSOÏDAL GÉNÉRALIÉS Définitions On appelle grandeur alternative sinusoïdale, une grandeur périodique dont la valeur instantanée est une fonction sinusoïdale du temps. u(t)

Plus en détail

Chap 2 : SYSTEMES TRIPHASES EQUILIBRES

Chap 2 : SYSTEMES TRIPHASES EQUILIBRES Chap 2 : SYSTEMES TRIPHASES EQUILIBRES Pour des raisons, la production et le transport de l énergie électrique se font en triphasé. I. Réseau triphasé Générateur : générateurs fournissant un système équilibré

Plus en détail

Devoir Surveillé. Électricité Module P1

Devoir Surveillé. Électricité Module P1 Devoir Surveillé Électricité Module P Semestre Lundi mai Sans document Sans calculatrice Exercice Monophasé (8 points) Soit le circuit suivant, les appareils sont MS : W A c ~ Quelles sont les grandeurs

Plus en détail

TRIPHASE. Définitions de base Grandeurs triphasées. Un système de grandeurs triphasées peut se mettre sous la forme :

TRIPHASE. Définitions de base Grandeurs triphasées. Un système de grandeurs triphasées peut se mettre sous la forme : Achamel.info Cours pratiques en ligne TRIPHASE Le triphasé est un système de trois tensions sinusoïdales de même fréquence et généralement de même amplitude qui sont déphasées entre elles (de 120 ou 2π/3

Plus en détail

Exprimons l énergie électrique dissipée par effet joule pendant T :

Exprimons l énergie électrique dissipée par effet joule pendant T : E.C. P3 PUISSANCES EN REGIME SINUSOIDAL FORCE CHAPITRE 13-7 I GRANDEURS EFFICACES 1) Définition Soit une grandeur périodique g(t) de période T. Valeur moyenne de g(t) : Valeur icace de g(t) : 1 tt g()

Plus en détail

GELE2112 Chapitre 7 : Analyse sinusoïdale

GELE2112 Chapitre 7 : Analyse sinusoïdale GELE2112 Chapitre 7 : Analyse sinusoïdale Gabriel Cormier, Ph.D. Université de Moncton Hiver 2009 Gabriel Cormier (UdeM) GELE2112 Chapitre 7 Hiver 2009 1 / 82 Introduction Contenu Ce chapitre présente

Plus en détail

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V RAPPEL CORS ELECTRO TELEEC. Notion de base Quantité d électricité La quantité d électricité correspond au nombre d électrons transportés par un courant électrique ou emmagasinés dans une source. La quantité

Plus en détail

M ) {( R ), ( B ), ( C )} = UDM

M ) {( R ), ( B ), ( C )} = UDM Exercice 1 :(bac 98) Le circuit électrique de la figure-2 comporte en série : - un résistor ( R ) de résistance R = 80 Ω - une bobine ( B ) d inductance L et de résistance propre r. - un condensateur (

Plus en détail

BEP ET Leçon 26 Les puissances en triphasé Page 1/6

BEP ET Leçon 26 Les puissances en triphasé Page 1/6 BEP ET Leçon 26 Les puissances en triphasé Page 1/6 1. LE MONTAGE EN ETOLE EQLBRE N V Dans un montage en étoile nous constatons pour chaque branche de l étoile que : La tension aux bornes du récepteur

Plus en détail

P U I S S A N C E E N R E G I M E S I N U S O I D A L

P U I S S A N C E E N R E G I M E S I N U S O I D A L ELECROCINEIQUE R.Duperray Lycée F.BUISSON PSI P U I S S A N C E E N R E G I M E S I N U S O I D A L «L'argent est l'argent, quelles que soient les mains où il se trouve. C est la seule puissance qu on

Plus en détail

La tension mesurée par un voltmètre en courant alternatif indique toujours la tension efficace.

La tension mesurée par un voltmètre en courant alternatif indique toujours la tension efficace. Activité ① OBJECTIFS Calculer une période et une fréquence. Calculer une tension maximum et une tension efficace. 1- Visualisation d une tension alternative sinusoïdale On branche un générateur de tension

Plus en détail

~ - 1. Définition. 2. Rappel des grandeurs en sinusoïdal. i = Imax. sin (ω.t)

~ - 1. Définition. 2. Rappel des grandeurs en sinusoïdal. i = Imax. sin (ω.t) 1. Définition La conversion du courant alternatif en courant continu est réalisée par un convertisseur appelé redresseur. La charge elle peut être résistive, inductive ou capacitif ; elle est alimentée

Plus en détail

TD Systèmes électriques. Mesures Physiques

TD Systèmes électriques. Mesures Physiques TD Systèmes électriques Mesures Physiques 05-06 Cette série de TD se décompose en 9 chapitres qui seront étudiés durant 0 séances de h. Le tableau en première page est une aide pour les étudiants de ère

Plus en détail

Électronique 1. L électronique est le moyen de transmettre une information et de la traiter.

Électronique 1. L électronique est le moyen de transmettre une information et de la traiter. Électronique Généralités : Signaux, dipôles et lois générales Introduction L électronique est le moyen de transmettre une information et de la traiter. Le cours se décompose en plusieures parties : Les

Plus en détail

TRAVAUX DIRIGÉS DE EC 5

TRAVAUX DIRIGÉS DE EC 5 TD E 5 orrection PSI 07 08 TRAVAUX DIRIGÉS DE E 5 Exercice : Utilisation des omplexes On pose x (t) =. cos(ωt + π 3 ) et x (t) = 3. cos(ωt π 4 ). En utilisant la méthode des complexes, déterminer l amplitude

Plus en détail

CIRCUITS A COURANT ALTERNATIFS. Circuit uniquement résistant.

CIRCUITS A COURANT ALTERNATIFS. Circuit uniquement résistant. CICUITS A COUANT ALTENATIFS. Circuit uniquement résistant. Soient : U la tension efficace aux bornes du circuit de résistance (sans self ni capacité), I l'intensité efficace du courant; on démontre que

Plus en détail

( ) GROUPEMENT DES RECEPTURS EN PARALLELE.

( ) GROUPEMENT DES RECEPTURS EN PARALLELE. GOUPEMENT DES EEPTUS EN PAAEE. Dans un groupement de récepteurs en parallèle, la grandeur commune à tous les éléments du circuit est la tension; elle sera donc choisie comme origine des phases dans les

Plus en détail

Circuits linéaires en régime sinusoïdal forcé :

Circuits linéaires en régime sinusoïdal forcé : Circuits linéaires en régime sinusoïdal forcé : Circuit linéaire : assemblage de dipôles linéaires. Relation entre u et i est une équation différentielle linéaire à coefficients constants. Dipôles linéaires

Plus en détail

Utilisation pratique des Nombres Complexes.

Utilisation pratique des Nombres Complexes. Utilisation pratique des Nombres Complexes.! L'AUTEUR "04" en Electricité et Electronique / Robotique... Le Sommaire: - Forme algébrique (ou forme cartésienne) - Partie réelle et partie imaginaire 3- Addition

Plus en détail

TRIGONOMETRIE 2. Comment modéliser une tension électrique? Comment déterminer le déphasage entre 2 tensions? Etude d un circuit RL

TRIGONOMETRIE 2. Comment modéliser une tension électrique? Comment déterminer le déphasage entre 2 tensions? Etude d un circuit RL TRIGONOMETRIE 2 Comment modéliser une tension électrique? Comment déterminer le déphasage entre 2 tensions? Etude d un circuit RL Qu est ce que des angles associés, complémentaires et opposés? Comment

Plus en détail

Déterminer le module et l argument des nombres complexes suivants : z 1 = 1 + j ; z 2 = j ; z 3 = 4 ; z 4 = - 1 j ; z 5 = 2 3j ;

Déterminer le module et l argument des nombres complexes suivants : z 1 = 1 + j ; z 2 = j ; z 3 = 4 ; z 4 = - 1 j ; z 5 = 2 3j ; EXERCICES SUR LES NOMBRES COMPLEXES Exercice Déterminer le module et l argument des nombres complexes suivants : z = + j ; z 2 = - 4 + 3j ; z 3 = 4 ; z 4 = - j ; z 5 = 2 3j ; Écrire sous la forme trigonométrique

Plus en détail

PC A DOMICILE WAHAB DIOP LSLL

PC A DOMICILE WAHAB DIOP LSLL cos PC A DOMICILE - 779165576 WAHAB DIOP LSLL P13-OSCILLATIONS E L E C T R I Q U E S F O R C E E S E N R TRAVAUX DIRIGES TERMINALE S 1 On donne deux tensions sinusoïdales, exprimées en volts u 1 = 3cos(250t)

Plus en détail

Systèmes triphasés. u ba (t) = v b (t) v a (t) = u ab (t) u cb (t) = v c (t) v b (t) = u bc (t) u ac (t) = v a (t) v c (t) = u ca (t)

Systèmes triphasés. u ba (t) = v b (t) v a (t) = u ab (t) u cb (t) = v c (t) v b (t) = u bc (t) u ac (t) = v a (t) v c (t) = u ca (t) Systèmes triphasés I. Alimentation triphasée 1. Présentation On considère une alimentation triphasée équilibrée disposant de quatre bornes : trois phases repérées par les lettres a, b et c et un neutre

Plus en détail

AL Les sources d énergie Cours AL-1 forme énergie électrique. Cours AL 1 TSI1 TSI2. Alimenter : Energie électrique

AL Les sources d énergie Cours AL-1 forme énergie électrique. Cours AL 1 TSI1 TSI2. Alimenter : Energie électrique Cours Objectifs Cours AL 1 SI1 SI2 Alimenter : Energie électrique Analyser Modéliser Résoudre Expérimenter Réaliser Concevoir Communiquer - Identifier la nature des flux échangés, préciser leurs caractéristiques

Plus en détail

ÉLECTROCINÉTIQUE. chapitre 4. Circuits oscillants

ÉLECTROCINÉTIQUE. chapitre 4. Circuits oscillants ÉLETROINÉTIQUE chapitre 4 ircuits oscillants Dans ce très court chapitre, on présente les oscillations libres d un circuit L ne comportant que des composants idéaux. L équation différentielle régissant

Plus en détail

Terminale STI génie électrotechnique Chapitre 8 Le triphasé. v 1 v. v Observation à l'oscilloscope. π 2π

Terminale STI génie électrotechnique Chapitre 8 Le triphasé. v 1 v. v Observation à l'oscilloscope. π 2π Le triphasé Étude du système. Présentation Économiquement, le triphasé est plus intéressant que le monophasé : le transport de l énergie électrique et les machines tournantes sont plus rentables en triphasé.

Plus en détail

Introduction - Définition

Introduction - Définition Introduction - Définition Une puissance est engendrée par un générateur ou absorbée par un récepteur. Par définition, on distingue la : PUISSANCE ACTIVE (ou wattée), exprimée en W (Watt) o C est la puissance

Plus en détail

Calculs de puissance. Chapitre Introduction

Calculs de puissance. Chapitre Introduction Chapitre 2 Calculs de puissance On explore ici les concepts de puissance qui seront la base pour la résolution de plusieurs types de problèmes. En fait, on verra qu il est souvent plus simple de résoudre

Plus en détail

Les circuits oscillants

Les circuits oscillants Chapitre Les circuits oscillants SamyLab 6/0/009 Cours et exercices de communications sur Samylab.com SamyLab.com I. La résonance I.. Circuit résonants série Soit un circuit RLC série, une tension v t

Plus en détail

Lycée Hédi Chaker Sfax. Devoir de contrôle N 2 Mars Prof : Abdmouleh- Nabil. CHIMIE (5 points)

Lycée Hédi Chaker Sfax. Devoir de contrôle N 2 Mars Prof : Abdmouleh- Nabil. CHIMIE (5 points) Lycée Hédi haker Sfax Devoir de contrôle N 2 Mars 2011 Section : SIENE DE L INFORMATIQUE Durée : 2 Heures Prof : Abdmouleh- Nabil SIENES PHYSIQUES L épreuve comporte un exercice de chimie et deux exercices

Plus en détail

CHAPITRE 6 : Mesure de la puissance en courant continu et alternatif. 1. Mesure de la puissance en courant continu

CHAPITRE 6 : Mesure de la puissance en courant continu et alternatif. 1. Mesure de la puissance en courant continu CHAPITRE 6 : Mesure de la puissance en courant continu et alternatif 1. Mesure de la puissance en courant continu 1.1 Mesure indirecte «méthode voltampère métrique» La puissance fournie à un récepteur

Plus en détail

CHAPITRE 11 : PUISSANCE EN REGIME FORCE

CHAPITRE 11 : PUISSANCE EN REGIME FORCE CSI CHAIE : SSANCE EN EGIME FOCE /6 CHAIE : SSANCE EN EGIME FOCE I. INODUCION Le lecteur attentif se souvenant de l électrocinétique de première partie aura remarqué que nous avons systématiquement omis

Plus en détail

Chapitre 7 : Régimes sinusoïdaux

Chapitre 7 : Régimes sinusoïdaux Chapitre 7 : Régimes sinusoïdau I / Math pour la physique 1. Trigonométrie 2. Les complees II Généralités 1. Définition a ) amplitude b ) pulsation c ) phase à l origine d ) eercice 2. Valeur moyenne 3.

Plus en détail

Puissances et signaux périodiques

Puissances et signaux périodiques Chapitre 4 Puissances et signaux périodiques Capacités exigibles : Mesurer ou calculer une valeur efficace, un taux de distorsion harmonique. Exprimer la répartition de la puissance dans le domaine fréquentiel.

Plus en détail

Électricité en 19 fiches

Électricité en 19 fiches Guy CHATEIGNER Michel BOËS Jean-Paul CHOPIN Daniel VERKINDÈRE Électricité en 19 fiches Régimes sinusoïdal et non-sinusoïdal Nouvelle présentation 13 Dunod, Paris, 8 ISBN 978--1-59994-3 Table des matières

Plus en détail

Générateurs Courants et tensions périodiques Puissance en régime harmonique Rappel d un certains nombres de points importants

Générateurs Courants et tensions périodiques Puissance en régime harmonique Rappel d un certains nombres de points importants Générateurs Courants et tensions périodiques Puissance en régime harmonique Rappel d un certains nombres de points importants Générateurs Courants et tensions périodiques Notion de puissance en régime

Plus en détail

Le circuit électrique de la figure-1 comporte en série : - un résistor ( R ) de résistance R=170.

Le circuit électrique de la figure-1 comporte en série : - un résistor ( R ) de résistance R=170. Lycée Maknassy 2011-2012 - 4 éme TEC et SC EXP- ALIBI.A. Sc.physiques Exercice n : 1 Le circuit électrique de la figure-1 comporte en série : - un résistor ( R ) de résistance R=170. 2 1 une bobine (B)

Plus en détail

Préparez votre baccalauréat

Préparez votre baccalauréat Exercice N 1 Un générateur basse fréquence, délivrant une tension sinusoïdale u(t) =U m sin(2 Nt), d amplitude U m constante et de fréquence N réglable, alimente un circuit électrique comportant les dipôles

Plus en détail

Puissances en régime sinusoïdal

Puissances en régime sinusoïdal Département d Electricité, Electronique et Informatique (Institut Montefiore) Notes théoriques du cours ELEC0014 Introduction to electric power and energy systems Puissances en régime sinusoïdal Thierry

Plus en détail

UE EEA (ELEAR5EM) Fondamentaux de l'électrotechnique 8h cours et 6h de TD. Circuits électriques en régime sinusoïdal, circuits magnétiques

UE EEA (ELEAR5EM) Fondamentaux de l'électrotechnique 8h cours et 6h de TD. Circuits électriques en régime sinusoïdal, circuits magnétiques UE EEA (ELEAR5EM) Fondamentaux de l'électrotechnique 8h cours et 6h de TD Circuits électriques en régime sinusoïdal, circuits magnétiques Coef matière = 0,34 Capitre 1 Lois fondamentales de l électricité

Plus en détail

. LE TRANSFORMATEUR REEL

. LE TRANSFORMATEUR REEL Transfo réel - Cours - 1/19. LE TRANSFORMATEUR REEL. I Présentation Le transformateur est un convertisseur statique, alternatif / alternatif. Il est soit élévateur, soit abaisseur de tension ou de courant.

Plus en détail

I- Généralités : Pour assimiler le cours

I- Généralités : Pour assimiler le cours I- Généralités : Pour assimiler le cours Exercice N 01 Au cours d une séance de travaux pratiques, on dispose du matériel suivant : Un résistor de résistance R Une bobine de caractéristiques (L; r) Un

Plus en détail

Exercice 1 : généralités Partie A Partie B Exercice 2

Exercice 1 : généralités Partie A Partie B Exercice 2 Exercice : généralités Un circuit série est formé par un résistor de résistance Ro = 00Ω, un condensateur de capacité C, et une bobine d inductance L et de résistance r, est alimenté par un générateur

Plus en détail

Régime sinusoïdal forcé

Régime sinusoïdal forcé ÉLECTOCINÉTIQUE chapitre 5 égime sinusoïdal forcé Dans ce chapitre, on s intéresse aux circuits linéaires soumis à une excitation (tension ou courant imposé au circuit) variant sinusoïdalement au cours

Plus en détail

Courant fort. Laurent Debize. La loi des nœuds La loi des mailles Puissance Facteur de puissance. Courant fort. Laurent Debize 1/41

Courant fort. Laurent Debize. La loi des nœuds La loi des mailles Puissance Facteur de puissance. Courant fort. Laurent Debize 1/41 1/41 2/41 Qu est-ce que le courant fort? Tout ce qui concerne l alimentation électrique des appareils, le transport de l énergie Par opposition au courant faible, qui concerne le transport d informations.

Plus en détail

Soutien P3. Pour y assister, vous devez vous inscrire sur Moodle/P3. Inscription pour la semaine 43/44 ouverte (jusqu au 20 octobre 14h)

Soutien P3. Pour y assister, vous devez vous inscrire sur Moodle/P3. Inscription pour la semaine 43/44 ouverte (jusqu au 20 octobre 14h) Soutien P3 Des séances de soutien en électricité sont organisées les lundi, mardi de 18h15 à 19h45 (sections 1&2), en semaines 42,(43/44),47,49,(51/1),2. Les inscriptions sont facultatives, et à renouveler

Plus en détail

Sommaire. Projet 1 Éclairage d un entrepôt - Première partie... 8 Cours 1 Grandeurs sinusoïdales... 10

Sommaire. Projet 1 Éclairage d un entrepôt - Première partie... 8 Cours 1 Grandeurs sinusoïdales... 10 Sommaire Projet 1 Éclairage d un entrepôt - Première partie... 8 Cours 1 Grandeurs sinusoïdales... 10 Projet Éclairage d un entrepôt - Deuxième partie... 1 Cours Puissances et compensation en monophasé...

Plus en détail

Chapitre 1 : Fondamentaux

Chapitre 1 : Fondamentaux Chapitre 1 : Fondamentaux Plan du chapitre n 1. Circuit électrique n 2. Dipôles électriques usuels n 3. Lois de Kirchhoff n 4. Matériel n 5. Le régime DC 2 1 Plan du chapitre n 1. Circuit électrique n

Plus en détail

Thème 1 HABITAT. Tension et intensité électrique

Thème 1 HABITAT. Tension et intensité électrique Thème 1 HABITAT Tension et intensité électrique Exploitation du Tp 1. Tension électrique A La tension se mesure avec un : Voltmètre et cet appareil se branche En parallèle G V UAB R B La tension entre

Plus en détail

CH 12 : Les installations triphasées équilibrées non polluées

CH 12 : Les installations triphasées équilibrées non polluées BTS électrotechnique ère année - Sciences physiques appliquées CH : Les installations triphasées équilibrées non polluées Enjeu : minimisation de la facture énergétique Problématique : comment calculer

Plus en détail

4.1. L'objectif de l'étude de dipôles passifs en régime sinusoïdal montage utilisé pour étudier un dipôle résistif, capacitif ou inductif

4.1. L'objectif de l'étude de dipôles passifs en régime sinusoïdal montage utilisé pour étudier un dipôle résistif, capacitif ou inductif 4.. 'objectif de l'étude de dipôles passifs en régime sinusoïdal montage utilisé pour étudier un dipôle résistif, capacitif ou inductif G.B.F. i(t) eff A v(t) r = i(t) dipôle eff voie de l oscilloscope

Plus en détail

Epreuve de modélisation BTS 1 Electrotechnique

Epreuve de modélisation BTS 1 Electrotechnique Epreuve de modélisation BTS 1 Electrotechnique Les quatre parties sont indépendantes, il est conseillé de bien gérer le temps consacré à chaque problème. La qualité de la rédaction sera comptabilisée dans

Plus en détail

Théorème de Boucherot

Théorème de Boucherot Page 3 3.3-Propriétés de conservation de puissances Courants Monophasés Théorème de Boucherot Que les divers récepteurs d'un circuit soient groupés en série ou en parallèle La puissance active totale est

Plus en détail

Analyse sinusoïdale. Chapitre Source sinusoïdale

Analyse sinusoïdale. Chapitre Source sinusoïdale Chapitre 7 Analyse sinusoïdale Jusqu à présent, on a seulement analysé des circuits ayant des sources constantes (DC). Ce chapitre présente l analyse de circuits ayant des sources variables (AC). On s

Plus en détail

C 1 courbe correspondante.

C 1 courbe correspondante. Exercice n : 1 Un oscillateur électrique est constitué des dipôles suivants associés en série : un résistor de résistance R, une bobine d inductance L et de résistance négligeable un condensateur de capacité

Plus en détail

Figure 1. II. Tensions simples : a. Allures : Figure 2. a. Equations : 3 b. Fresnel : On déduit des équations horaires les vecteurs suivants : V V 1

Figure 1. II. Tensions simples : a. Allures : Figure 2. a. Equations : 3 b. Fresnel : On déduit des équations horaires les vecteurs suivants : V V 1 I. Introduction : On appelle «tensions ou courants triphasés» un ensemble de tensions ou de courants de même fréquence, ayant même amplitude et présentant entre eux des différences de phases de π. Figure

Plus en détail

-> exercices (fiches Circuit électrique; courant; tension) /09/10

-> exercices (fiches Circuit électrique; courant; tension) /09/10 03/09/10 CIRCUIT ELECTRIQUE; COURANT; TENSION -> prise de contact; présentation du programme I) CIRCUIT ELECTRIQUE 1 ) réalisation 2 ) associations série et parallèle -> pour le 09/09/10: fiche n 1 --

Plus en détail