Cours AQ 6. Stabilité

Dimension: px
Commencer à balayer dès la page:

Download "Cours AQ 6. Stabilité"

Transcription

1 Cours AQ 6 Stabilité

2 Qu est-ce que la stabilité? Un Système est stable quand il revient à son état d équilibre après une perturbation

3 Stable ou Instable? S(t)(réponse impulsionnelle ) e -2t e 2t e -t sin2t e t sin2t

4 S(t) (impulsionnel) Stabilité Transformée e -2t e 2t e -t sin2t e t sin2t Stable Instable stable Instable

5 Stabilité Transformée Pôles Stable -2 Instable 2 Stable -1+2j -1-2j Instable 1+2j 1-2j

6 Pôles à partie réelle positive (ou nulle) S(t) quand t Instabilité Pôles à Partie réelle Négative S(t) 0 quand t Stabilité

7 Généralisation Une fonction de la forme: Où α,β,γ sont des réels Se décompose en:

8 Définition La réponse tendra vers l infini si γ ou β sont positif ou nul. D où Un système est stable si tous les pôles de sa fonction de transfert sont à partie réelle strictement négative

9 Critère de Routh Soit une fonction de transfert dont le dénominateur s écrit: tous les pôles de sa fonction de transfert sont à partie réelle strictement négative SI:

10 Tableau de Routh Stable si Strictement positifs

11 Notes Il y a autant de lignes que de coefficients (degré+1) Les coefficients non écrits dans le tableau sont pris égaux à zéro

12 Exemple 1 Stable ou Instable? Instable car pas de coefficient en p²

13 Exemple 2 Stable ou Instable? Instable car le coefficient en p² est négatif

14 EXEMPLE 3 Stable ou Instable? Critère 1: Tous les coefficients sont positifs: OK mais pas suffisant tableau de Routh

15 Exemple 4 Stable ou Instable? Critère 1: Tous les coefs sont positifs: OK mais pas suffisant tableau de Routh

16 Tableau de Routh

17 Exemple 4 Stable ou Instable? Critère 1: Tous les coefs sont positifs: OK mais pas suffisant tableau de Routh

18 Tableau de routh INSTABLE

19 Notion de transmittance à retour unitaire Rappel: Système en boucle ouverte: fonctions de transfert en cascade La sortie de dépend que de ce qui précède

20 Système en boucle fermée Une variable intermédiaire dépend à la fois de ce qui suit et de ce qui précède

21 On définit un système bouclé par:

22 Transmittance à retour unitaire On montre que le système peut se décrire aussi par: car K(p) est généralement simple On étudiera donc S1(p)

23 Retour Unitaire Nous étudierons: Qui s appelle transmittance à retour unitaire

24

25 Exemple Comment régler le gain C pour que le système soit stable?

26 On applique le critère de Routh Dénominateur de TBF= Première condition: Tous les coefs positifs C>0 Deuxième condition: Tableau de routh C< 6 (Démonstration au tableau)

27 Critère de Nyquist simplifié Problème: on ne connaît pas toujours TBO Il peut être dangereux de mettre un système en boucle fermée si on ne connaît pas à l avance sa stabilité (Avion, moteur électrique ) Le critère de Nyquist permet de déterminer la stabilité à partir de TBO lorsqu elle est connue à partir de relevés expérimentaux (diagramme de Nyquist.)

28 Démarche du cours Avec le critère de Routh on a déterminé la limite de stabilité ( 0 < C < 6) Nous allons étudier ce qui se passe en boucle ouverte, lorsque C=6 (limite) Nous en déduirons un critère applicable à TBO

29 Que se passe-t-il pour C=6? Si C=6

30 TBF Admet trois pôles dont deux sont des complexes conjugués Réponse à un échelon: Démonstration au tableau

31 On détermine les coefficients A,B,C et D D où: S(t) contient un signal sinusoïdal de pulsation

32 Que se passe-t-il pour TBO? Transmittance harmonique Pour TBO=1 soit 0dB

33 Et pour l argument de TBO De même: Pour

34 Diagramme de Nyquist On trace le module de TBO en Fonction de l argument de TBO pour plusieurs pulsation.

35 Pulsation Module Argument ω 0 -π/2 ω =1 4,2 -π/2+ -π/4 ω =5 0,17 -π/2 -π/2 -π/4 -π ω 0 -π/2 -π/2 -π/2

36 Diagramme de Nyquist Dans un diagramme de bode, on trace deux grapphiques: Le module en fonction de f ou ω L argument en fonction de f ou ω Dans le diagramme de Nyquist on trace : Le module EN FONCTION de l Argument pour plusieurs pulsation. ω n apparait pas sur le graphique. Il faut l indiquer à coté de chaque point

37 C= 6 ou C> 6 INSTABLE (la courbe passe à gauche du point -1 OU par le point -1 C<6 STABLE: la courbe passe à droite du point -1

38 Critère de Nyquist Un système régulier est stable en boucle fermée si TBO parcouru dans le sens des w croissants passe à droite du point -1 Instable S Stable

39 Définition: Système régulier Un système est dit régulier si: L ordre de TBO est au moins égal à 2 TBO est stable et à déphasage minimal (pôles et zéros à partie réelle négative) Le gain statique est positif TBO passe au voisinage de -1

40 Marges de phase et Marge de gain La limite de stabilité est obtenue pour Tbo=-1 soit Module de TBO= 1 Arg de TBO= - π Deux conditions: On en fixe une à la limite et on regarde la «marge» qui nous reste sur l autre pour atteindre la limite de stabilité

41 Marge de Phase On considère un système stable Si le système est régulier son module décroît et tend vers 0 quand ω Donc il existe une pulsation ω1 pour laquelle Module de TBO= 1

42 Marge de phase La MARGE DE PHASE est la valeur de déphasage que l on peut ajouter (sans toucher au gain) sans que le système devienne instable φ m = φ bo (ω1) - (-π) φ m = φ bo (ω1) +π

43 Marge de gain Soit ω2 la pulsation pour laquelle arg TBO=-π De combien peut on augmenter le gain sans atteindre l instabilité? Augmenter le gain revient à augmenter le module Β est appelé marge de gain

44 Stabilité

45 Méthode de réglage du gain Routh donne une plage de gain possible. Dans cette plage, quelle est la «meilleure» valeur du gain possible? démarche 1. Il faut trouver des critères en déduire le meilleur z 2. Trouver le lien entre le gain et z en boucle fermée 3. Trouver un moyen d obtenir ce z à partir de TBO

46 Critères L erreur en régime permanent? E(t)-S(t) quand t E(t) S(t) t NON: le système peut être très précis, mais aussi très lent.

47 Autre critère possible L intégrale de l erreur, c est-à-dire la somme de toutes les erreurs instantanées. Cela revient à considérer la surface entre les courbes d entrée et la sortie. E(t) E(t) S(t) t S(t) t Mieux mais pas suffisant: l intégrale de Sin(x) = 0 sur une période et pourtant le système oscillera jusqu à l infini Instable!

48 Critère retenu On utilisera l intégrale du carré de l erreur. E² dt Un système sera bien réglé si cette valeur de est minimum. E² dt On calcule la dérivée par rapport à z de E² dt Pour un circuit du 2 nd ordre, cette dérivée s annule si z=0,4 Selon notre critère, le système sera le meilleur possible en boucle fermée si z=0,4

49 Si z < 1 Avec

50 Réglage par la marge de phase Système du second ordre Quel est le lien en boucle fermée entre z et C (le gain que je cherche à régler?) Comment régler C pour être certain d avoir z=0,4 en Boucle fermée?

51 Système du second ordre Démonstration au tableau

52 En Boucle ouverte On étudie le cas particulier où la marge de phase est de 45. Par définition, il existe une pulsation ωco pour laquelle le déphasage est de Quelle est la condition sur C pour que le module de Tbo soit égal à 1 en ωco.

53 Pour quelle pulsation le déphasage est-il de 135?

54 A cette pulsation, quel doit être le gain pour obtenir un module égal à 1

55 Récapitulons: Un système est le «meilleur» possible si z=0,4 En boucle fermée on a D autre part, pour avoir une marge de phase est de 45 il faut: Que vaudra le z du système en Boucle fermée si je règle ce gain?

56 Conclusion: Lorsque la marge de phase du système en BO est de 45, le z en BF est égal à 0,4. C est le z idéal pour un système! On règlera toujours le gain pour avoir une marge de phase de 45.

57 Evaluation des performances Réponse à un échelon (cf poly second ordre) : z<1 Le premier dépassement se produit à Il est égal à 23% Rappel d z 1 e 1 z² t1 d w 0 1 z²

58 Cas général Soit un système tel que:

59 En pratique: 1-si TBO est connue: On cherche par le calcul la pulsation ωco pour laquelle le déphasage est de Pour cela on utilise la 1ere condition de la marge de phase: φ m = φ bo (ωco) +π= π/4 On calcule alors le gain pour avoir un module égal à 1 lorsque ω=ωco (deuxième condition de la marge de phase)

60 Si Tbo n est pas connue On trace expérimentalement le diagramme de Bode en BO avec un gain de 1. On détermine graphiquement la pulsation ωco pour laquelle le déphasage est de A cette pulsation, on détermine graphiquement g, le nombre de db dont il faut décaler la courbe pour obtenir 0db. On en déduit le gain K

Performances des SLCI

Performances des SLCI Fichier : _SLCI_performances. Définitions.. Stabilité Il existe plusieurs définition de la stabilité : Pour une entrée e(t) constante, la sortie s(t) du système doit tendre vers une constante. Un système

Plus en détail

Automatique. Stabilité. F. Rotella I. Zambettakis. F. Rotella I. Zambettakis Automatique 1

Automatique. Stabilité. F. Rotella I. Zambettakis.  F. Rotella I. Zambettakis Automatique 1 Automatique Stabilité F. Rotella I. Zambettakis rotella@enit.fr, izambettakis@iut-tarbes.fr F. Rotella I. Zambettakis Automatique 1 La réponse fréquentielle La réponse fréquentielle réponses temporelles

Plus en détail

S tabilité d'un s ys tème as s ervi

S tabilité d'un s ys tème as s ervi Stabilité d'un système asservi page 1 / 5 S tabilité d'un s ys tème as s ervi 1 Notion de stabilité et définition Définition n 1 : on dit que le système est stable si pour une entrée bornée, la sortie

Plus en détail

SYSTEMES LINEAIRES CONTINUS INVARIANTS PERFORMANCES DES SYSTEMES ASSERVIS

SYSTEMES LINEAIRES CONTINUS INVARIANTS PERFORMANCES DES SYSTEMES ASSERVIS YTM LINAIR CONTINU INVARIANT tabilité des systèmes asservis PRFORMANC D YTM ARVI. Notion de stabilité La stabilité est communément reconnue comme étant associée à la notion d équilibre : Prenons les deux

Plus en détail

Correction des systèmes asservis

Correction des systèmes asservis Asservissements continus Correction des systèmes asservis 3 ème année Polytech Paris Sud Département EES Cédric KOENIGUER Plan I. Objectifs de la correction II. Correcteur proportionnel III. Correcteurs

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE COMONTAIGNE. 2 Place Cormontaigne BP 70624. 5700 METZ Cedex Tél.: 03 87 3 85 3 Fax : 03 87 3 85 36 Sciences Appliquées. Savoir-faire expérimentaux. éférentiel : 5 Sciences Appliquées. F

Plus en détail

Correction des systèmes linéaires continus asservis

Correction des systèmes linéaires continus asservis UV Cours 6 Correction des systèmes linéaires continus asservis ASI 3 Contenu! Introduction " Problématique de l'asservissement! Différentes méthodes de correction " Correction série, correction parallèle

Plus en détail

Systèmes asservis linéaires

Systèmes asservis linéaires Systèmes asservis linéaires I Systèmes asservis 1. définition 2. transmittance 3. schéma bloc 4. transmittance d une chaîne II système commandé en boucle fermée 1. système asservi 2. principe de fonctionnement

Plus en détail

CHAP III. PRÉCISION ET STABILITÉ D'UNE BOUCLE

CHAP III. PRÉCISION ET STABILITÉ D'UNE BOUCLE TS2 CIRA Régulation - Chap III Précision et stabilité d'une boucle CHAP III PRÉCISION ET STABILITÉ D'UNE BOUCLE 1 Stabilité d'un système bouclé 11 Etude des pôles de F(p) On considère le système suivant

Plus en détail

INTRODUCTION A LA CORRECTION DES SYSTEMES ASSERVIS

INTRODUCTION A LA CORRECTION DES SYSTEMES ASSERVIS INTRODUCTION A LA CORRECTION DES SYSTEMES ASSERVIS - POSITION DU PROBLEME Le chapitre précédent à permis de définir le comportement d un système asservi à partir de 3 caractéristiques majeures: la rapidité

Plus en détail

TD1: ANALYSE DE STABILITÉ ET DES PERFORMANCES D UN ASSERVISSEMENT. k p(1+0.5p) 2

TD1: ANALYSE DE STABILITÉ ET DES PERFORMANCES D UN ASSERVISSEMENT. k p(1+0.5p) 2 TD1: ANALYSE DE STABILITÉ ET DES PERFORMANCES D UN ASSERVISSEMENT On considère l asservissement suivant : k p(1+0.5p) 2 I. Cas où k = 1 1. Donner l allure dans les plan de Bode, Nyquist et Black du lieu

Plus en détail

ASSERVISSEMENT - Régul 1

ASSERVISSEMENT - Régul 1 ASSEVISSEMENT - égul III. Systèmes asservis III.. Prinipe But : grandeur de sortie = «onsigne» Sortie identique à la onsigne en régime permanent La sortie suit la onsigne lors des transitoires Le système

Plus en détail

Chapitre 4 : systèmes asservis linéaires.

Chapitre 4 : systèmes asservis linéaires. Chapitre 4 : systèmes asservis linéaires. A) Structure d'un système asservi : nécessité du système bouclé : Système en boucle ouverte : consigne venant du cerveau Poussée des muscles. vitesse, trajectoire,

Plus en détail

Utilisation de SimApp pour l analyse des systèmes asservis

Utilisation de SimApp pour l analyse des systèmes asservis Utilisation de SimApp pour l analyse des systèmes asservis Étude du maintien en altitude d un avion type Airbus Robert Papanicola Lycée Jacques Amyot 26 janvier 2010 Robert Papanicola (Lycée Jacques Amyot)

Plus en détail

Cours de Signaux PeiP2

Cours de Signaux PeiP2 PeiP Signaux Table des matières Cours de Signaux PeiP S. Icart Généralités. Définitions..................................... Propriétés de la transformée de Laplace.....................3 Transformées de

Plus en détail

2) Stabilite et precision

2) Stabilite et precision Table des matières Les nombres complexes 2. Présentation..................................... 2.2 Plan complexe.................................... 2.3 Module et argument................................

Plus en détail

CH21 : Les correcteurs

CH21 : Les correcteurs BTS ELT 2 ème année - Sciences physiques appliquées CH2 : Les correcteurs Enjeu : régulation et asservissement des systèmes Problématique : Comment améliorer les performances d un système bouclé lorsque

Plus en détail

Chap.4 Commande d un système linéaire : Systèmes bouclés

Chap.4 Commande d un système linéaire : Systèmes bouclés Chap.4 Commande d un système linéaire : Systèmes bouclés 1. Structure d un système bouclé 1.1. Schéma bloc 1.2. Principe de régulation 1.3. Comportement du système : FTBF 2. Avantages du bouclage Cas d

Plus en détail

Réponse fréquentielle d un circuit linéaire Filtres du premier et du second ordre

Réponse fréquentielle d un circuit linéaire Filtres du premier et du second ordre Réponse fréquentielle d un circuit linéaire Filtres du premier et du second ordre I. Présentation de l étude d un circuit linéaire 1) Ordre d un circuit Considérons un circuit soumis à une excitation (grandeur

Plus en détail

Phase Locked Loop (PLL)

Phase Locked Loop (PLL) Boucle à Verrouillage de phase Phase Locked Loop () 4ème année Polytech Département EES 2013 Cédric KOENIGUER Plan I. Présentation d une II. Etude des comparateurs de phases III. Mise en évidence de la

Plus en détail

13- Stabilité dun système linéaire. H(p) jean-philippe muller. sortie y(t), Y(p) Systèmes asservis linéaires. entrée x(t), X(p)

13- Stabilité dun système linéaire. H(p) jean-philippe muller. sortie y(t), Y(p) Systèmes asservis linéaires. entrée x(t), X(p) 13- Stabilité dun système linéaire Soit un système linéaire possédant une entrée x(t) et une sortie y(t), et déini par sa transmittance de Laplace G(p) composée dun numérateur N(p) et dun dénominateur

Plus en détail

Le filtrage analogique en questions

Le filtrage analogique en questions Le filtrage analogique en questions Version juillet 2002 jean-philippe muller Questions 1 On réalise le filtre suivant, avec = 10 kω et = 10 nf, et on injecte à l entrée un signal sinusoïdal : s(t) a)

Plus en détail

Cours d Electronique analogique. Fabrice Sincère (version 2.0.1)

Cours d Electronique analogique. Fabrice Sincère (version 2.0.1) Cours d Electronique analogique Fabrice Sincère (version 2.0.) http://perso.orange.fr/fabrice.sincere Chapitre 3 Filtrage analogique Introduction Un filtre est un circuit dont le comportement dépend de

Plus en détail

Action proportionnel - P Action Intégrale - I Action Dérivée - D Action P.I.D. Part VIII. Construction de correcteurs

Action proportionnel - P Action Intégrale - I Action Dérivée - D Action P.I.D. Part VIII. Construction de correcteurs Part VIII Construction de correcteurs Sommaire Thanks to Yassine Ariba, Doctorant groupe Mac 28 Action proportionnel - P 29 Action Intégrale - I Correcteur intégral pur Correcteur proportionnel intégral

Plus en détail

Synthèse de correcteurs

Synthèse de correcteurs Synthèse de correcteurs 1 Les actions Proportionnelles, Intégrales et Dérivées Compte tenu de certains choix (e.g., celui du facteur de résonance), on peut, grâce à des organes appelés correcteurs, améliorer

Plus en détail

TD Correction des SLCI

TD Correction des SLCI TD Correction des SLCI Compétences travaillées : Déterminer la précision en régime permanent, Quantifier les performances d un SLCI : o calculer rapidement l erreur, caractérisant la précision, o appliquer

Plus en détail

Réponse indicielle des systèmes linéaires analogiques

Réponse indicielle des systèmes linéaires analogiques Réponse indicielle des systèmes linéaires analogiques Le chapitre précédent a introduit une première méthode de caractérisation des systèmes analogiques linéaires avec l analyse fréquentielle. Nous présentons

Plus en détail

Cours n 7. Synthèse de correcteurs. December 23, 2016

Cours n 7. Synthèse de correcteurs. December 23, 2016 Cours n 7 Synthèse de correcteurs vincent.mahout@insa-toulouse.fr December 23, 216 vincent.mahout@insa-toulouse.fr Cours n 7 December 23, 216 1 / 57 Problématique Le correcteur proportionnel K n est pas

Plus en détail

http ://ptetoile.free.fr/ Automatique

http ://ptetoile.free.fr/ Automatique Notions de base. Définitions Système continu : les variations des grandeurs physiques le caractérisant sont des fonctions de variables continues Système linéaire : Système régit par le principe de proportionnalité

Plus en détail

DOCUMENTS RESSOURCES

DOCUMENTS RESSOURCES CORRECTIONS DES ASSERVISSEMENTS DES SYSTEMES LINEAIRES 1- MODELISATION DES SYSTEMES ASSERVIS LINEAIRES Afin d éviter des éventuelles perturbations pouvant agir sur le circuit de la chaîne directe et déstabiliser

Plus en détail

Contrôleurs : domaine fréquentiel

Contrôleurs : domaine fréquentiel Chapitre 9 Contrôleurs : domaine fréquentiel Dans ce chapitre, on se sert des diagrammes de Bode pour designer des compensateurs pour améliorer la stabilité, la réponse transitoire, et l erreur statique..

Plus en détail

Fiche Module Sciences et Technologies Informatique industrielle Licence

Fiche Module Sciences et Technologies Informatique industrielle Licence Ministère de l Enseignement Supérieur, de la Recherche Scientifique et des Technologies de l Information et de la Communication Université de Carthage Institut Supérieur des Technologies de l Information

Plus en détail

CI-2-1 PRÉVOIR ET VÉRIFIER LES

CI-2-1 PRÉVOIR ET VÉRIFIER LES CI-2-1 PRÉVOIR ET VÉRIFIER LES PERFORMANCES DES SYSTÈMES LI- NÉAIRES CONTINUS INVARIANTS. Objectifs A l issue de la séquence, l élève doit être capable : B3 Valider un modèle SIMULER - VALIDER Réduire

Plus en détail

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I. PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.. Donner les erreurs en position, en vitesse et en accélération d un système de transfert F BO = N(p) D(p) (transfert en boucle ouverte) bouclé par retour

Plus en détail

M1 CSy module P8 PROJET DE SIMULATION AVEC MATLAB Commande de la position angulaire d une antenne

M1 CSy module P8 PROJET DE SIMULATION AVEC MATLAB Commande de la position angulaire d une antenne M1 CSy module P8 PROJET DE SIMULATION AVEC MATLAB Commande de la position angulaire d une antenne Christophe Calmettes & Jean-José Orteu On considère le système représenté sur la figure 1 et constitué

Plus en détail

Systèmes linéaires :

Systèmes linéaires : Systèmes linéaires : Définitions Le vocabulaire de la Théorie de la Réponse Linéaire (déterminisme, linéarité, invariance temporelle, convergence) et sa signification physique Savoir que le domaine de

Plus en détail

Si ω 0 alors Z C (refaire le schéma en supprimant la branche contenant le condensateur) et U s U e.

Si ω 0 alors Z C (refaire le schéma en supprimant la branche contenant le condensateur) et U s U e. MPSI - Électrocinétique II - Filtre du er ordre page /6 Filtre du er ordre Table des matières Introduction Filtre passe-bas du premier ordre. Comportement asymptotique...................... Fonction de

Plus en détail

TD d Électrocinétique : Filtres

TD d Électrocinétique : Filtres TD d Électrocinétique : Filtres Ex-TD/E6 Filtre On considère le filtre suivant tension de sortie v s : 5 Dans toute la suite de l exercice, on fera l hypothèse que τ τ Le gain en décibel du a filtre sera

Plus en détail

MODÈLES DE RÉFÉRENCES

MODÈLES DE RÉFÉRENCES Plan ANALYSE TEMPORELLE ANALYSE HARMONIQUE 3 MODÈLES DE RÉFÉRENCES 3 MODÈLE PROPORTIONNEL 3 MODÈLE D ORDRE 33 MODÈLE D ORDRE 34 MODÈLE INTÉGRATEUR 4 IDENTIFICATION MODÈLES DE COMPORTEMENT 4 IDENTIFICATION

Plus en détail

Synthèse des correcteurs analogiques :

Synthèse des correcteurs analogiques : Synthèse des correcteurs analogiques : Thierry CHATEAU 1 1. LASMEA, UMR6602 CNRS/UBP Clermont-Ferrand T. CHATEAU P. 1 Plan 1. Problématique 2. Notion de réglabilité 3. Objectifs de la régulation 4. Correcteurs

Plus en détail

SYSTEMES ASSERVIS. /home/marie/lycée/bts_crsa/uf32_m41/crsa_systemesasservis.odp

SYSTEMES ASSERVIS. /home/marie/lycée/bts_crsa/uf32_m41/crsa_systemesasservis.odp SYSTEMES ASSERVIS Asservissement? L asservissement est l art de contrôler quelque chose de concret afin qu'il se comporte comme on le souhaite. Il existe deux grands types d asservissement : - La régulation

Plus en détail

9 Tracé des diagrammes de Bode

9 Tracé des diagrammes de Bode 9 Tracé des diagrammes de Bode 9.1 Gain pur La fonction de transfert d un gain pur est H(P)=, la fonction de transfert harmonique est donc identique : H(jω)=. D où : Le gain en décibel : G db = 0log La

Plus en détail

AUTOMATIQUE. EXERCICE I Synthèse et analyse de correcteurs

AUTOMATIQUE. EXERCICE I Synthèse et analyse de correcteurs ENSIEG 1 ère année août 28 AUTOMATIQUE Durée totale de l épreuve : 3 heures Documents autorisés L épreuve comprend 3 exercices indépendants Mettre votre nom et répondre directement sur les feuilles de

Plus en détail

Traitement du Signal Compte Rendu TP 5 : Filtre RC

Traitement du Signal Compte Rendu TP 5 : Filtre RC Traitement du Signal Compte Rendu TP 5 : Filtre EE345 Traitement du Signal : CAILLOL Julien p28 IR 6/juin I ) ère partie Nous allons ici étudier la chaîne de traitement numérique associée au montage électrique

Plus en détail

BTS Groupement A. Mathématiques Session 2012

BTS Groupement A. Mathématiques Session 2012 BTS Groupement A Mathématiques Session 0 Exercice : 0 points Spécialités Informatique et réseaux pour l industrie et les services techniques Systèmes Électroniques - Électrotechnique Génie optique Une

Plus en détail

Représentation et analyse des systèmes linéaires PC 6 Analyse fréquentielle des systèmes bouclés

Représentation et analyse des systèmes linéaires PC 6 Analyse fréquentielle des systèmes bouclés Représentation et analyse des systèmes linéaires PC 6 Analyse fréquentielle des systèmes bouclés Analyse fréquentielle des systèmes bouclés 2 Soit l asservissement à retour unitaire : r + ζ K(p) u G(p)

Plus en détail

TD d Électronique de puissance - Mécatronique : Asservissement en vitesse d une Machine Synchrone triphasée autopilotée

TD d Électronique de puissance - Mécatronique : Asservissement en vitesse d une Machine Synchrone triphasée autopilotée TD d Électronique de puissance - Mécatronique : Asservissement en vitesse d une Machine Synchrone triphasée autopilotée 1 Présentation Ce TP propose d étudier le pilotage d une machine synchrone à pôles

Plus en détail

TRACE DE DIAGRAMME DE BODE

TRACE DE DIAGRAMME DE BODE TRACE DE DIAGRAMME DE BODE Le diagramme de Bode permet de représenter sous forme graphique le gain en db (G=20 log et la phase ( d'une fonction de transfert, en fonction de w. Il permet de voir le comportement

Plus en détail

SYSTEMES LINEAIRES CONTINUS INVARIANTS

SYSTEMES LINEAIRES CONTINUS INVARIANTS SYSTEMES LINEAIRES CONTINUS INVARIANTS (Partie 1 & 2) L étude détaillée se limite aux systèmes de bases, c est à dire aux systèmes du premier ordre et du second ordre. En effet l étude des autres systèmes

Plus en détail

CHAPITRE 10 : LES DIAGRAMMES ASYMPTOTIQUES DE BODE

CHAPITRE 10 : LES DIAGRAMMES ASYMPTOTIQUES DE BODE CHAPITRE 0 : LES DIAGRAMMES ASYMPTOTIQUES DE BODE LES DIAGRAMMES ASYMPTOTIQUES DE BODE... 7 INTRODUCTION... 8 RAPPELS MATHÉMATIQUES... 8 Multiplication de deux nombres complexes... 8 Inversion d'un nombre

Plus en détail

Brevet de technicien supérieur novembre groupement A Nouvelle-Calédonie

Brevet de technicien supérieur novembre groupement A Nouvelle-Calédonie Brevet de technicien supérieur novembre 2012 - groupement A Nouvelle-Calédonie A. P. M. E. P. Exercice 1 10 points Une entreprise fabrique des appareils électroniques en grande série. En vue d améliorer

Plus en détail

TRAITEMENT DU SIGNAL

TRAITEMENT DU SIGNAL Spé ψ 0-0 Devoir n 3 TAITEMENT DU SIGNAL Ce problème étudie quelques aspects d un instrument essentiel dans le guidage des avions : l altimètre. Les quatre parties sont totalement indépendantes. Un formulaire

Plus en détail

Travaux dirigés d automatique N o 1

Travaux dirigés d automatique N o 1 TD d automatique Licence 3 ESA 2015/2016 1 Travaux dirigés d automatique N o 1 transformée de Laplace Démontrer les propriétés suivantes de la transformée de Laplace : 1. La transformée de Laplace d un

Plus en détail

Brevet de Technicien Supérieur Groupement A22

Brevet de Technicien Supérieur Groupement A22 Brevet de Technicien Supérieur Groupement A22 MATHÉMATIQUES SESSION 2012 SPÉCIALITÉS COEFF DURÉE INFORMATIQUE ET RÉSEAUX POUR L INDUSTRIE ET LES SERVICES 3 3 TECHNIQUES SYSTÈMES ÉLECTRONIQUES 2 3 ÉLECTROTECHNIQUE

Plus en détail

Quadripôles électriques

Quadripôles électriques Retour au menu! Définition des quadripôles Quadripôles électriques De nombreux circuits peuvent être représentés par une «boîte» munie de deux bornes d entrée et de deux bornes de sortie, que l on nomme

Plus en détail

S13 - Filtrage passif. Signaux physiques. Chapitre 13 : Filtrage passif

S13 - Filtrage passif. Signaux physiques. Chapitre 13 : Filtrage passif Signaux physiques Chapitre 3 : Filtrage passif Sommaire Fonction de transfert. Notion de quadripôle............................................... Fonction de transfert...............................................3

Plus en détail

Stabilité. Un sujet très important, une propriété globale. Systèmes rationnels. Stabilisation par feed-back. Placement de pôles. Théorie de Lyapunov

Stabilité. Un sujet très important, une propriété globale. Systèmes rationnels. Stabilisation par feed-back. Placement de pôles. Théorie de Lyapunov Stabilité des systèmes Un sujet très important, une propriété globale Stabilité Systèmes rationnels Stabilisation par feed-back Placement de pôles Théorie de Lyapunov asymp Stabilité Un système déplacé

Plus en détail

Introduction à l Automatique. Cours AQ N 2

Introduction à l Automatique. Cours AQ N 2 Introduction à l Automatique Cours AQ N 2 Plan Définitions de base et exemples Notion de Boucle ouverte Notion d asservissement Modélisation d un système asservi Exemple Définitions Système: dispositif

Plus en détail

Plan du cours. Introduction. Thierry CHATEAU. 11 avril 2011

Plan du cours. Introduction. Thierry CHATEAU. 11 avril 2011 du cours compensation de pôles PID Numérique Placement de pôles (RST) /précision 11 avril 2011 Modèle bloqué d'une fonction de transfert Signaux discrêt Echantillonnage AuroFC2U1 AuroFC2U2 AuroFC3U1 AuroFC3U2

Plus en détail

Automatique linéaire 1

Automatique linéaire 1 Cycle ISMIN 1A Automatique linéaire 1 J.M. Dutertre 2016 www.emse.fr/~dutertre Automatique linéaire 1 Cadre du cours : étude des systèmes linéaires continus. Plan du cours : I. Introduction, Définitions,

Plus en détail

M4 Systèmes linéaires. Systèmes asservis

M4 Systèmes linéaires. Systèmes asservis Systèmes asservis Objectif global d un procédé = maîtrise d une grandeur But d une régulation : garantir un fonctionnement conforme à l objectif final, en appliquant des ajustements lorsqu un écart par

Plus en détail

Déterminer le module et l argument des nombres complexes suivants : z 1 = 1 + j ; z 2 = j ; z 3 = 4 ; z 4 = - 1 j ; z 5 = 2 3j ;

Déterminer le module et l argument des nombres complexes suivants : z 1 = 1 + j ; z 2 = j ; z 3 = 4 ; z 4 = - 1 j ; z 5 = 2 3j ; EXERCICES SUR LES NOMBRES COMPLEXES Exercice Déterminer le module et l argument des nombres complexes suivants : z = + j ; z 2 = - 4 + 3j ; z 3 = 4 ; z 4 = - j ; z 5 = 2 3j ; Écrire sous la forme trigonométrique

Plus en détail

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CHAPITRE 5 ÉTUDE DES SYSTÈMES FONDAMENTAUX DU SECOND ORDRE Amortisseur d un véhicule automobile Schématisation du mécanisme

Plus en détail

Calculation de régulateurs

Calculation de régulateurs Chapitre 4 Calculation de régulateurs Objectifs 1. Savoir calculer des régulateurs pour des réponses de step et de sinus 2. Connaître les propriétés de base de quelques régulateurs 4.1 Propriétés d un

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation Ce que dit le programme : Nouveautés par rapport à la première : Dérivée de la composée et écriture différentielle (pour la physique)

Plus en détail

Quadripôles/ Réponse en fréquence et diagramme de Bode

Quadripôles/ Réponse en fréquence et diagramme de Bode Quadripôles/ Réponse en fréquence et diagramme de Bode Chapitre Dans ce chapitre la définition des quadripôles, leurs différents types ainsi que leurs paramètres sont étudiés. L analyse fréquentielle et

Plus en détail

TD 4 : CI-2-3 PRÉVOIR LES RÉPONSES TEMPORELLES ET FRÉ-

TD 4 : CI-2-3 PRÉVOIR LES RÉPONSES TEMPORELLES ET FRÉ- TD : CI-- PRÉVOIR LES RÉPONSES TEMPORELLES ET FRÉ- QUENTIELLES D UN SYSTÈME DU PREMIER OU SECOND ORDRE Exercice : Analyse de courbes Q - : Associer à chacune des courbes suivantes (repérées par les chiffres

Plus en détail

Mathématiques/Sciences Physiques Séance N 1 Ondes stationnaires Ondes progressives

Mathématiques/Sciences Physiques Séance N 1 Ondes stationnaires Ondes progressives Mathématiques/Sciences Physiques Séance N 1 Ondes stationnaires Ondes progressives PARTIE 1 : Etude d une onde progressive 1 On cherche dans un premier temps à tracer l élongation y en un point M au cours

Plus en détail

C 641 Actionneurs et régulateurs industriels

C 641 Actionneurs et régulateurs industriels C 641 Actionneurs et régulateurs industriels Alessandro GIUA LSIS UMR-CNRS 6168 Cours 18h 3A - Génie Industriel et Informatique Polytech' Marseille 2015 1 Leçon 2 Stabilité des systèmes linéaires et temps-invariants

Plus en détail

Régulation de température d une soufflerie

Régulation de température d une soufflerie Régulation de température d une soufflerie Mise en situation La figure suivante donne le schéma de principe d une soufflerie. Une turbine aspire de l air ambiant, et le refoule avec un débit constant dans

Plus en détail

ISET DE SOUSSE TRAVAUX PRATIQUES. Systèmes échantillonnés

ISET DE SOUSSE TRAVAUX PRATIQUES. Systèmes échantillonnés ISET DE SOUSSE TRAVAUX PRATIQUES Systèmes échantillonnés Listes des travaux pratiques : 1- Etude des systèmes échantillonnés à l aide du logiciel Matlab-Simulink. 2- Régulation numérique. 3- Régulation

Plus en détail

Stabilité du robot. Question 1. Montrer que {T sol pied } est un glisseur. [ O S ;C S. ], c'est à-dire qu'il est situé sous le pied du robot.

Stabilité du robot. Question 1. Montrer que {T sol pied } est un glisseur. [ O S ;C S. ], c'est à-dire qu'il est situé sous le pied du robot. Stabilité du robot Question 1. Montrer que {T sol pied } est un glisseur. Question 2. Montrer que H S [ O S ;C S ], c'est à-dire qu'il est situé sous le pied du robot. Copie PSI page 1/12 Question 3. Donner

Plus en détail

Chapitre 7. Etudes de fonctions

Chapitre 7. Etudes de fonctions . Dérivée première et croissance.. Croissance et décroissance Chapitre 7. Etudes de fonctions Au début de ce cours d analyse, nous avons défini la croissance et la décroissance d une fonction. Pour rappel

Plus en détail

Correction des systèmes linéaires

Correction des systèmes linéaires Correction des systèmes linéaires 1. Introduction Le comportement d'un système de commande a été analysé en étudiant sa dynamique et sa stabilité à partir des propriétés de sa fonction de transfert. Ce

Plus en détail

Électrocinétique - partie 2 Chapitre 6

Électrocinétique - partie 2 Chapitre 6 Électrocinétique - partie Introduction On s intéresse ici à la réponse fréquentielle des réseau linéaires par opposition à la réponse temporelle étudiée usqu à présent. Plan du chapitre : I. : on ustifie

Plus en détail

Réponse dans le domaine temporel

Réponse dans le domaine temporel Chapitre 3 Réponse dans le domaine temporel On étudie ici le comportement des systèmes de premier et second ordre et leur réponse en fonction du temps. Les caractéristiques de ces systèmes sont étudiés

Plus en détail

TP3 Modélisation et commande d un pendule inversé

TP3 Modélisation et commande d un pendule inversé TP3 Modélisation et commande d un pendule inversé 1 Objectifs L objectif de ce TP est de contrôler un pendule inversé. Pour parvenir à cet objectif, il est nécessaire au préalable de : modéliser le chariot

Plus en détail

Correction et amélioration des performances des SLCI

Correction et amélioration des performances des SLCI Correction et aélioration des perforances des SLCI Nous avons vu les paraètres influents sur les perforances des SLCI : pour avoir une bonne rapidité, il faut que le systèe ait un gain de la FTBO élevé,

Plus en détail

EXAMEN D'AUTOMATIQUE

EXAMEN D'AUTOMATIQUE 1 EXAMEN D'AUTOMATIQUE Durée : 2 h 30 ; durées conseillées : exercices : 30 mn ; problème 2 h. Barème : partie A : 8 points : partie B : 12 points. Choix : partie A : ex. E2 ou E3 ; partie B : questions

Plus en détail

ELEMENTS DE CORRECTION

ELEMENTS DE CORRECTION LES SYSTEMES D ASSERVISSEMENTS DES MOTEURS à COURANT CONTINU Etude du comportement des gyropodes - Le robot Nxt de Lego Eléments de correction A- Exploitation des ressources et préparation à l étude théorique

Plus en détail

Résonance électrique

Résonance électrique lectrocinétique 5 ésonance électrique I. éponse du dipôle LC série à une excitation sinusoïdale Soit un circuit LC série, et un générateur de tension e(t) = cos t de résistance interne négligeable. A t

Plus en détail

TABLE DES MATIERES AVANT PROPOS 13

TABLE DES MATIERES AVANT PROPOS 13 TABLE DES MATIERES AVANT PROPOS 13 CH. 1. NOTIONS DE SYSTEME ASSERVI 15 1.1. Régulation et asservissement 15 1.1.1. Régulation 15 1.1.2. Asservissement 15 1.2. Structure de la commande en boucle fermée

Plus en détail

Les circuits oscillants

Les circuits oscillants Chapitre Les circuits oscillants SamyLab 6/0/009 Cours et exercices de communications sur Samylab.com SamyLab.com I. La résonance I.. Circuit résonants série Soit un circuit RLC série, une tension v t

Plus en détail

École de technologie supérieure GPA ANNEXE-2 TRANSFORMÉE DE LAPLACE ET TRANSFORMÉE INVERSE DE LAPLACE TI-89/92/92+

École de technologie supérieure GPA ANNEXE-2 TRANSFORMÉE DE LAPLACE ET TRANSFORMÉE INVERSE DE LAPLACE TI-89/92/92+ École de technologie supérieure GPA-535 1 ANNEXE-2 TRANSFORMÉE DE LAPLACE ET TRANSFORMÉE INVERSE DE LAPLACE TI-89/92/92+ [A2-1]. DESCRIPTION La librairie de fonctions concernant la transformée de Laplace

Plus en détail

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée I- DÉRIVÉE ET SENS DE VARIATION 1) Du sens de variation au signe de la dérivée Théorème (admis) : soit f une fonction définie et dérivable sur un intervalle I. o Si f est une fonction croissante sur I,

Plus en détail

Asservissement de vitesse Correcteur à action proportionnelle et intégrale

Asservissement de vitesse Correcteur à action proportionnelle et intégrale Asservissement de vitesse Correcteur à action proportionnelle et intégrale I- But Cet essai système permet de vérifier expérimentalement les résultats théoriques obtenus dans le cours des systèmes asservis

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

TD Automatique : Correction. ( p)

TD Automatique : Correction. ( p) TD Automatique : Correction Exercice : Correction PI (réglage dans Black) Soit le système G(p) : G ( p) = (.5 p) 2 2 ( p + 2 p + 2) Le cahier des charges stipule que : l erreur de position doit être annulée

Plus en détail

COMMANDE DE PROCESSUS INTRODUCTION À LA COMMANDE DE PROCESSUS DOCUMENT DE SYNTHÈSE

COMMANDE DE PROCESSUS INTRODUCTION À LA COMMANDE DE PROCESSUS DOCUMENT DE SYNTHÈSE COMMANDE DE PROCESSUS INTRODUCTION À LA COMMANDE DE PROCESSUS DOCUMENT DE SYNTHÈSE Ressources pédagogiques : http://cours.espci.fr/cours.php?id=159397 Forum aux questions : https://iadc.info.espci.fr/bin/cpx/mforum

Plus en détail

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES)

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES) DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

DERIVATION. ou f'(x 0 ) = lim. h 0

DERIVATION. ou f'(x 0 ) = lim. h 0 DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie Finance et Gestion L1-S1 : MATH101 : Pratique des Fonctions numériques Notes de cours : Chapitre II : Limites Notations

Plus en détail

Analyse et Commande des systèmes linéaires

Analyse et Commande des systèmes linéaires Analyse et Commande des systèmes linéaires Frédéric Gouaisbaut LAAS-CNRS Tel : 05 61 33 63 07 email : fgouaisb@laas.fr webpage: www.laas.fr/ fgouaisb October 8, 2009 Sommaire 1 Introduction à l automatique

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation ) Définition et interprétation géométrique : Soient f une fonction définie sur un intervalle I de R et a I. La fonction est dérivable

Plus en détail

Exercices supplémentaires : Suites

Exercices supplémentaires : Suites Exercices supplémentaires : Suites Partie A : Calculs de termes et représentation graphique Exercice On considère la suite définie par 4 pour tout N. Calculer,, et Exercice On considère la suite définie

Plus en détail

Adapter la commande d'un système linéaire et continu asservi pour optimiser. ses performances globales

Adapter la commande d'un système linéaire et continu asservi pour optimiser. ses performances globales Adapter la commande d'un système linéaire et continu asservi pour optimiser ses performances globales Sommaire Adapter la commande d'un système linéaire et continu asservi pour optimiser ses performances

Plus en détail

I Introduction. TP Ondes 1 Câble coaxial. 1 Présentation. 2 Méthodes

I Introduction. TP Ondes 1 Câble coaxial. 1 Présentation. 2 Méthodes TP Ondes 1 Câble coaxial I Introduction 1 1 Présentation 1 2 Méthodes 1 II Rappel 2 1 Équation de propagation 2 2 Réflexion en bout de ligne 2 III Régime impulsionnel 3 1 Impédance caractéristique 3 2

Plus en détail

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR DEUXIEME ANNÉE : MP

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR DEUXIEME ANNÉE : MP I - OBJECTIFS DE FORMATION FINALITES SCIENCES INDUSTRIELLES POUR L INGÉNIEUR DEUXIEME ANNÉE : MP Les sciences industrielles pour l ingénieur en classes préparatoires marocaines renforcent l interdisciplinarité

Plus en détail

Asservissement de vitesse de moteur à courant continu (petite puissance 14W)

Asservissement de vitesse de moteur à courant continu (petite puissance 14W) Asservissement de vitesse de moteur à courant continu (petite puissance 14W) Une petite machine à courant continu (qqs 10 W) à aimants permanents alimentée par un hacheur sur son induit, entraine grâce

Plus en détail

DS de Sciences de l Ingénieur, PCSI2, décembre 13

DS de Sciences de l Ingénieur, PCSI2, décembre 13 DS de, PCSI, décembre 3 Durée : h Corrigé sur le site : http://perso.numericable.fr/starnaud/ Question de cours Tracer (sans calcul) le diagramme de Bode du système de fonction de transfert : 0 H 0,. p

Plus en détail