choisir H 1 quand H 0 est vraie - fausse alarme

Dimension: px
Commencer à balayer dès la page:

Download "choisir H 1 quand H 0 est vraie - fausse alarme"

Transcription

1 étection et Estimation GEL Hiver 5 Tests Neyman-Pearson Règles de Bayes: coûts connus min π R ( ) + ( π ) R ( ) { } Règles Minimax: coûts connus min max R ( ), R ( ) Règles Neyman Pearson: coûts pas connus On utilise les règles Neyman-Pearson pour les problèmes où les coûts ne sont pas connus. À cause de l'histoire du développement du test Neyman-Pearson, il y a un vocabulaire un peu diffèrent que le vocabulaire qu'on a vu jusqu à maintenant. On voit la différence dans les noms des erreurs. Erreur Type : Erreur Type : choisir H quand H est vraie - fausse alarme P F la probabilité d'une fausse alarme choisir H quand H est vrai un raté P M la probabilité d'un raté onc, H : pas de cible présente H : présence d'une cible La probabilité de détection, P, est la probabilité qu'on décide qu'il y a une cible, quand elle est vraiment présente. P la probabilité de détection - P M La taille d'une règle P F la probabilité d'une fausse alarme. La puissance d'une règle P la probabilité de détection. On peut toujours trouver une règle de décision pour rendre la probabilité d'une des erreurs très petites, en laissant la probabilité de l'autre erreur grandir. Les règles de décision Neyman-Pearson minimisent la probabilité d'une erreur, en garantissant que l'autre ne devient pas trop grande. On a un maximum pour la probabilité de fausse alarme, et on essaie de maximiser la probabilité de détection sujet à cette restriction sur la probabilité de fausse alarme. La règle Neyman-Pearson sujet à NP arg max P ( ) P F ( ) Alpha s'appelle le niveau du test ou le niveau d'importance (significance level). P F s'appelle la puissance, donc NP est la règle la plus puissante au niveau, où >, et fixée. Par exemple, on peut écrire le problème comme le suivant: 9 févr. 5 Règle Neyman-Pearson page

2 étection et Estimation GEL Hiver 5 Je ne peux pas supporter un taux de fausse alarme plus grand que.%. Quelle est la plus grande probabilité de détection possible? Avec quelle règle de décision? règle randomisée Une règle randomisée est une correspondance de à [,] avec l'interprétation que pour chaque y, (y) est la probabilité avec laquelle on accepte l'hypothèse H quand l'observation est y. Exemples: ) règle ordinaire (fonction indicateur) ( y) ( y) I ( y) onc, quand L(y) τ, on accepte l'hypothèse H avec probabilité un, ça veut dire, toujours. Quand L(y)<τ, on l'accepte avec probabilité éro, i.e., jamais. ) règle minimax Ly ( ) > τ π ( y) q L( y) τ L Ly ( ) < τ onc, quand L(y)>τ, on accepte l'hypothèse H avec probabilité un, ça veut dire, toujours. Quand L(y)τ on l'accepte avec probabilité q. Quand L(y)<τ, on l'accepte avec probabilité éro, i.e., jamais. Pour le problème Neyman-Pearson, on fait l'hypothèse que la règle est une règle randomisée pour simplifier la mathématique. P F probabilité que quand H est vrai choisit H P( choisit H ) E Y { ( )} où la notation E lqest l'espérance conditionnée à la vérité d'hypothèse H. onc, la probabilité de fausse alarme est la probabilité qu'il n'y a pas de cible, mais on décide qu'une cible est présente. Pour voir cette relation rappele-vous que P( choisir H H ) P( choisir H Y y, H ) p( y H ) dy P F P( choisir H Y y) p( y) dy { } ( y ) p ( y ) dy E ( y ) indépendant de H e la même manière on arrive à P E Y { ( ) } ( y ) p ( y ) dy 9 févr. 5 Règle Neyman-Pearson page

3 étection et Estimation GEL Hiver 5 Le lemme de Neyman-Pearson a trois parties. On commence avec une hypothèse sur la forme de la solution. Cette forme est une comparaison du rapport de vraisemblance avec un seuil avec une randomisation, et la règle Neyman-Pearson atteint exactement la probabilité de fausse alarme permet (P F ). ) On verra au début que cette forme a une probabilité de détection plus grande que toutes les règles qui sont acceptables, i.e., avec P F. ) On verra qu'une règle de cette forme existe toujours. 3) On verra que c'est la seule forme que la règle Neyman-Pearson peut prendre. Lemme de Neyman-Pearson Pour un système avec H : YP et H : YP, les points suivants sont vrais: ) [optimisation] Suppose que est n'importe quelle règle de décision avec P F ( ) et soit n'importe quelle règle de décision de la forme où, γ y R S T bg sont tels que P F ( ) Ly ( ) > p( y) > p( y) γ( y) L( y) p( y) p( y) Ly ( ) < p( y) < p( y). ans ce cas, P ( ) P ( ). ) [existence] Pour chaque (,), il existe une règle de décision, NP, de la forme * sauf avec γ(y)γ (une constante) pour laquelle P F ( NP ). 3) [unicité] Suppose que est n'importe quelle règle de décision Neyman-Pearson de taille. ans ce cas, il faut que ait la forme * sauf sur un ensemble de y avec probabilité éro sous les deux hypothèses. Preuve de l optimisation Considére les trois possibilités pour la relation entre le rapport de vraisemblance et le seuil eta: le rapport est plus grand, le rapport est égal, le rapport est plus petit. On va examiner les trois possibilités, et voir l effet sur le produit suivant y y p y p y p y > p y pbyg pbyg > bg y y y bg bg e j p p e bg bgjc bg bgh pbyg pbyg pb yg pbyg bg y γ( y) bg y bg y? * p y < p y pbyg pbyg < bg y y y bg e j p p bg e j p p 9 févr. 5 Règle Neyman-Pearson page 3

4 étection et Estimation GEL Hiver 5 onc on peut écrire que pour toutes les valeurs de y e bg bgjc bg bgh y y p y p y Comme c est vrai pour toutes les valeurs de y, je peux prendre l intégral de cette expression sur tout l espace des observations, et cette intégrale sera aussi plus grande ou égale à éro. e byg byg jc p b y g p b y g dy h Je vais séparer les quatre termes dans le produit yp ydy yp ydy+ yp ydy yp ydy ou onc on a la relation bgbg bgbg bg bg bg bg L N M yp ydy yp ydy yp ydy yp ydy P e j P ej P F ej P F ej e j e j e j e j P P P P F F On sait que la taille de la règle proposée est exactement, donc P P P ( ) ( ) [ ( )] La taille de la règle arbitraire n est jamais plus grande que, donc l expression du côté droit est jamais négative, donc Pe j Pej Q.E.. P P ej ej F O Q P Preuve de partie deux, l'existence: Cette partie de la preuve est très importante. C'est une preuve constructive, donc on va trouver les valeurs de γ et qui donnent une probabilité de fausse alarme juste égale à alpha. ) Considére la probabilité sous hypothèse éro que L(y)> comme une fonction du seuil. Appele le numéro, pas négatif, le plus petit tel que P (L(y)>). P (L(y)>) 9 févr. 5 Règle Neyman-Pearson page 4

5 étection et Estimation GEL Hiver 5 Ça veut dire que est le seuil le plus petit qui donne une probabilité de fausse alarme pas plus grande qu'alpha. ans le graphique la probabilité de fausse alarme est continue, mais il peut arriver que la fonction soit discontinue. En tout cas, la fonction est toujours monotone, décroissante, et continue du côté gauche. Qu arrive-t-il aux points de discontinuités? P (L(y)>) ans le deuxième graphique on peut voir une courbe avec deux points de discontinuités. Supposons que la première discontinuité arrive a un point qu on appelle, et la deuxième au point. On appelle P (L(y) ) la probabilité P (L(y)> ), et P (L(y)> ). La hauteur de la discontinuité est juste la probabilité que le rapport de vraisemblance est exactement égale au P (L(y) ) seuil à ce point. onc à un point de continuité on a P (L(y)), mais à un point de discontinuité, P (L(y))>. Si on considère une contrainte arbitraire sur la probabilité de fausse alarme, il est possible que tombe dans un endroit où la courbe est continue, ou dans un endroit où elle est discontinue. On va considérer les deux possibilités séparément. est dans une partie continue P (L(y) ) γ peut être arbitraire est dans une partie discontinue P (L(y) )> il faut choisir γ avec attention La règle de décision aura la forme NP R S T γ Ly ( ) > Ly ( ) Ly ( ) < 9 févr. 5 Règle Neyman-Pearson page 5

6 étection et Estimation GEL Hiver 5 On peut calculer la probabilité de fausse alarme avec cette règle de décision: Fe NPj NP NP { } bg bg P E Y y p y dy p y dy + γ P L y + p y dy Ly bg> Ly bg< P L y > + γ P L y Si tombe dans une région continue, la valeur de γ n est pas importante parce que Fe NPj bg bg P P L y > + γ P L y + γ Si tombe dans une région discontinue, la valeur de γ nous permettra d arriver à la valeur exacte de : onc on définit γ Fe NPj bg bg P P L y > + γ P L y P L y > P L y la partie qui manque la hauteur de discontinuité La hauteur de la discontinuité est la probabilité que le rapport de vraisemblance est juste égal au seuil, donc le dénominateur. La distance entre la probabilité de fausse alarme P (L(y) ) désirée,, et la probabilité actuelle pour le -P seuil est le numérateur. Si on forme le (L(y)> ) rapport entre ces deux hauteurs, on arrivera à la valeur de γ qui donne une probabilité de fausse alarme exactement égale à. Voila la preuve de la partie deux. Q.E.. 3) Supposons que ' est une règle Neyman- Pearson de niveau de la forme désirée, et " est une autre règle Neyman-Pearson avec n'importe quelle forme. Les deux sont règles Neyman-Pearson, donc les deux ont une probabilité de détection maximum, donc les probabilités de détection sont égales. Encore on utilise le résultat que ej ej ej ej P P et P, P F F e bg bgjc bg bgh y y p y p y 9 févr. 5 Règle Neyman-Pearson page 6

7 étection et Estimation GEL Hiver 5 ou Pour les règles de décision ici, ( ) ( ) ( ) ( ) P P PF P F. ( ) ( ) ( ) PF PF PF onc il faut que P F e j. On peut montrer que e bg y bg yjcpbg y pbg yhdy P P P + P e j e j e j e j F F Comme l argument de l intégration n est jamais négatif, il faut que l argument soit éro, sauf peut-être dans les deux ensembles: un ensemble avec probabilité éro sous hypothèse éro et sous hypothèse un l ensemble avec p (y) p (y) ans l ensemble avec p (y) p (y), la règle de décision peut prendre une valeur qui est une fonction de l observation y, mais cette forme sera la forme désirée, la forme dans l équation *. Q.E.. En conclusion, on a vu encore que la règle de décision optimale prend la forme d'un test sur le rapport de vraisemblance, la comparaison du rapport vers un seuil. Le seuil est une fonction du rapport de vraisemblance et. Il faut considérer la probabilité que le rapport est plus grand qu'un seuil, comme fonction du seuil.. On cherche la valeur la plus petite avec P (L(y)>). Si P (L(y)>), on a fini. 3. Sinon, il faut randomiser. Exemple: Test de position avec un bruit Gaussien H : Y N (, ) H : Y N (, ) Le rapport de vraisemblance: p y p y by g by g by g b gf e + e e by g e + y On calcule la probabilité sous hypothèse éro que le rapport de vraisemblance est plus grand qu un seuil. 9 févr. 5 Règle Neyman-Pearson page 7

8 étection et Estimation GEL Hiver 5 ( ) ( ) + y ( ) + P L( y) > P e > P y > ln + + P y > P y> + P y> ln ln ( y ) e dy Φ π onc, il faut trouver ' tel que Φ nécessaire de randomiser. F onc, Φ, ou Φ + Pearson comme NP R S T F ( ). La fonction est continue, donc il n'est pas La fonction Φ(x) est bien connue, comme les fonctions x, cos(x), etc. Elle est une fonction continue, monotone et donc, l'inverse existe toujours et il y a un seul inverse. On cherche le seuil de Neyman-Pearson, donc le ' le plus petit qui a PF P ( L( y) > ) Φ.. On peut écrire la règle Neyman- y + y < Φ Quelle est la probabilité de détection? P PLy ( ) > + γ PLy ( ) PLy ( ) > P y> ** Φ ' ( y ) F I K J e dy Φ π F b g+ I F KJ Φ Φ Φ Φ ΦΦ d d b g ' i où dsnrrapport de signal à bruit. onc on a une expression pour la probabilité de détection pour le niveau d'alarme fausse. Si le niveau est fixé, ** est une expression pour la probabilité de détection comme fonction du rapport de signal à bruit. Cette expression s'appelle fonction de puissance (power function). F 9 févr. 5 Règle Neyman-Pearson page 8

9 étection et Estimation GEL Hiver 5 On peut aussi imaginer le SNR fixé, et P est une fonction du niveau. Cette fonction s'appelle caractéristiques opérateurs du récepteur (ROCs, receiver operating characteristics). d d.5 P P d SNR (d) fonction de puissance P F ROCs Exemple: Le canal binaire -λ -λ λ λ Le rapport de vraisemblance pour le canal binaire était ( ) L y λ λ λ y λ si y λ λ L( y) λ si λ si y si y On va trouver NP pour un canal avec λ et λ tel que λ + λ <. 9 févr. 5 Règle Neyman-Pearson page 9

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

Master 1 Informatique Éléments de statistique inférentielle

Master 1 Informatique Éléments de statistique inférentielle Master 1 Informatique Éléments de statistique inférentielle Faicel Chamroukhi Maître de Conférences UTLN, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2014/2015 Faicel Chamroukhi

Plus en détail

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7. Statistique Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.fr Cours Statistique, 2010 p. 1/52 Plan du cours Chapitre 1 : Estimation

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

CODES CORRECTEURS D'ERREURS

CODES CORRECTEURS D'ERREURS CODES CORRECTEURS D'ERREURS Marc URO TABLE DES MATIÈRES DÉTECTION ET CORRECTION D'ERREURS... 6 CAS D'UN CANAL SANS SYMBOLE D'EFFACEMENT...6 CAS D'UN CANAL AVEC SYMBOLE D'EFFACEMENT...7 GÉNÉRATION ET DÉTECTION

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

Stratégies et construction

Stratégies et construction Stratégies et construction Sébastien MARTINEAU Été 2008 Exercice 1 (Niveau 2). Sur une règle d 1 mètre de long se trouvent 2008 fourmis. Chacune part initialement, soit vers la gauche, soit vers la droite,

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

A propos du calcul des rentabilités des actions et des rentabilités moyennes

A propos du calcul des rentabilités des actions et des rentabilités moyennes A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que

Plus en détail

Reputation, Prix Limite et Prédation

Reputation, Prix Limite et Prédation Reputation, Prix Limite et Prédation Economie Industrielle Laurent Linnemer Thibaud Vergé Laboratoire d Economie Industrielle (CREST-INSEE) 13 et 20 janvier 2009 Linnemer - Vergé (CREST-LEI) Reputation,

Plus en détail

Techniques de synchronisatio. communications numériques

Techniques de synchronisatio. communications numériques n pour les communications numériques ENST-Bretagne Département Signal et Communication 1/13 Sommaire La synchronisation dans les communications numériques Présentation du contexte Hypothèses sur les perturbations

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

TD 3 : Problème géométrique dual et méthode des moindres carrés

TD 3 : Problème géométrique dual et méthode des moindres carrés Semestre, ENSIIE Optimisation mathématique 4 mars 04 TD 3 : Problème géométrique dual et méthode des moindres carrés lionel.rieg@ensiie.fr Exercice On considère le programme géométrique suivant : min x>0,y>0

Plus en détail

TESTS D'HYPOTHESES Etude d'un exemple

TESTS D'HYPOTHESES Etude d'un exemple TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses

Plus en détail

Deuxième partie II. Cours 4 à 6 : Construction d estimateurs, Modèle linéaire, Tests et intervalles de confiance

Deuxième partie II. Cours 4 à 6 : Construction d estimateurs, Modèle linéaire, Tests et intervalles de confiance Deuxième partie II Cours 4 à 6 : Construction d estimateurs, Modèle linéaire, Tests et intervalles de confiance (version corrigée, 4 avril 27) Construction d estimateurs 4 Construction d estimateurs Estimateur

Plus en détail

Représentation des nombres entiers et réels. en binaire en mémoire

Représentation des nombres entiers et réels. en binaire en mémoire L3 Mag1 Phys. fond., cours C 15-16 Rep. des nbs. en binaire 25-09-05 23 :06 :02 page 1 1 Nombres entiers 1.1 Représentation binaire Représentation des nombres entiers et réels Tout entier positif n peut

Plus en détail

Chapitre VI Échantillonages et simulations

Chapitre VI Échantillonages et simulations Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

CODAGE D UN NOMBRE SYSTEME DE NUMERATION

CODAGE D UN NOMBRE SYSTEME DE NUMERATION 1. Base d un système de numération 1.1 Système décimal. C est le système de base 10 que nous utilisons tous les jours. Il comprend dix symboles différents :... Exemple du nombre 2356 de ce système : nous

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

ENSIL Troisième Année ELT

ENSIL Troisième Année ELT IFORMATIQUE APPLIQUEE TD1 Dans le cadre de ces TD, nous procédons à la simulation d'un système de télécommunication numérique. Cette opération va nous permettre d'étudier la performance du système sous

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Frédéric Messine Introduction Dans ce chapitre, nous allons étudier une application de la dérivation des fonctions de plusieurs variables

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

Evaluation des procédures diagnostiques. Objectifs pédagogiques. Faculté de Médecine Montpellier-Nîmes. Evaluation des procédures diagnostiques

Evaluation des procédures diagnostiques. Objectifs pédagogiques. Faculté de Médecine Montpellier-Nîmes. Evaluation des procédures diagnostiques Evaluation des procédures diagnostiques Objectifs pédagogiques Evaluer un signe, un examen, une décision médicale en calculant leur sensibilité et leur spécificité, leurs valeurs prédictives positives

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Chapitre 3 Fonctions usuelles 3.1 Théorème de la bijection Une fonction dérivable sur un intervalle I, strictement monotone déþnit une bijection.

Plus en détail

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

Leçon 1: les entiers

Leçon 1: les entiers Leçon 1: les entiers L ensemble N des entiers naturels Compter, dresser des listes, classer et comparer des objets interviennent dans de multiples activités humaines. Les nombres entiers naturels sont

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

La détermination du prix optimal des cigarettes

La détermination du prix optimal des cigarettes Faculté de Droit et des Sciences Economiques de Limoges Sciences Economiques I Semestre I Cours de Microéconomie (Mr. P. Rous) Année Universitaire 2000-2001 La détermination du prix optimal des cigarettes

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net

La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net Article rédigé avec epsilonwriter puis copié dans Word La théorie des mouvements

Plus en détail

Algorithmique et Programmation Projets 2012/2013

Algorithmique et Programmation Projets 2012/2013 3 Dames 3. Objectif Il s agit d écrire un programme jouant aux Dames selon les règles. Le programme doit être le meilleur possible. Vous utiliserez pour cela l algorithme α β de recherche du meilleur coup

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3 I Arbres binaires 2014-2015 Table des matières 1 Rappels 2 1.1 Définition................................................ 2 1.2 Dénombrements............................................ 2 1.3 Parcours.................................................

Plus en détail

Evaluation d un test diagnostique - Concordance

Evaluation d un test diagnostique - Concordance Evaluation d un test diagnostique - Concordance Michaël Genin Université de Lille 2 EA 2694 - Santé Publique : Epidémiologie et Qualité des soins michaelgenin@univ-lille2fr Plan 1 Introduction 2 Evaluation

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes ANNUITES I Notions d annuités a.définition Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. Le processus de versements dépend du montant de l annuité,

Plus en détail

La démarche d investigation en mathématiques. 26 novembre 2008 La démarche d investigation en mathématiques P. KOBER- IUFM Nice

La démarche d investigation en mathématiques. 26 novembre 2008 La démarche d investigation en mathématiques P. KOBER- IUFM Nice La démarche d investigation en mathématiques 1) Qu est ce que la démarche d investigation en sciences? 2) Qu est-ce que faire des mathématiques? - Pour un chercheur Plan de cette intervention - Dans l

Plus en détail

Obligation : transfert dans le temps

Obligation : transfert dans le temps Obligation : transfert dans le temps Dans ce premier chapitre nous introduirons les principales notions concernant les obligations. Les principes élémentaires de la notion d arbitrage y sont décrits. Une

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Statistique (MATH-F-315, Cours #3)

Statistique (MATH-F-315, Cours #3) Statistique (MATH-F-315, Cours #3) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle

Plus en détail

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1 Examen Mathématiques LS TD 04 05 06 Université Paris Nom : Prénom : Durée : heure. Calculatrice interdite. Aucun document autorisé. Chaque question de la partie QCM vaut un point. Identifiez toutes les

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes.

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes. Au menu Cours 7: Classes Probabilistes Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique Retours sur quelques algorithmes Quelques résultats INF561 Algorithmes et Complexité 1 2 Sous

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Exercices à savoir faire

Exercices à savoir faire Licence 1 Mathématiques 2014 2015 Algèbre et Arithmétique 1 Feuille n o 2 Théorie des ensembles, applications Exercices à savoir faire Théorie des ensembles Exercice 1 Soit F l ensemble des femmes. Qu

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Mth2302B - Intra Été 2011

Mth2302B - Intra Été 2011 École Polytechnique de Montréal page 1 Contrôle périodique Été 2011--------------------------------Corrigé--------------------------------------T.Hammouche Question 1 (12 points) Mth2302B - Intra Été 2011

Plus en détail

Analyse de la variance à deux facteurs

Analyse de la variance à deux facteurs 1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1 Psychologie du développement 06-10-2008 Contexte Nous nous proposons d analyser l influence du temps et de trois espèces ligneuses d arbre

Plus en détail

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J.

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. FAIVRE s de cours exigibles au bac S en mathématiques Enseignement

Plus en détail

OPTIMISATION SOUS CONTRAINTES

OPTIMISATION SOUS CONTRAINTES OPTIMISATION SOUS CONTRAINTES Sommaire 1. Optimisation entre des bornes... 1 2. Exercice... 4 3. Optimisation sous contrainte à variables multiples... 5 Suite à une planification de la production, supposons

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume.

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume. Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie

Plus en détail

Initiation à la Programmation en Logique avec SISCtus Prolog

Initiation à la Programmation en Logique avec SISCtus Prolog Initiation à la Programmation en Logique avec SISCtus Prolog Identificateurs Ils sont représentés par une suite de caractères alphanumériques commençant par une lettre minuscule (les lettres accentuées

Plus en détail

Le chiffre est le signe, le nombre est la valeur.

Le chiffre est le signe, le nombre est la valeur. Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.

Plus en détail

Une nouvelle analyse sur la théorie d utilité marginale

Une nouvelle analyse sur la théorie d utilité marginale Une nouvelle analyse sur la théorie d utilité marginale Introduction : La plupart des théoriciens économiques défini L utilité marginale comme suit : L utilité marginale d un bien est : l augmentation

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Aire sous une courbe et calcul de primitives

Aire sous une courbe et calcul de primitives Aire sous une courbe et calcul de primitives Le calcul de primitives d une fonction et celui de l aire de la surface bordée par le graphique de cette fonction sont intimement liés. Les exemples qui suivent

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle Une fonction est dite exponentielle s il y a la présence d un facteur multiplicatif dans l expression. Ex.: 4x5x5x5x5x5x5x5 : le facteur multiplicatif est 5 La fonction de base d

Plus en détail

Chapitre 2 - choix efficace et non-efficace des

Chapitre 2 - choix efficace et non-efficace des Chapitre 2 - choix efficace et non-efficace des firmes Arnold Chassagnon Université Paris-Dauphine (LEDA-SDFi) DU1 - Université Paris-Dauphine, 2009-2010 1 Analyse positive - analyse normative 1 Objectif

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples.

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Introduction : On suppose connues les notions d injectivité, surjectivité,

Plus en détail

Terminale S Spécialité Cours : DIVISIBILITE ET CONGRUENCES DANS.

Terminale S Spécialité Cours : DIVISIBILITE ET CONGRUENCES DANS. A la fin de ce chapitre vous devez être capable de : connaître différents procédés pour établir une divisibilité : utilisation de la définition, utilisation d identités remarquables, disjonction des cas,

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

28 nov. 1 déc. 2005 Formation INRA ACTA ICTA La Rochelle. David Makowski. UMR Agronomie INRA/INA-PG makowski@grignon.inra.fr

28 nov. 1 déc. 2005 Formation INRA ACTA ICTA La Rochelle. David Makowski. UMR Agronomie INRA/INA-PG makowski@grignon.inra.fr 28 nov. 1 déc. 2005 Formation INRA ACTA ICTA La Rochelle David Makowski UMR Agronomie INRA/INA-PG makowski@grignon.inra.fr Mon cours sur l estimation des paramètres comportent deux parties. La première

Plus en détail

Chapitre 5. Calculs financiers. 5.1 Introduction - notations

Chapitre 5. Calculs financiers. 5.1 Introduction - notations Chapitre 5 Calculs financiers 5.1 Introduction - notations Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une somme d argent) en contrepartie de quoi ils perçoivent ou respectivement

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Devoir maison Info 2 A rendre pour le 15 décembre au plus tard

Devoir maison Info 2 A rendre pour le 15 décembre au plus tard Devoir maison Info 2 A rendre pour le 15 décembre au plus tard Exercice 1 : Exécutez un algorithme Considérez l algorithme suivant. Variables A, B, C en Entier; Début Lire A; Lire B; TantQue B 0 C A; TantQue

Plus en détail

Le raisonnement par récurrence

Le raisonnement par récurrence Le raisonnement par récurrence Nous notons N l ensemble des entiers naturels : N = {0,,, } Nous dirons naturel au lieu de entier naturel Le principe du raisonnement par récurrence Soit A une partie de

Plus en détail

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

Équations et inéquations du 1 er degré

Équations et inéquations du 1 er degré Équations et inéquations du 1 er degré I. Équation 1/ Vocabulaire (rappels) Un équation se présente sous la forme d'une égalité constituée de nombres, de lettres et de symboles mathématiques. Par exemple

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

MATHÉMATIQUES ET SCIENCES HUMAINES

MATHÉMATIQUES ET SCIENCES HUMAINES MATHÉMATIQUES ET SCIENCES HUMAINES B. MARCHADIER Dépendance et indépendance de deux aléas numériques images Mathématiques et sciences humaines, tome 25 (1969), p. 2534.

Plus en détail

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre

Plus en détail

Chapitre 1 I:\ Soyez courageux!

Chapitre 1 I:\ Soyez courageux! Chapitre 1 I:\ Soyez courageux! Pour ne rien vous cacher, le langage d'assembleur (souvent désigné sous le terme "Assembleur", bien que ce soit un abus de langage, puisque "Assembleur" désigne le logiciel

Plus en détail

INF1130 SESSION A08 EXAMEN INTRA SOLUTIONS

INF1130 SESSION A08 EXAMEN INTRA SOLUTIONS 1 INF1130 SESSION A08 EXAMEN INTRA SOLUTIONS dimanche 26 octobre 2008 Question 1 sur la logique propositionnelle (12 points, 3 pour chaque partie). Supposons que les quatre propositions suivantes sont

Plus en détail

3 Fonctions logarithmiques

3 Fonctions logarithmiques 10 Edition 006-007 / DELM Exercices de base Fonctions logarithmiques Liens hypertextes Cours correspondant de niveau standard: http://www.deleze.name/marcel/sec/cours/logarithmes/log-cours_standard.pdf

Plus en détail

Chapitre 5. Le monopole

Chapitre 5. Le monopole Chapitre 5. Le monopole 5.1. Présentation. Une entreprise est dite en situation de monopole lorsqu elle est l unique offreur sur le marché d un bien, si le nombre de demandeurs sur le marché est grand

Plus en détail

INÉQUATIONS. Notations Inéquations Représentations graphiques 1 ]a ; b[ a < x < b

INÉQUATIONS. Notations Inéquations Représentations graphiques 1 ]a ; b[ a < x < b 27 5. Inéquations 5.1. Définition Exemple : x < 4 + 2x La droite réelle Le symbole utilisé pour les intervalles infinis est une notation et ne représente pas un nombre réel. Une inéquation affirme que

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS Jean Luc Bovet, Auvernier Notre merveilleuse manière d écrire les nombres, due, dit-on, aux Indiens via les Arabes, présente en

Plus en détail

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières FONDEMENTS MATHÉMATIQUES 12 E ANNÉE Mathématiques financières A1. Résoudre des problèmes comportant des intérêts composés dans la prise de décisions financières. [C, L, RP, T, V] Résultat d apprentissage

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Partie I Le consommateur et la demande

Partie I Le consommateur et la demande Partie I Le consommateur et la demande Chapitre 1 La fonction d utilité 1 Plan du cours 1. Le consommateur. 2. La notion d utilité. 3. Les courbes d indifférence. 4. L optimum du consommateur. 5. Exercices.

Plus en détail