TRANSLATION et VECTEURS : Composition de deux symétries centrales. 3ème_Chap.5_Translation et Vecteurs

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "TRANSLATION et VECTEURS : Composition de deux symétries centrales. 3ème_Chap.5_Translation et Vecteurs"

Transcription

1 TRANSLATION et VECTEURS : Composition de deux symétries centrales 1

2 Activité «avant de démarrer» p200 LIEN ENTRE TRANSLATION ET VECTEUR 2

3 I VECTEURS 1. Définition Un vecteur est défini par une direction, un sens et une longueur On note : AB et on lit «le vecteur AB» B Le vecteur AB a pour : direction : la droite (AB) sens : celui de la demi-droite [AB) longueur : la distance AB (celle du segment [AB] origine : le point A extrémité : le point B A 3

4 Exemple : Les deux vecteurs ci-contre ont la même direction, mais ni le même sens, ni la même longueur Propriétés Si deux vecteurs sont égaux, alors ils ont la même direction, le même sens et la même longueur Si deux vecteurs ont la même direction, le même sens et la même longueur, alors ils sont égaux 4

5 5

6 Exemple : Soient A, B, D trois points non alignés. Tracer le point C tel que AB = DC en utilisant uniquement la règle non graduée et le compas On pose u = AB = DC On a bien : (AB) // (DC) [AB) et [DC) ont le même sens AB = DC On dit que AB et DC sont des représentants du vecteur u A u B D u C 6

7 Si deux vecteurs sont égaux à un même troisième, alors ils sont égaux entre eux Ce sont des représentants d un même vecteur 7

8 II TRANSLATION et VECTEURS 1. Définition Soient deux points A et A' et la translation qui transforme A en A. Cette transformation est aussi appelée translation de vecteur AA. L image du point M par la translation de vecteur AA est le point M tel que : MM = AA On dit aussi que M est le translaté de M par la translation de vecteur AA A' A M' M 8

9 Conséquence : Si le point C est l image du point D par la translation de vecteur AB, alors les vecteurs AB et CD sont égaux. 2. Propriétés La translation conserve les longueurs L image d une droite (ou d un segment) par une translation est une droite (ou un segment) parallèle La translation conserve la mesure des angles, les aires, L image d un cercle par une translation est un cercle de même rayon 9

10 Construire l image du cercle (C) par la translation de vecteur AB A B O O' 10

11 III EGALITES VECTORIELLES ET PARALLELOGRAMME 1 Propriétés a. Soient quatre points A, B, C et D 1. Si AB = CD, alors ABDC est un parallélogramme 2. Réciproquement, si ABDC est un parallélogramme, alors AB = CD On a aussi : BA = DC ; BD = AC et DB = CA. Démonstration : 11

12 AB = CD On a donc un quadrilatère ABDC tel que: (AB) // (CD) [AB) et [CD) ont le même sens AB = CD or si un quadrilatère non croisé a deux cotés opposés parallèles et de même longueur alors c est un parallélogramme Donc ABDC est un parallélogramme 12

13 b. Soient quatre points A, B, C et D 1. Si AB = CD, alors [AD] et [BC] ont le même milieu 2. Réciproquement, si [AD] et [BC] ont le même milieu alors AB = CD Démonstration : 13

14 AB = CD Donc d après la propriété a., ABDC est un parallélogramme Or si un quadrilatère est un parallélogramme alors ses diagonales se coupent en leur milieu Donc [AD] et [BC] ont le même milieu 14

15 c. Si le point C est l image de D par la translation de vecteur AB alors les vecteurs AB et DC sont égaux (et réciproquement). C est la définition de la translation. 15

16 2. Propriété caractéristique (ou définition vectorielle) du milieu d un segment Soient trois points A, B, et C 1) Si AB = BC, alors B est le milieu de [AC] 2) Réciproquement, si B est le milieu de [AC], alors AB = BC Démonstration : 16

17 AB = BC On a donc, en particulier: (AB) // BC) [AB) et [BC) ont le même sens dans ce cas A, B et C sont alignés dans cet ordre AB = BC Par conséquent, par définition, B est le milieu de [AC] 17

18 III ADDITION VECTORIELLE 1. Composition de deux translations ; somme de deux vecteurs a.vocabulaire Composer deux translations, c'est appliquer deux translations, l'une après l'autre 18

19 b. Propriété Soient A, B et C trois points Si on applique la translation de vecteur AB, suivie de la translation de vecteur BC, alors on obtient la translation de vecteur AC On dit que le vecteur AC est la somme des vecteurs AB et BC et on note : AB + BC = AC C est la Relation de Chasles 19

20 Remarque : en général, AB + BC AC Ceci n est vrai que si B appartient à [AC]! 20

21 2. Remarques a. Vecteur nul Avec la relation de Chasles, on a : AA + AB = AB et AB + BB = AB On dit que : AA et BB sont deux représentants du vecteur nul, noté 0 21

22 b. opposés Avec la relation de Chasles, on a : AB + BA = AA soit AB + BA = 0 On note : BA = - AB On a alors AB + ( AB ) = 0. On dit que le vecteur BA est l'opposé du vecteur AB ( AB et BA ont même direction, même longueur mais des sens différents!) 22

23 c. Propriété Dans une addition vectorielle, on peut changer l ordre des termes, cela ne change pas le résultat Exemples : Simplifier les sommes vectorielles suivantes : AC + BA = BA + AC AC + BA = BC {On applique la propriété} d après la relation de Chasles 23

24 AC AB + CB = AC + BA + = BA + AC + CB = BC + CB = BB AC AB + CB = 0 CB D après la propriété précédente D après la relation de Chasles D après la relation de Chasles 24

25 3. Règle du parallélogramme Si A, B et C sont trois points non-alignés, la somme des vecteurs AB et AC est le vecteur AM tel que ABMC soit un parallélogramme Démonstration Soit A, B et C trois points non alignés On construit le point M tel que ABMC soit un parallélogramme 25

26 On doit «calculer» : AB + AC On a : ABMC parallélogramme donc par propriété BM = AC Par conséquent : AB + AC = AB + BM AB + AC = AM d après la relation de Chasles C est la règle du parallèlogramme. 26

Vecteurs. Seconde. Eric Leduc 2014/2015. Lycée Jacquard. Vecteurs. Eric Leduc. Translations - Vecteurs associés. Opérations sur les vecteurs

Vecteurs. Seconde. Eric Leduc 2014/2015. Lycée Jacquard. Vecteurs. Eric Leduc. Translations - Vecteurs associés. Opérations sur les vecteurs - Seconde Lycée Jacquard 2014/2015 Rappel du plan - 1-2 3 4 5 Translation - Définition n o 1: Translation On considère deux points A et B du plan. On appelle translation qui transforme A en B la transformation

Plus en détail

Vecteurs, cours pour la classe de seconde

Vecteurs, cours pour la classe de seconde F.Gaudon 24 janvier 2010 Table des matières 1 Notions de translation et de vecteurs 2 2 Coordonnées de vecteurs 3 3 Somme de vecteurs 5 3.1 Relation de Chasles....................................... 5

Plus en détail

Géométrie 1 Vecteurs Translation et vecteurs

Géométrie 1 Vecteurs Translation et vecteurs Géométrie 1 Vecteurs Translation et vecteurs Compétences Construire l image d un point (d une figure) par une translation Exemples 1 à 5 Connaître le vocabulaire lié aux vecteurs Exemples 6 et 7 Utiliser

Plus en détail

Les vecteurs. Année 2014/2015. Lycée du golfe de Saint Tropez

Les vecteurs. Année 2014/2015. Lycée du golfe de Saint Tropez Les vecteurs Lycée du golfe de Saint Tropez Année 2014/2015 Seconde ( Lycée du golfe de Saint Tropez) Vecteurs Année 2014/2015 1 / 21 1 Notion de vecteur s Égalité de deux vecteurs 2 s Propriétés 3 Construction

Plus en détail

Seconde Chapitre 1 : Les vecteurs (1) Page 1 sur 6

Seconde Chapitre 1 : Les vecteurs (1) Page 1 sur 6 Seconde Chapitre 1 : Les vecteurs (1) Page 1 sur 6 I ) Translation : Activité : Une télécabine se déplace le long d un câble de A vers B. Dessiner ci dessus la télécabine lorsqu elle sera arrivée au terminus

Plus en détail

Chapitre 9 : Géométrie vectorielle

Chapitre 9 : Géométrie vectorielle Chapitre 9 : Géométrie vectorielle I Notion de vecteur 1 Translation et vecteur Soit A et B deux points du plan La translation qui transforme A en B associe à tout point C du plan l unique point D tel

Plus en détail

Vecteurs. I Translation. 1. Définition :

Vecteurs. I Translation. 1. Définition : Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même

Plus en détail

On dit que M est l origine du vecteur et N son extrémité.

On dit que M est l origine du vecteur et N son extrémité. ❶ - Vecteurs I-- Définition d un vecteur Définition : Lorsqu on choisit deux points distincts M et N dans cet ordre, on définit : - une direction : celle des droites parallèles à (MN) ; - un sens : de

Plus en détail

Vecteurs. Christophe ROSSIGNOL. Année scolaire 2015/2016

Vecteurs. Christophe ROSSIGNOL. Année scolaire 2015/2016 Vecteurs Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Notion de vecteur Coordonnées 3 1.1 Définitions................................................. 3 1.2 Égalité de deux vecteurs.........................................

Plus en détail

Translations et vecteurs

Translations et vecteurs Translations et vecteurs A) Translation. 1. Définition. Soient trois points A, B et M. L image du point M par la translation qui transforme A en B est le point M tel que ABM M, dans cet ordre, soit un

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

RAPPELS SUR LES VECTEURS

RAPPELS SUR LES VECTEURS RAPPELS SUR LES VECTEURS 1 re S Ce chapitre est constitué d une part de rappels de Seconde (les exemples y seront donc limités et les propriétés ne seront par re-démontrées) et d autre part d exercices

Plus en détail

Chapitre 2 : Symétrie centrale

Chapitre 2 : Symétrie centrale Chapitre 2 : Symétrie centrale I- Symétrie axiale (rappel) Deux figures sont symétriques par rapport à une droite (d) lorsque, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

Seconde 1 Géométrie analytique 03/02/2014 Lycée Saint Joseph Pierre Rouge

Seconde 1 Géométrie analytique 03/02/2014 Lycée Saint Joseph Pierre Rouge I. Vecteurs a. Translation de vecteur AB Définition : Soient A et B deux points du plan. À tout point C du plan on associe l unique point D tel que [AD] et [BC] aient le même milieu. On dit que D est l

Plus en détail

Parallélogrammes. Translations. Vecteurs. Le cours

Parallélogrammes. Translations. Vecteurs. Le cours Chapitre.. Parallélogrammes. Translations. Vecteurs. Le cours 1. Approche expérimentale Par un «glissement rectiligne» de A en B, la figure F vient se superposer à la figure F. On dit que la figure F a

Plus en détail

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure.

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Exercice 1 ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Illustration D. Le Fur 1/?? Exercice 2 ABCD est un parallélogramme de centre

Plus en détail

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie.

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie. Les vecteurs Introduction : Les vecteurs sont fondamentaux : En Mathématiques : Le calcul vectoriel est un outil très puissant apparu à la fin du 19 ième siècle pour effectuer des démonstrations en Géométrie

Plus en détail

CALCUL VECTORIEL I) EXERCICE D'INTRODUCTION

CALCUL VECTORIEL I) EXERCICE D'INTRODUCTION CALCUL VECTORIEL I) EXERCICE D'INTRODUCTION 1) On donne les points A et A', construire à l'aide du quadrillage les points B' et C' tels que AA'B'B et AA'C'C soient des parallélogrammes. 2) On donne les

Plus en détail

Vecteurs, cours pour la classe de seconde

Vecteurs, cours pour la classe de seconde F.Gaudon 17 juin 2017 Table des matières 1 Notion de vecteur 2 2 Coordonnées de vecteurs 2 3 Somme de vecteurs 4 3.1 Relation de Chasles....................................... 4 3.2 Différence de deux

Plus en détail

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure.

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. SESSION 2006 Chapitre : VECTEURS 1 ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. D. Le FUR 1/ 21 2 ABCD est un parallélogramme de centre

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

Seconde 4 Repérage dans le plan Vecteurs

Seconde 4 Repérage dans le plan Vecteurs Exercice 1 : repères du plan coordonnées de points et de vecteurs Quadrillage à maille carrée Lire les coordonnées dans le repère (O ; i ; j ) : a) des points A, B, C, D, E b) des vecteurs u et v Exercice

Plus en détail

Vecteurs (I) 1 Notion de vecteur. Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C.

Vecteurs (I) 1 Notion de vecteur. Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C. Vecteurs (I) Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C. B A 1. Indiquez par une phrase le déplacement qu il convient d effectuer pour aller de A à B. 2. On effectue

Plus en détail

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés.

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. Th Trois longueurs étant données, Si la plus grande est

Plus en détail

Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers. Objectif 20 Livre e

Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers. Objectif 20 Livre e 5 e Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers Objectif 20 Livre 23.4 Mots clefs. Parallélogramme Rectangle Losange Carré Côté Diagonale Axe de symétrie Centre de

Plus en détail

GEOMETRIE PLANE. VECTEURS ET DROITES.

GEOMETRIE PLANE. VECTEURS ET DROITES. I. Les vecteurs : rappels et compléments. GEOMETRIE PLANE. VECTEURS ET DROITES. Propriétés et définitions à connaître : 1) Un vecteur AB est caractérisé par trois données : sa direction (celle de la droite

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

Les vecteurs. Remarque1 : Le vecteur de coordonnées correspond à un déplacement de 1 carreau vers la droite.

Les vecteurs. Remarque1 : Le vecteur de coordonnées correspond à un déplacement de 1 carreau vers la droite. Les vecteurs I. Notion de Translation Exercice Sur le quadrillage ci-dessus : a. Faire «glisser» l objet (qu on appellera figure 1)de 8 carreaux vers la droite et 2 vers le haut (on appellera la figure

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

Chapitre 5 : Vecteurs et. translations. Le bipoints ( A, A ) ; ( B, B ) représentent un même vecteur appelé le vecteur nul et noté :

Chapitre 5 : Vecteurs et. translations. Le bipoints ( A, A ) ; ( B, B ) représentent un même vecteur appelé le vecteur nul et noté : MR : GARY Lycée Mourouge 2 Chapitre 5 : Vecteurs et translations https://sites.google.com/site/badrmathtunisia Classe : 1 er Secondaire I ) Vecteurs 1) Définition Un vecteur est un bipoints possède les

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D.

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. QUADRILATERES I Définition Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. Quatre côtés : les segments [AB], [BC], [CD] et

Plus en détail

RECTANGLE. I- Définition: Le quadrilatère ABCD a quatre angles droits. ABCD est un rectangle

RECTANGLE. I- Définition: Le quadrilatère ABCD a quatre angles droits. ABCD est un rectangle RECTANGLE I- Définition: Le quadrilatère ABCD a quatre angles droits ABCD est un rectangle Un rectangle est un quadrilatère ayant quatre angles droits II- Remarque: Si ABCD un rectangle, alors (AB) est

Plus en détail

Vecteurs, cours de seconde

Vecteurs, cours de seconde 1 Translation et vecteur Propriété et définition : Vecteurs, cours de seconde Vecteurs, cours pour la classe de seconde Soit A et B deux points du plan. À tout point M du plan on associe le point M tel

Plus en détail

Seconde sujet 1 IE3 vecteurs et parallélogrammes somme de vecteurs. NOM : Prénom : Note :

Seconde sujet 1 IE3 vecteurs et parallélogrammes somme de vecteurs. NOM : Prénom : Note : Seconde 2009-2010 sujet 1 NOM : Prénom : Exercice 1 : (3 points) Dire pour chaque affirmation, si elle est vraie ou fausse. 1) ABCD est un parallélogramme a) AB = CD Vrai Faux b) BC = AD Vrai Faux c) AC

Plus en détail

Symétrie axiale. Translation Rotation LES TRANSFORMATIONS D. LE FUR. Lycée Pasteur, São Paulo D. LE FUR LES TRANSFORMATIONS

Symétrie axiale. Translation Rotation LES TRANSFORMATIONS D. LE FUR. Lycée Pasteur, São Paulo D. LE FUR LES TRANSFORMATIONS LES TRANSFORMATIONS D. LE FUR Lycée Pasteur, São Paulo Symétrie centrale Symétrique d un point A O A Symétrique d un point A O A Le symétrique A du point A dans la symétrie de centre O est tel que O soit

Plus en détail

Colinéarité de vecteurs Équation cartésienne d une droite

Colinéarité de vecteurs Équation cartésienne d une droite Colinéarité de vecteurs Équation cartésienne d une droite Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur les vecteurs 3. Égalité de deux vecteurs.........................................

Plus en détail

Chapitre n 6 : «Le parallélogramme»

Chapitre n 6 : «Le parallélogramme» Chapitre n 6 : «Le parallélogramme» I. L'essentiel Rappels Un quadrilatère est une figure fermée constituée de quatre segments appelés côtés. Vocabulaire A, B, C et D sont les sommets. [ AB], [ BC ], [CD]

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST...

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... THEME : LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... SOMMAIRE : PARALLELOGRAMME? RECTANGLE? LOSANGE? CARRE? PARALLELOGRAMME? Vous disposez principalement de deux méthodes, une concernant

Plus en détail

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse.

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse. EC 4A : ELEMENTS DE MATHEMATIQUES THEOREMES DE PYTHAGORE ET DE THALES COURS Objectifs du chapitre : Déterminer des longueurs dans un triangle en utilisant le théorème de Pythagore ou de Thalès. Démontrer

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace Géométrie dans l'espace 1. Rappels de géométrie dans l'espace 1.1. Positions relatives de droites et plans 1.1.1. Position relative de deux plans Définition : On dit que deux plans sont strictement parallèles

Plus en détail

Vecteurs du plan. B. Une nouvelle transformation du plan : Translation et vecteur associé

Vecteurs du plan. B. Une nouvelle transformation du plan : Translation et vecteur associé Vecteurs du plan 2 nde I. Translations et Vecteurs du plan A. Transformations du plan, je me souviens... Vous connaissez déjà des transformations du plan : Les symétries par rapport à un point et les symétries

Plus en détail

Symétrie axiale. La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui lui est perpendiculaire.

Symétrie axiale. La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui lui est perpendiculaire. Symétrie axiale I) Médiatrice d un segment : Définition : La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui lui est perpendiculaire. Exemple : La droite (d) est perpendiculaire

Plus en détail

I. Théorème de Thalès

I. Théorème de Thalès MDI Lycée Clément Ader THEOREME DE THALES I. Théorème de Thalès 1. Rappel (4ème) Dans un triangle ABC, si M est un point du côté [AB], N un point du côté [AC], et si les droites (BC) et (MN) sont parallèles,

Plus en détail

Seconde 2 DST2 vecteurs Sujet 1-9 février 2015

Seconde 2 DST2 vecteurs Sujet 1-9 février 2015 Seconde DST vecteurs Sujet 1-9 février 01 Exercice 1 : ( points) Soit ABCD un parallélogramme. I, J, K et L sont les milieux respectifs de [AB], [BC], [CD] et [DA]. Recopier et compléter les égalités suivantes

Plus en détail

Proprié té s dé gé omé trié plané

Proprié té s dé gé omé trié plané Proprié té s dé gé omé trié plané Droites Si deux droites sont parallèles à une même troisième alors elles sont parallèles entre elles (fig.1). Si deux droites sont perpendiculaires à une même troisième

Plus en détail

SYMETRIE CENTRALE EXERCICES

SYMETRIE CENTRALE EXERCICES SYMETRIE CENTRALE EXERCICES DÉMONTRER EN UTILISANT LES PROPRIÉTÉS DE LA SYMÉTRIE Exercice 1. Etant donnés trois points non alignés A, B et O, on appelle A' et B' les symétriques respectifs de A et B par

Plus en détail

Classe de première Du collège au lycée : Fiche de géométrie

Classe de première Du collège au lycée : Fiche de géométrie Classe de première Du collège au lycée : Fiche de géométrie Les outils collège : Tous les axiomes d Euclide, les résultats sur les angles ; les quadrilatères particuliers ; les triangles isocèles ; équilatéraux

Plus en détail

Aide : Vecteurs distance - colinéarité

Aide : Vecteurs distance - colinéarité Exercice : calculs de distances en repère orthonormal On donne les points A(- ;) B( ;) et C( ;-). Placer ces points dans un repère. ) Calculer les longueurs AB, BC et CA. En déduire la nature du triangle

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Chapitre 4 - Vecteurs

Chapitre 4 - Vecteurs nde Chapitre 4 - Vecteurs 01-013 Chapitre 4 - Vecteurs I Translation et vecteur TD1 : Déplacer une figure par translation On veut déplacer la figure F en suivant l algorithme suivant : Pour transformer

Plus en détail

Justifier. 2) Comment déceler des transformations dans une figure? 7-8

Justifier. 2) Comment déceler des transformations dans une figure? 7-8 Justifier 1) Comment justifier que page a) un quadrilatère est un parallélogramme, 2 b) un quadrilatère est un rectangle, 3 c) un quadrilatère est un losange, 4 d) un quadrilatère est un carré, 4 e) un

Plus en détail

CHAPITRE 2 : Géométrie plane

CHAPITRE 2 : Géométrie plane CHAPITRE 2 : Géométrie plane 1 Egalité de deux vecteurs... 2 2 Somme de deux vecteurs... 3 2.1 Relation de Chasles... 3 2.2 Règle du parallélogramme... 3 3 Vecteurs dans un repère... 4 3.1 Coordonnées

Plus en détail

Le vocabulaire de géométrie

Le vocabulaire de géométrie Géom1 Le vocabulaire de géométrie En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire : Un point A A X Un segment [AB] (d) Une droite (d)

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle.

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle. 6 e Décrire des figures usuelles Objectif 04 Livre 12 Mots clefs. Cercle Rayon, diamètre, corde et arc d un cercle Équidistance Triangle, triangle isocèle, triangle rectangle, triangle équilatéral Base

Plus en détail

Configurations du plan en seconde Parallélogrammes Rectangles

Configurations du plan en seconde Parallélogrammes Rectangles Configurations du plan en seconde Parallélogrammes Rectangles Exercices avec GéoPlan : parallélogrammes, problèmes d'alignement. Sommaire Théorème de Varignon 1. Thalès et parallélogramme 2. Projections

Plus en détail

- la même direction : ceci signifie que les droites (AB) et (CD) sont parallèles. - le même sens : vers la droite. - la même longueur : 5 cm.

- la même direction : ceci signifie que les droites (AB) et (CD) sont parallèles. - le même sens : vers la droite. - la même longueur : 5 cm. CHAPITRE 13 TRANSLATIONS ET VECTEURS I. NOTION DE TRANSLATION Fanion n 1 Fanion n 2 On passe d fanion n 1 a fanion n 2 par ne translation. Por définir ne translation, 3 éléments sont nécessaires : - ne

Plus en détail

Exercices sur les vecteurs

Exercices sur les vecteurs Exercices sur les vecteurs Exercice 1 : Associativité de la somme de trois vecteurs. On donne trois vecteurs u, v et w. Sur les deux figures suivantes tracer la somme u + v + w de deux manières : u + v

Plus en détail

Chapitre 5 7 UTILISER UNE SYMETRIE

Chapitre 5 7 UTILISER UNE SYMETRIE Chapitre 5 7 UTILISER UNE SYMETRIE I CONSTRUCTION DU SYMETRIQUE D'UNE FIGURE 1. l'aide de papier calque F est le symétrique de F par rapport à O. 2. En utilisant le quadrillage P est le symétrique de P

Plus en détail

Les Vecteurs ( En seconde )

Les Vecteurs ( En seconde ) Les Vecteurs ( En seconde ) Dernière mise à jour : Mardi 22 Avril 2008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2007-2008) -1- J aimais et j aime encore les mathématiques pour elles-mêmes

Plus en détail

THEME : LE PARALLELOGRAMME. Ecriture d un quadrilatère : Un quadrilatère se notera à l aide des quatre sommets. LE QUADRILATERE :

THEME : LE PARALLELOGRAMME. Ecriture d un quadrilatère : Un quadrilatère se notera à l aide des quatre sommets. LE QUADRILATERE : THEME : LE PARALLELOGRAMME LE QUADRILATERE : Quadrilatère ( n.m.) du latin quadrilaterus, de quadri, préfixe signifiant quatre, et de lateris, signifiant côté ( comme dans latéral ) Un quadrilatère est

Plus en détail

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE 1. Le point. C'est l élément élémentaire de la géométrie. Une infinité de points constitue une droite. Sur le dessin, la droite (D) passe par une infinité de points : on dit que ces points sont alignés.

Plus en détail

Produit d un vecteur par un réel, classe de seconde

Produit d un vecteur par un réel, classe de seconde , classe de seconde F.Gaudon http://mathsfg.net.free.fr 8 avril 2012 1 2 Traduction de propriétés géométriques Milieux de segments Alignement et parallélisme 1 2 Traduction de propriétés géométriques Milieux

Plus en détail

CLASSE DE 2 NDE CHAPITRE : VECTEURS (Programme 2010)

CLASSE DE 2 NDE CHAPITRE : VECTEURS (Programme 2010) CLASSE DE 2 NDE CHAPITRE : VECTEURS (Programme 2010) Introduction : Figure 1 : Figure 1 bis : On a effectué une translation de vecteur u, c'est-à-dire un déplacement de la figure, sans la tourner ni la

Plus en détail

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2)

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2) Vocabulaire géométrique (Cm1) La droite : c est un trait qui passe par un nombre infini de points alignés. On ne peut donc pas mesurer une droite. Le point : on le représente par une croix et on le nomme

Plus en détail

S13. Autour des théorèmes de PYTHAGORE et THALES

S13. Autour des théorèmes de PYTHAGORE et THALES CRPE S1. Autour des théorèmes de PYTHAGORE et THALES Mise en route A. Dans chaque exercice, une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. ARC est un triangle

Plus en détail

DROITES REMARQUABLES DANS UN TRIANGLE

DROITES REMARQUABLES DANS UN TRIANGLE THEME : DROITES REMARQUABLES DANS UN TRIANGLE Médiatrice d un segment ( Rappels ) Définition : La médiatrice d un segment est la droite perpendiculaire à ce segment qui passe par le milieu du segment.

Plus en détail

x(a + b) = 2 Pythagore et Thalès

x(a + b) = 2 Pythagore et Thalès Pythagore et Thalès Exercice 1 : On a découpé 4 exemplaires de la figure 0 pour les assembler et obtenir la figure 1. La mesure de l aire de la figure 1 est celle d un carré dont le côté a pour mesure

Plus en détail

Transformations du plan Chap 10 : et de l espace

Transformations du plan Chap 10 : et de l espace Transformations du plan Chap 10 : et de l espace Les définitions et propriétés sont valides aussi bien dans le plan que dans l espace. I. Définitions Définition 1 : On appelle transformation du plan (ou

Plus en détail

Chapitre 11 : Symétrie axiale.

Chapitre 11 : Symétrie axiale. Chapitre 11 : Symétrie axiale. I Approche expérimentale. Définition : Deux figures sont symétriques par rapport à une droite si, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle.

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle. 1 / 6 I. Polygones : Un polygone est une figure fermée dont les côtés sont des segments. II. Triangles : 1) Un triangle est un polygone à trois côtés. Les segments [AC], [AB] et [BC] sont les trois côtés

Plus en détail

Corrigé géométrie collège

Corrigé géométrie collège Exercices sur les particularités des triangles Exercice 1 Puisque J est sur la médiatrice de [AC] et que O est le point de rencontre des médiatrices du triangle ABC, alors (OJ) est la médiatrice de [AC]

Plus en détail

D après des exemples tirés des manuels Cap Maths, sauf mention contraire

D après des exemples tirés des manuels Cap Maths, sauf mention contraire 1 / 6 Exemples d'activités géométriques D après des exemples tirés des manuels Cap Maths, sauf mention contraire Reproduction de figures Activité 1 : Avec la règle, sans mesurer... On a commencé à reproduire

Plus en détail

Seconde 1 IE3 géométrie vectorielle Sujet

Seconde 1 IE3 géométrie vectorielle Sujet Seconde 1 IE3 géométrie vectorielle Sujet 1 2016-2017 NOM : Prénom : Exercice 1 : Reconnaître des vecteurs égaux (5 points) Voici deux cercles concentriques de centre O, de rayon r et 2r. Indiquer les

Plus en détail

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités Angles : Définitions utiles Angles : Propriétés utiles D1: Deux angles qui ont un sommet commun et un côté commun sont dits adjacents. Sur la figure ci contre, l angle en rouge et l angle en vert ont en

Plus en détail

Théorème de Pythagore Exercice 1 : Le triangle DEF est rectangle en F, DF = 36 mm, DE = 85 mm, calculer EF.

Théorème de Pythagore Exercice 1 : Le triangle DEF est rectangle en F, DF = 36 mm, DE = 85 mm, calculer EF. Théorème de Pythagore Exercice 1 : Le triangle D est rectangle en F, = 36 mm, DE = 85 mm, calculer. Le triangle D est rectangle en F. D'après le théorème de Pythagore : ED 85 36 75-196 599 599 77 mm Exercice

Plus en détail

Chapitre 4 : Triangles.

Chapitre 4 : Triangles. Chapitre 4 : Triangles. I Somme des angles d un triangle. 1 Propriété. La somme des mesures des angles d un triangle est égale à 180. Dans le triangle JKL, on a + + = 180. 2 Triangles particuliers. Triangle

Plus en détail

GEOMETRIE CM1. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté.

GEOMETRIE CM1. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. x I x K x F Une droite est un alignement infini de points. On la désigne par

Plus en détail

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme CRPE Mise en route 1. Trouver l intrus. Justifier. 2. Voici des polygones convexes S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes 1 2 3 4 5 6 7 8 Lesquels sont : des quadrilatères?

Plus en détail

Fiche(1) Trigonométrie. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5

Fiche(1) Trigonométrie. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5 Trigonométrie Fiche(1) La droite (PP ) est le support de la bissectrice de l angle. (RR ) est perpendiculaire à (PP ). 1) Par quels réels sont repérés chacun des points P, P, R, R sur le cercle trigonométrique?

Plus en détail

Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane

Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane Analyse de la figure Notes Géométrie 2016 Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane Construire et décrire une figure géométrique Un programme de tracé est une

Plus en détail

Parallélogramme. Définition: Un parallélogramme est un quadrilatère..

Parallélogramme. Définition: Un parallélogramme est un quadrilatère.. Parallélogramme I) Définition Définition: Un parallélogramme est un quadrilatère.. Activité 3 p 129 Une figure à main levée... à l'oeil ouvert Un professeur demande à ses élèves de tracer une figure à

Plus en détail

Géométrie CM1/CM2 - FH

Géométrie CM1/CM2 - FH Gm1 : Connaître le vocabulaire et les instruments de géométrie. En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Gm2 : Identifier et

Plus en détail

5 ème COURS triangles et droites remarquables. 1 Inégalité triangulaire

5 ème COURS triangles et droites remarquables. 1 Inégalité triangulaire 1 Inégalité triangulaire Quels que soient les points A, B et C on a l inégalité : AB AC + CB appelé linégalité triangulaire. A, B et C, sont trois points. On a l inégalité triangulaire : AB AC + CB Ecrire

Plus en détail

Chap2 Perpendiculaires et parallèles. p 118

Chap2 Perpendiculaires et parallèles. p 118 Chap2 Perpendiculaires et parallèles p 118 Chap2- Perpendiculaires et parallèles I- Vocabulaire Ex 1p119 Ex 2p119 Ex 3p119 Chap2- Perpendiculaires et parallèles I- Vocabulaire a) Le point Toujours noté

Plus en détail

EXERCICES CORRIGES DE MATH

EXERCICES CORRIGES DE MATH EXERCICES CORRIGES DE MATH PAR Ahmed Mowgli, PROFESSEUR DE MATH ET PHYSIQUE-CHIMIE Ce document est la propriété de son auteur, vous avez le droit de l utiliser, de le lire et même de le travailler! Je

Plus en détail

Applications affines Homothéties, translations et groupe affine, Symétries et projections

Applications affines Homothéties, translations et groupe affine, Symétries et projections Applications affines Homothéties, translations et groupe affine, Symétries et projections Activité 3 - Projection et symétries :, Etudier les extraits de cours ci-après (source : Géométrie, Term C et E,

Plus en détail

Exercice 1 (5,5 points)

Exercice 1 (5,5 points) Devoir commun de mathématiques Durée : heures SUJET A Exercice 1 (5,5 points) QCM questions 1 à 6 (réponse exacte +0,75 point, pas de réponse 0 point, réponse fausse 0,5 point) Sachant que une et une seule

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

Vocabulaire de base de la géométrie

Vocabulaire de base de la géométrie Géom 1 Vocabulaire de base de la géométrie Un point En géométrie, un point est représenté par une petite croix. On lui donne le nom d une lettre en majuscule, qu on écrit juste à côté. X A Un segment C

Plus en détail

Sylvain ETIENNE 2003/2004 PLC 1 Exposé 27

Sylvain ETIENNE 2003/2004 PLC 1 Exposé 27 HOMOTHETIES ET TRANSLATIONS ; TRANSFORMATION VECTORIELLE ASSOCIEE. INVARIANTS ELEMENTAIRES : EFFET SUR LES DIRECTIONS, L ALIGNEMENT, LES DISTANCES APPLICATIONS A L ACTION SUR LES CONFIGURATIONS USUELLES.

Plus en détail

Barycentre. G est le barycentre des points pondérés (A ; a) et (B ; b) si, et seulement si, pour tout point M du plan ou de l espace on a : a MA

Barycentre. G est le barycentre des points pondérés (A ; a) et (B ; b) si, et seulement si, pour tout point M du plan ou de l espace on a : a MA Barycentre Objectif : recherche du point d équilibre ; utilisation des barycentres pour réduire des écritures vectorielles ; recherche du lieu d un point ; étude de configurations Rappel : On donne deux

Plus en détail

DISTANCE D UN POINT A UNE DROITE. POSITIONs RELATIVES D UN CERCLE ET D UNE DROITE - TANGENTE

DISTANCE D UN POINT A UNE DROITE. POSITIONs RELATIVES D UN CERCLE ET D UNE DROITE - TANGENTE THEME : DISTANCE D UN POINT A UNE DROITE. POSITIONs RELATIVES D UN CERCLE ET D UNE DROITE - TANGENTE Inégalité triangulaire Propriété : Si A, B et C sont trois points du plan, alors AC AB + BC Remarquons

Plus en détail

S11C. Autour de la GEOMETRIE PLANE Corrigé Vocabulaire et constructions de base

S11C. Autour de la GEOMETRIE PLANE Corrigé Vocabulaire et constructions de base CRPE S11C. Autour de la GEOMETRIE PLANE Corrigé Vocabulaire et constructions de base Mise en route at hs.c om 1. (AB) représente la droite (en noir) qui passe par A et B, [AB] représente le segment (en

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

Droites remarquables dans les triangles

Droites remarquables dans les triangles Droites remarquables dans les triangles F.Gaudon 16 février 2005 Table des matières 1 Différentes droites 2 1.1 Médiatrices............................ 2 1.2 Hauteurs.............................. 4 1.3

Plus en détail

PREMIERS ELEMENTS DE GEOMETRIE.

PREMIERS ELEMENTS DE GEOMETRIE. Cours de Mr Jules v1.0 Classe de Sixième Contrat 2 p.1 PREMIERS ELEMENTS DE GEOMETRIE. I. Le point : 2 II. Droites, demi droites, segments de droite : 2 A. La Droite : 2 B. La Demi droite : 3 C. Le Segment

Plus en détail