Chapitre 2 Géométrie plane

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 2 Géométrie plane"

Transcription

1 Chapitre 2 Géométrie plane I. Colinéarité de deux vecteurs 1) Vecteurs colinéaires Définition : Soit u et v deux vecteurs non nuls. Les vecteurs u et v sont colinéaires si l'un est le produit de l'autre par un réel non nul. u et v colinéaires k 0 tel que u=k v k est le coefficient de colinéarité Remarques : Deux vecteurs non nuls sont colinéaires s'ils ont même direction. Par convention, le vecteur nul 0 est colinéaire à tout vecteur. 2) Décomposition de vecteurs Définition : On appelle base du plan vectoriel tout couple de deux vecteurs non colinéaires. Deux vecteurs u et v non colinéaires forment une base notée ( u, v). Les côtés d'un triangle ABC quelconque, non aplati, permettent de former des bases. base ( AB, AC ) base ( CA, CB) base ( BC, AB) base ( AC, AB) Remarques : Soit A, B, C trois points non alignés du plan. On dit que (A ; AB, AC ) est un repère du plan. M (x ; y) dans le repère (A ; AB, AC ) signifie que AM =x AB +y AC. M (x ; y) dans le repère (O ; I, J ) signifie que OM =x OI +y OJ. 1

2 Théorème : Soit u et v deux vecteurs non colinéaires du plan. Pour tout vecteur w du plan, il existe un couple unique de réel ( a b) Le couple ( a b) w =a u +b v. tels que : est appelé couple des coordonnées du vecteur w dans la base ( u, v). Existence : Dans un repère (O ; I, J ) du plan, soit les points I', J' et M tels que : u= OI ', v= OJ ' et w= OM. Les points O, I' et J' ne sont pas alignés, car u et v ne sont pas colinéaires. Ainsi (O ; I ', J ') est un repère du plan. Notons (a ;b) les coordonnées de M dans ce repère. On a alors : OM =a OI ' +b OJ '. Unicité : On suppose qu'il existe deux couples ( a b) ( et a ' b ' ) tel que : w =a u +b v =a' u +b' v. Alors (a a ' ) u=(b ' b) v. b' b Si a a ' 0, on obtient : u= a a ' v. C'est impossible, car u et v ne sont pas colinéaires. On a donc : a a '=0, d'où a=a '. Le même raisonnement conduit à l'égalité b=b '. Par conséquent, on a ( a b) = ( a ' b' ). Remarque : w( x dans le repère ( A; u, v) signifie que w =x u +y v. y) Les coordonnées d'un vecteur dépendent de la base ( u, v), tandis que les coordonnées d'un point dépendent du repère ( A; u, v). Soit ABCD le parallélogramme de centre O. On veut exprimer le vecteur AB en fonction de AO et AD. On a : AB=2 AO AD. Donc, dans la base ( AO, AD), les coordonnées de AB sont ( 2 1). 2

3 3) Caractérisation analytique de la colinéarité Propriété : Soit (O ; i, j) un repère du plan, u et v ont pour coordonnées respectives ( x y) et ( x' y' ). u et v sont colinéaires si et seulement si xy ' x ' y =0. Énoncé direct : si u et v sont colinéaires alors xy ' x ' y =0. Si l'un des vecteurs est nul alors la relation est immédiate. Si les deux vecteurs sont non nuls : u et v colinéaires u=k v (avec k 0) { x=kx' (avec k 0). y=ky' x y' x' y=kx' y' x' ky'=kx ' y ' kx' y' =0 Réciproque : si xy ' x ' y =0 alors u et v sont colinéaires 1 er cas : ( x y) ( = x' y' ) ( = 0 0). Alors u et v sont colinéaires. y' ) est non nul. On suppose u non nul et, en particulier, x 0. On peut alors définir le réel k= x ' x. 1 er cas : k=0 alors x '=0 et u et v sont colinéaires (ils ont même direction). 2 ème cas : k 0 et xy ' x ' y=0 y' = x' x y=k y y' =ky (avec k 0) { (avec k 0) x'=kx v=k u (avec k 0) donc u et v sont colinéaires. 2 ème cas : l'un au moins des couples ( x y) et ( x' Soit u( 2 1) ( 2) w( 3 4), v 4 et 2. 3 u et v ne sont pas colinéaires car 2 ( 2) u et w sont colinéaires car =0. Plus précisément on a : w= 3 4 u. 3

4 II. Caractérisation analytique d'une droite 1) Vecteur directeur d'une droite Définition : Soit d une droite du plan. On appelle vecteur directeur de d tout vecteur non nul u qui possède la même direction que la droite d. Remarques : Le choix de deux points distincts quelconques de d définit un vecteur directeur de d. Si u est un vecteur directeur de d alors tout vecteur (non nul) colinéaire à u est aussi un vecteur directeur de d. AB, BC ou AC sont des vecteurs directeurs de d. u et v sont des vecteurs directeurs de d. Le parallélisme de deux droites d et d' se traduit par le fait que tout vecteur directeur de l'une est vecteur directeur de l'autre. La droite d : y= 2 x+ 1 passe par les points A( 1;3) et B(1; 1). d admet comme vecteur directeur AB( 4) v( 2 2) ou 1. 2) Équations cartésiennes d'une droite Théorème : Toute droite d du plan admet une équation de la forme : ax+ by+ c=0 où a, b et c sont des réels avec (a ;b) (0; 0). Cette équation est une équation cartésienne de la droite d. Soit une droite d passant par un point A( x A ; y A ) et de vecteur directeur (non nul) u( α β). Pour tout point M (x ; y) du plan, M d AM ( x x A y y A) et u( α β) sont colinéaires. β ( x x A ) α( y y A )=0 β x α y+ ( β x A + α y A )=0 et (β; α) (0;0) car u 0. 4

5 Soit d la droite passant par A( 2;3) et dirigée par u( 2 5). M (x ; y) d AM ( x+ 2 y 3) et u ( 2 5) 5 x 2 y+ 16=0 d admet pour équation cartésienne : 5 x 2 y+ 16=0 sont colinéaires 5(x+ 2) 2( y 3)=0 Remarque : Une droite d admet une infinité d'équations cartésiennes. En effet, si ax+ by+ c=0 est une équation de d, alors pour tout réel k non nul, kax+ kby+ kc=0 est également une équation de d. Propriété : L'ensemble des points M (x ; y) vérifiant l'équation ax+ by+ c=0, avec (a ;b) (0; 0), est une droite de vecteur directeur u( b a ). Soit p le plan muni du repère (O ; i, j) et l'ensemble des points M (x ; y) tel que ax+ by+ c=0 avec (a ;b) (0; 0). (a ;b) (0; 0) donc on peut supposer a 0. M ax+ by+ c=0 ax ( by)+ a ( c a ) =0 a ( x+ c a) ( by)=0 Considérons le point A ( c a ; 0 ) et le vecteur u ( b a ). ( Le vecteur AM a pour coordonnées x+ c ) a et on a donc AM et u qui sont colinéaires. y est donc la droite passant par le point A et de vecteur directeur u. La droite d d'équation 3 x+ 4 y 10=0 admet comme vecteur directeur u( 4 3 ). Propriété : Les droites d'équations ax+ by+ c=0 et a ' x + b ' y + c'=0 sont parallèles si et seulement si ab' a' b=0. Soit d la droite d'équation ax+ by+ c=0 et d' la droite d'équation a ' x+ b' y+ c'=0. Un vecteur directeur de d est u( b a ) et un vecteur directeur de d' est u ' ( b ' a ' ). d et d' sont parallèles u et u ' sont colinéaires ba' a( b' )=0 ab' a' b=0 5

6 Soit les droites d :2 x y+ 3=0 ; d ' : 4 x+ 2 y+ 1=0 et d ' ' : 2 x+ 3 y+ 2=0. d et d' sont parallèles car 2 2 ( 4) ( 1)=0 ( ( 1 2) ( et 2 sont proportionnels). 4) d et d'' ne sont pas parallèles car ( 1) 0. 3) Équations cartésiennes et équations réduites b=0 et a 0 a=0 et b 0 a 0 ; b 0 ; c=0 a 0 ; b 0 ; c 0 Équation cartésienne ax+ 0+ c=0 donc x= c a 0+ by+ c 0 donc y= c b ax+ by+ 0=0 donc y= a b x ax+ by+ c=0 donc y= a b x+ c b Équation réduite x=constante y=constante y=mx y=mx+ p m est le coefficient directeur p est l'ordonnée à l'origine Représentation graphique d'une fonction affine Représentation graphique Remarque : Si d a pour équation réduite y=mx+ p, une équation cartésienne de d est mx 1 y+ p=0. Un vecteur directeur de d est alors ( m) 1, m est ainsi le coefficient directeur. 6

Deux vecteurs sont colinéaires si et seulement si l un est le produit de l autre par un réel.

Deux vecteurs sont colinéaires si et seulement si l un est le produit de l autre par un réel. I Colinéarité de deux vecteurs Définition 1: Deux vecteurs sont colinéaires si et seulement si l un est le produit de l autre par un réel. Exemples : Les vecteurs u -5 3 et v 15-9 sont colinéaires car

Plus en détail

Colinéarité de vecteurs Équation cartésienne d une droite

Colinéarité de vecteurs Équation cartésienne d une droite Colinéarité de vecteurs Équation cartésienne d une droite Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur les vecteurs 3. Égalité de deux vecteurs.........................................

Plus en détail

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment Chapitre : Géométrie plane 1 Calcul vectoriel 1.1 coordonnées d un vecteur dans un repère Définition 1. Soit #» u un vecteur du plan. Pour tout point O du plan, il existe un unique point M tel que OM #»

Plus en détail

Pour les élèves de l'échange Italie : travail sur les normes de vecteurs (longueurs des vecteurs)

Pour les élèves de l'échange Italie : travail sur les normes de vecteurs (longueurs des vecteurs) Pour les élèves de l'échange Italie : travail sur les normes de vecteurs (longueurs des vecteurs) Leçons : 4 Colinéarité de vecteurs 4-1- Rappel Soit u et v deux vecteurs non nuls. On dit que u et v sont

Plus en détail

GEOMETRIE PLANE. VECTEURS ET DROITES.

GEOMETRIE PLANE. VECTEURS ET DROITES. I. Les vecteurs : rappels et compléments. GEOMETRIE PLANE. VECTEURS ET DROITES. Propriétés et définitions à connaître : 1) Un vecteur AB est caractérisé par trois données : sa direction (celle de la droite

Plus en détail

Géométrie Chapitre 1 : Vecteurs et droites du plan

Géométrie Chapitre 1 : Vecteurs et droites du plan Géométrie Chapitre 1 : Vecteurs et droites du plan I- Rappels et compléments sur les vecteurs 1) Vecteurs égaux La translation qui transforme en est appelée la translation de vecteur. Le point s appelle

Plus en détail

Les vecteurs du plan

Les vecteurs du plan Les vecteurs du plan Colinéarité Lycée du golfe de Saint Tropez Année 2015/2016 Première S ( Lycée du golfe de Saint Tropez) Vecteurs Année 2015/2016 1 / 13 1 Vecteurs colinéaires Définition et première

Plus en détail

Produit d un vecteur par un réel, classe de seconde

Produit d un vecteur par un réel, classe de seconde , classe de seconde F.Gaudon http://mathsfg.net.free.fr 8 avril 2012 1 2 Traduction de propriétés géométriques Milieux de segments Alignement et parallélisme 1 2 Traduction de propriétés géométriques Milieux

Plus en détail

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel Sommaire 1 Vecteurs Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel 2 Vecteurs colinéaires Définition Conséquences 3 Base du

Plus en détail

CALCUL VECTORIEL I) EXERCICE D'INTRODUCTION

CALCUL VECTORIEL I) EXERCICE D'INTRODUCTION CALCUL VECTORIEL I) EXERCICE D'INTRODUCTION 1) On donne les points A et A', construire à l'aide du quadrillage les points B' et C' tels que AA'B'B et AA'C'C soient des parallélogrammes. 2) On donne les

Plus en détail

Géométrie dans l espace

Géométrie dans l espace L-P-Bourguiba detunis Chapitre 6 Fiche6 Résumé du cours Produit scalaire Définition : l espace E est orienté dans le sens direct Prof :Ben jedidia chokri Classe :4 Math Géométrie dans l espace * Soit A,

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN 1 sur 12 REPERAGE DANS LE PLAN I. Repère du plan Trois points distincts deux à deux O, I et J du plan forment un repère, que l on peut noter (O, I, J). L origine O et les unités OI et OJ permettent de

Plus en détail

On dit que M est l origine du vecteur et N son extrémité.

On dit que M est l origine du vecteur et N son extrémité. ❶ - Vecteurs I-- Définition d un vecteur Définition : Lorsqu on choisit deux points distincts M et N dans cet ordre, on définit : - une direction : celle des droites parallèles à (MN) ; - un sens : de

Plus en détail

Livre : Chapitre 12 p. 319

Livre : Chapitre 12 p. 319 TABLE DES MATIÈRES Produit scalaire dans l espace D. Péron 14 Livre : Chapitre 12 p. 319 Table des matières 1 Diérentes expressions du produit scalaire.................................. 2 2 Orthogonalité

Plus en détail

Chapitre 11 Produit scalaire dans l'espace

Chapitre 11 Produit scalaire dans l'espace I. Produit scalaire Chapitre 11 Produit scalaire dans l'espace 1) Produit scalaire dans l'espace Définition : Soient u et v deux vecteurs de l'espace et A, B, C trois points tels que u= AB et v= AC. Les

Plus en détail

Vecteurs de l espace

Vecteurs de l espace Vecteurs de l espace Définitions règles de calcul On étend à l espace la notion de vecteur définie dans le plan, ainsi que les opérations associées : somme de vecteurs multiplication par un réel Définition-

Plus en détail

Droites et plans de l espace - Vecteurs

Droites et plans de l espace - Vecteurs Chapitre 8 Droites et plans de l espace - Vecteurs Objectifs du chapitre : item références auto évaluation étude de la position relative de droite(s) et de plan(s) vecteurs de l espace formules dans un

Plus en détail

1S DS 4 Durée : 2h. ( 5,5 points ) Exercice 1

1S DS 4 Durée : 2h. ( 5,5 points ) Exercice 1 1S DS Durée : h Exercice 1 (, points ) Dans un repère orthonormé (annexe exercice 1), on donne la droite (d) d équation x 3y + 6 = 0, le point A(1; 7) et le vecteur v (; 3). 1. Pour tracer (d) on peut

Plus en détail

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie.

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie. Les vecteurs Introduction : Les vecteurs sont fondamentaux : En Mathématiques : Le calcul vectoriel est un outil très puissant apparu à la fin du 19 ième siècle pour effectuer des démonstrations en Géométrie

Plus en détail

Vecteurs (I) 1 Notion de vecteur. Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C.

Vecteurs (I) 1 Notion de vecteur. Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C. Vecteurs (I) Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C. B A 1. Indiquez par une phrase le déplacement qu il convient d effectuer pour aller de A à B. 2. On effectue

Plus en détail

Seconde 1 Géométrie analytique 03/02/2014 Lycée Saint Joseph Pierre Rouge

Seconde 1 Géométrie analytique 03/02/2014 Lycée Saint Joseph Pierre Rouge I. Vecteurs a. Translation de vecteur AB Définition : Soient A et B deux points du plan. À tout point C du plan on associe l unique point D tel que [AD] et [BC] aient le même milieu. On dit que D est l

Plus en détail

Géométrie analytique et vectorielle dans l espace, cours, terminale S. Géométrie vectorielle et analytique dans l espace, cours, terminale S

Géométrie analytique et vectorielle dans l espace, cours, terminale S. Géométrie vectorielle et analytique dans l espace, cours, terminale S Géométrie analytique et vectorielle dans l espace, cours, terminale S Géométrie vectorielle et analytique dans l espace, cours, terminale S F.Gaudon http://mathsfg.net.free.fr 27 mars 2013 1 Extension

Plus en détail

Première S Exercices : vecteurs et variations des fonctions associées

Première S Exercices : vecteurs et variations des fonctions associées Exercice 1 : vecteurs et alignement de points ABC est un triangle. Le plan est muni du repère (A; AB, AC) et on considère les points R(-1;0) et Q(0;a) où a est un nombre réel différent de -1. 1) a) Prouver

Plus en détail

Équations cartésiennes de plans et de droites

Équations cartésiennes de plans et de droites Chapitre 4 Équations cartésiennes de plans et de droites Sommaire 4.1 Équation cartésienne d un plan........................................... 25 4.1.1 Équation cartésienne d un plan........................................

Plus en détail

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 I) Produit scalaire Dans tout ce paragraphe, on travaillera dans un repère orthonormé

Plus en détail

Terminale S Géométrie dans l espace

Terminale S Géométrie dans l espace Terminale S Géométrie dans l espace 1 Positions relatives de droites et de plans 1.1 Positions relatives de deux droites Deux droites de l espace sont : soit..................... elles sont alors soit...............

Plus en détail

Géométrie analytique

Géométrie analytique 8 décembre 2009 Théorème Dans( le plan muni d un repère orthonormal O; i, ) j, on considère une droite( passant par A et α de vecteur directeur u. β) Tout point M de cette droite est tel que : AM = t u,

Plus en détail

Produit scalaire dans l'espace

Produit scalaire dans l'espace Produit scalaire dans l'espace Il y a de la géométrie dans l'espace au bac tous les ans. Dans tout ce chapitre, on se place dans un repère (O, ı, j, k ) orthonormal de l'espace. Introduction L'espace,

Plus en détail

Vecteurs. Seconde. Eric Leduc 2014/2015. Lycée Jacquard. Vecteurs. Eric Leduc. Translations - Vecteurs associés. Opérations sur les vecteurs

Vecteurs. Seconde. Eric Leduc 2014/2015. Lycée Jacquard. Vecteurs. Eric Leduc. Translations - Vecteurs associés. Opérations sur les vecteurs - Seconde Lycée Jacquard 2014/2015 Rappel du plan - 1-2 3 4 5 Translation - Définition n o 1: Translation On considère deux points A et B du plan. On appelle translation qui transforme A en B la transformation

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Chapitre 11 Géométrie dans l espace Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie Droites et plans Positions relatives de droites et de plans : intersection

Plus en détail

Géométrie analytique dans l espace

Géométrie analytique dans l espace Généralités Points coplanaires Quatre points de l espace sont dits coplanaires s ils appartiennent à un même plan (rappel : 3 points d un plan sont dits alignés s ils appartiennent à une même droite) Vecteurs

Plus en détail

Barycentre. Rappels sur le barycentre. On considère n points A i et n nombres réels a i n. a i. Il existe alors un unique point G tel que : Ai G = 0

Barycentre. Rappels sur le barycentre. On considère n points A i et n nombres réels a i n. a i. Il existe alors un unique point G tel que : Ai G = 0 Barycentre Rappels sur le barycentre Définition On considère n points A i et n nombres réels Supposons 0 Il existe alors un unique point G tel que : Ai G = 0 (C est à dire : A 1 G + A 2 G + + A n G = 0

Plus en détail

1 Équations cartésiennes, équations polaires d un ensemble de points

1 Équations cartésiennes, équations polaires d un ensemble de points Plans, cercles, droites et sphères Ce chapitre aborde les objets fondamentaux utilisés en géométrie : droites et cercles dans le plan, plans, droites et sphères dans l espace. Les objectifs du chapitre

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace

Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace Notes : dans cette synthèse de cours, on suppose connues les notions du programme de 1 ère S relatives au produit scalaire dans

Plus en détail

RAPPELS SUR LES VECTEURS

RAPPELS SUR LES VECTEURS RAPPELS SUR LES VECTEURS 1 re S Ce chapitre est constitué d une part de rappels de Seconde (les exemples y seront donc limités et les propriétés ne seront par re-démontrées) et d autre part d exercices

Plus en détail

Le déterminant dans le plan

Le déterminant dans le plan 1 1994-95 Le déterminant dans le plan Leçon (supprimée en 1993): Définition et propriétés du déterminant de deux vecteurs du plan. Expression dans une base orthonormée. Applications géométriques. Je propose:

Plus en détail

Chapitre 4 - Vecteurs

Chapitre 4 - Vecteurs nde Chapitre 4 - Vecteurs 01-013 Chapitre 4 - Vecteurs I Translation et vecteur TD1 : Déplacer une figure par translation On veut déplacer la figure F en suivant l algorithme suivant : Pour transformer

Plus en détail

Les vecteurs. Année 2014/2015. Lycée du golfe de Saint Tropez

Les vecteurs. Année 2014/2015. Lycée du golfe de Saint Tropez Les vecteurs Lycée du golfe de Saint Tropez Année 2014/2015 Seconde ( Lycée du golfe de Saint Tropez) Vecteurs Année 2014/2015 1 / 21 1 Notion de vecteur s Égalité de deux vecteurs 2 s Propriétés 3 Construction

Plus en détail

LEÇON N 22 : Équation cartésienne d une droite du plan. Problèmes d intersection, parallélisme. Condition pour que trois droites soient concourantes.

LEÇON N 22 : Équation cartésienne d une droite du plan. Problèmes d intersection, parallélisme. Condition pour que trois droites soient concourantes. LEÇON N 22 : Équation cartésienne d une droite du plan. Problèmes d intersection, parallélisme. Condition pour que trois droites soient concourantes. Pré-requis : Déterminants ; Définition vectorielle

Plus en détail

Chapitre : Repérage et vecteurs dans le plan

Chapitre : Repérage et vecteurs dans le plan Chapitre : Repérage et vecteurs dans le plan Introduction : Dès l'antiquité les problèmes de repérage se sont posés dans les domaines de l'astronomie et de la navigation. La notion de coordonnées dans

Plus en détail

(donnés) a et b tels que : f : x où a est le coefficient directeur de f et b l ordonnée à l origine.

(donnés) a et b tels que : f : x où a est le coefficient directeur de f et b l ordonnée à l origine. ❶ - Fonctions affines I-1- Définitions et vocabulaire Définition 1: On dit que f est une fonction affine si pour tout réel, il eistent deu réels (donnés) a et b tels que : f : a + b où a est le coefficient

Plus en détail

Géométrie vectorielle

Géométrie vectorielle I) Vecteurs ans l'espace : Géométrie vectorielle a) notion e vecteur ans l'espace : On repren la éfinition u vecteur ans le plan en l'étenant à l'espace. éfinition : Soit un couple ( ; ) e points e l'espace.

Plus en détail

Vecteurs et droites. u = 0 et on dit que

Vecteurs et droites. u = 0 et on dit que Vecteurs et droites ) Rappels sur les vecteurs Généralités Définitions : ) Un vecteur u ou B est défini par : une direction (la droite (B)) un sens (de vers B) une longueur : la norme du vecteur u ou B

Plus en détail

5. Exercices et corrigés

5. Exercices et corrigés 5. Exercices et corrigés Rappels et questions-tests p.166 1) ABC est un triangle. Placez les points D et E tels que : BD = AC et AE = BA. Quelle est la nature du quadrilatère ADCE? ) ABC est un triangle.

Plus en détail

M : Zribi. 4 ème Maths Cour. Produit scalaire dans l espace : Définition:

M : Zribi. 4 ème Maths Cour. Produit scalaire dans l espace : Définition: Produit scalaire dans l espace : Définition: Soit A, B et C trois points, le produit scalaire des vecteurs AB et AC est le réel défini par : AB AC = si AB = 0 ou AC = 0 AB AC = si AB 0 et AC 0 Conséquence

Plus en détail

LEÇON N 21 : 21.1 Caractérisations vectorielles d une droite

LEÇON N 21 : 21.1 Caractérisations vectorielles d une droite LEÇON N 21 : Définition vectorielle d une droite du plan, d une droite ou d un plan de l espace. Représentations paramétriques. Génération des demi-droites, des segments. Parallélisme. Pré-requis : Propriétés

Plus en détail

Résumé du cours. Droites et plans de l espace. Positions relatives P P P P

Résumé du cours. Droites et plans de l espace. Positions relatives P P P P Résumé du cours roites et plans de l espace ans l espace un plan est caractérisé par la donnée de trois points non alignés, deux droites sécantes ou strictement parallèles. Un plan passant par trois points

Plus en détail

Angles orientés et repérage, cours, première S

Angles orientés et repérage, cours, première S Angles orientés et repérage, cours, première S F.Gaudon 24 mai 2010 Table des matières 1 Cercle trigonométrique et radian 2 2 Angles orientés 3 3 Propriétés des mesures d'angles orientés 4 4 Cosinus et

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan Produit scalaire de deux vecteurs de l espace 1 Rappels sur le produit scalaire de deux vecteurs du plan 1.1 Définition Soit u et v deux vecteurs du plan. Si u = 0 ou v = 0, alors u v = 0 (Attention! On

Plus en détail

Chapitre 1 : Équations de la droite dans le plan

Chapitre 1 : Équations de la droite dans le plan EQUATIONS DE LA DROITE DANS LE PLAN 1 Chapitre 1 : Équations de la droite dans le plan 1.1 Introduction Exercice d introduction : On considère l équation vectorielle: x = 3 3 + k. y 2 2 Représenter, dans

Plus en détail

l espace II) Addition des vecteurs de l espace 3 ème Maths et 3 ème sciences exp. AB DC ABCD est un parallélogramme.

l espace II) Addition des vecteurs de l espace 3 ème Maths et 3 ème sciences exp. AB DC ABCD est un parallélogramme. Prof : Boufares Amor Cours de géométrie dans l espace 3 ème Maths et 3 ème sciences exp. I) d un vecteur de l espace Soit A et B deux points distincts de l espace. On appelle vecteur de représentant (A,

Plus en détail

Chapitre 9 : Géométrie vectorielle

Chapitre 9 : Géométrie vectorielle Chapitre 9 : Géométrie vectorielle I Notion de vecteur 1 Translation et vecteur Soit A et B deux points du plan La translation qui transforme A en B associe à tout point C du plan l unique point D tel

Plus en détail

GEOMETRIE ANALYTIQUE DANS LE PLAN

GEOMETRIE ANALYTIQUE DANS LE PLAN WORKBOOK PCD -GEOMETRIE ANALYTIQUE DU PLAN 016 GEOMETRIE ANALYTIQUE DANS LE PLAN 1 Déterminer l'équation du cercle centré en C et de rayon r si : a) C (0; 0) et r = 1; b) C = (1; ) et r c) C (3; -4) et

Plus en détail

Cours de Géométrie Pour BCPST 1

Cours de Géométrie Pour BCPST 1 Cours de Géométrie Pour BCPST 1 Année scolaire : 2004/2005 16 juin 2005 Mohamed TARQI Table des matières 1 Géométrie 2 1.1 Repère. Changement de repère......................... 2 1.1.1 Bases et repères..............................

Plus en détail

La Droite dans le Plan Site MathsTICE de Adama Traoré Lycée Technique Bamako

La Droite dans le Plan Site MathsTICE de Adama Traoré Lycée Technique Bamako La Droite dans le Plan Site MathsTICE de Adama Traoré Lycée Technique Bamako I Équation d une droite 1- Condition d alignement de trois points A B C Trois points A ; B ; C du plan sont alignés s il existe

Plus en détail

Barycentre. Table des matières

Barycentre. Table des matières 1 Barycentre Table des matières 1 Rappels sue les vecteurs 2 1.1 Définition................................. 2 1.2 Opérations sur les vecteurs....................... 2 1.2.1 Somme de deux vecteurs....................

Plus en détail

Géométrie de l'espace

Géométrie de l'espace [http://mp.cpgedupuydelome.fr] édité le 3 novembre 07 Enoncés Géométrie de l'espace Notions communes Exercice 7 [ 0878 ] [Correction] Soient D et D deux droites distinctes sécantes de l'espace. Montrer

Plus en détail

Définition. Dans le plan muni d un repère (O;! i,! j ), les coordonnées d un vecteur! u sont les coordonnées de l unique point M tel que. OM=! u.

Définition. Dans le plan muni d un repère (O;! i,! j ), les coordonnées d un vecteur! u sont les coordonnées de l unique point M tel que. OM=! u. Interprétation Propriété Coordonnées d un vecteur Dans le plan muni d un repère (O; i, j ), les coordonnées d un vecteur u sont les coordonnées de l unique point M tel que OM= u. On écrit u (x; y) pour

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

Classe de première Du collège au lycée : Fiche de géométrie

Classe de première Du collège au lycée : Fiche de géométrie Classe de première Du collège au lycée : Fiche de géométrie Les outils collège : Tous les axiomes d Euclide, les résultats sur les angles ; les quadrilatères particuliers ; les triangles isocèles ; équilatéraux

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales.

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales. PRODUIT SCALAIRE I Produit scalaire Définition ( voir animation ) Soient et deux vecteurs du plan. On considère trois points O, A et tels que : OA = u et O =. On appelle produit scalaire du vecteur par

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace Géométrie dans l'espace 1. Rappels de géométrie dans l'espace 1.1. Positions relatives de droites et plans 1.1.1. Position relative de deux plans Définition : On dit que deux plans sont strictement parallèles

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. : la perspective cavalière Pour représenter un objet de l espace par une figure plane, on adopte un mode de représentation appelé «perspective cavalière» qui est

Plus en détail

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES Géométrie analytique C est Descartes (1596-1650) qui a développé l idée de représenter les figures géométriques dans un repère, les points du plan étant définis

Plus en détail

Produit scalaire de l'espace. Applications.

Produit scalaire de l'espace. Applications. 1.... p2 2. Équations cartésienne d'un plan... p4 3. Perpendiculaire commune à deux droites non coplanaires... p9 Copyright meilleurenmaths.com. Tous droits réservés 1. Produit scalaire de l'espace 1.1.

Plus en détail

PRODUIT SCALAIRE. Première S - Chapitre 7

PRODUIT SCALAIRE. Première S - Chapitre 7 PRODUIT SCALAIRE Première S - Chapitre 7 Table des matières I Expressions du produit scalaire I 1 Exercice de motivation....................................... I Norme d un vecteur........................................

Plus en détail

Géométrie vectorielle.

Géométrie vectorielle. . Ensemble des vecteurs de l'espace... p 6. Calcul vectoriel... p5. Vecteurs colinéaires... p 7. Géométrie analytique... p8. Vecteurs coplanaires... p 4. Plan défini par point et vecteurs directeurs...

Plus en détail

Remarque : A chaque translation correspond un vecteur qu on appelle vecteur de la

Remarque : A chaque translation correspond un vecteur qu on appelle vecteur de la Vecters I. Notion de vecters a) Vecters et translations Définition : A et B désignent dex points d plan. La translation qi transforme A en B associe à tot point C d plan l'niqe point D tel qe les segments

Plus en détail

Produit scalaire dans l espace

Produit scalaire dans l espace Chapitre G Produit scalaire dans l espace Contenus Capacités attendues Commentaires Produit scalaire Produit scalaire de deux vecteurs dans l espace : définition, propriétés. Vecteur normal à un plan.

Plus en détail

CHAPITRE 2 : Géométrie plane

CHAPITRE 2 : Géométrie plane CHAPITRE 2 : Géométrie plane 1 Egalité de deux vecteurs... 2 2 Somme de deux vecteurs... 3 2.1 Relation de Chasles... 3 2.2 Règle du parallélogramme... 3 3 Vecteurs dans un repère... 4 3.1 Coordonnées

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

TS Géométrie vectorielle dans l espace Cours. Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace

TS Géométrie vectorielle dans l espace Cours. Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace TS Géométrie vectorielle dans l espace Cours I. Vecteurs de l espace 1. Notion de vecteur dans l espace Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace Deux vecteurs

Plus en détail

1 Vecteur dans un repère

1 Vecteur dans un repère 1 Vecteur dans un repère 1.1 Coordonnées d'un vecteur Dans un repère ;,, les coordonnées d'un vecteur u sont les coordonnées du point M tel que x M = u. Les coordonnées de u sont notées. y u M Dans un

Plus en détail

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure.

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Exercice 1 ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Illustration D. Le Fur 1/?? Exercice 2 ABCD est un parallélogramme de centre

Plus en détail

* Addition de deux vecteurs : 1) La relation de Chasles : 2) La règle du parallélogramme :

* Addition de deux vecteurs : 1) La relation de Chasles : 2) La règle du parallélogramme : I Rappels- Les vecteurs I-1 Généralités : * tout couple de points (,B dans un plan, est associé un vecteur B Soit u un représentant de B, alors u = B Lorsque = B,alors u = 0 * La norme du vecteur B est

Plus en détail

PRODUIT SCALAIRE DANS L ESPACE

PRODUIT SCALAIRE DANS L ESPACE PRODUIT SCALAIRE DANS L ESPACE Cours Terminale S 1 Produit scalaire de deux vecteurs 1) Définition Définition 1 : Le produit scalaire dans l espace se définit de la même façon que dans le plan Les trois

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace Terminale S Ch.8 PARTIE Géométrie dans l'espace Ú La perspective cavalière C'est un ensemble de règles permettant de représenter un volume dans un plan; ce n'est pas ce que nous voyons dans la réalité.

Plus en détail

Géométrie de l espace

Géométrie de l espace [http://mp.cpgedupuydelome.fr] édité le 4 septembre 06 Enoncés Géométrie de l espace Notions communes Exercice [ 087 ] [Correction] À quelle(s) condition(s) simple(s) l intersection de trois plans de l

Plus en détail

Théorème de Thalès. Applications à la géométrie du plan et de l espace

Théorème de Thalès. Applications à la géométrie du plan et de l espace Théorème de Thalès. Applications à la géométrie du plan et de l espace Le théorème de Thalès fait partie des théorèmes que l on rencontre pour la première fois au Collège. Tout d abord sous la forme du

Plus en détail

Orthogonalité de droites et de plans

Orthogonalité de droites et de plans Orthogonalité de droites et de plans Par Mathtous Ce mini cours s'adresse en priorité aux élèves de première. Il a pour objectif de rappeler les propriétés essentielles des droites orthogonales et des

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

Chapitre 8 : Droites et plans de l espace - Vecteurs. Deux droites de l'espace sont soit coplanaires, soit non coplanaires. Elles ont un point commun.

Chapitre 8 : Droites et plans de l espace - Vecteurs. Deux droites de l'espace sont soit coplanaires, soit non coplanaires. Elles ont un point commun. Chapitre 8 : Droites et plans de l espace - Vecteurs I Positions relatives de droites et de plans Positions relatives de deux droites Deux droites de l'espace sont soit coplanaires, soit non coplanaires

Plus en détail

Vecteurs. Christophe ROSSIGNOL. Année scolaire 2015/2016

Vecteurs. Christophe ROSSIGNOL. Année scolaire 2015/2016 Vecteurs Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Notion de vecteur Coordonnées 3 1.1 Définitions................................................. 3 1.2 Égalité de deux vecteurs.........................................

Plus en détail

FONCTIONS AFFINES, DROITES ET SYSTÈMES

FONCTIONS AFFINES, DROITES ET SYSTÈMES FONCTIONS AFFINES, DROITES ET SYSTÈMES Ph DEPRESLE 6 juin 05 Table des matières Fonctions affines. Définition, Propriétés................................... Représentation graphique................................3

Plus en détail

Exercices de géométrie analytique

Exercices de géométrie analytique Exercice 1 Exercices de géométrie analytique (1) Déterminer les coordonnées des vecteurs représentés dans la base ( i, j ) () Déterminer les coordonnées des vecteurs représentés dans la base ( j, i ) ()

Plus en détail

p y et y = y' p x Op = xı + yȷ = 0.

p y et y = y' p x Op = xı + yȷ = 0. Géométrie "analytique" du plan affin par Xavier Hubaut Professeur émérite - Université Libre de Bruxelles - Département de Mathématique. Système de coordonnées cartésiennes - Repère cartésien 2. Coordonnées

Plus en détail

Synthèse de cours PanaMaths Droites et plans de l espace

Synthèse de cours PanaMaths Droites et plans de l espace Synthèse de cours PanaMaths Droites et plans de l espace Droites de l espace Définition Soit A un point de l espace et u un vecteur non nul. La droite ( d ) passant par A et de vecteur directeur u est

Plus en détail

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure.

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. SESSION 2006 Chapitre : VECTEURS 1 ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. D. Le FUR 1/ 21 2 ABCD est un parallélogramme de centre

Plus en détail

Géométrie analytique lycée

Géométrie analytique lycée axe des ordonnées Géométrie analytique lycée I. Rappels 1) Vocabulaire En géométrie analytique, tous les points sont décrits dans un repère par un couple de coordonnées: l'abscisse qui se lit sur l'axe

Plus en détail

Seconde 4 Repérage dans le plan Vecteurs

Seconde 4 Repérage dans le plan Vecteurs Exercice 1 : repères du plan coordonnées de points et de vecteurs Quadrillage à maille carrée Lire les coordonnées dans le repère (O ; i ; j ) : a) des points A, B, C, D, E b) des vecteurs u et v Exercice

Plus en détail

Seconde 3 DS5 droites et systèmes Sujet

Seconde 3 DS5 droites et systèmes Sujet Seconde 3 DS5 droites et systèmes Sujet 1 2009-2010 NOM : Prénom : Exercice 1 : (5 points) 1) A partir du graphique, déterminer une équation de chacune des droites d, d et d. 2) Tracer sur ce même graphique

Plus en détail

Vecteurs et colinéarité. Angles orientés et trigonométrie

Vecteurs et colinéarité. Angles orientés et trigonométrie DERNIÈRE IMPRESSION LE février 07 à 0:5 Vecteurs et colinéarité. ngles orientés et trigonométrie Table des matières Rappels sur les vecteurs. Définition.................................. Opérations sur

Plus en détail

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v )

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v ) 1 Norme d un vecteur Définition 1. Soit #» u un vecteur, A et B deux points du plan tels que #» AB = #» u. On appelle norme du vecteur #» u, que l on note #» u, la longueur du segment [AB] : #» u = AB

Plus en détail

On appelle H la projection orthogonale de A sur la droite (BC).

On appelle H la projection orthogonale de A sur la droite (BC). Première S 2010-2011 Exercices sur le produit scalaire, équations de droite et de cercles Exercice 1 : Distance d'un point à une droite. On se donne une droite ( ) dont l'équation cartésienne est de la

Plus en détail

2. Donner des équations paramétriques et cartésiennes des droites passant par A et dirigées par v avec :

2. Donner des équations paramétriques et cartésiennes des droites passant par A et dirigées par v avec : Exo7 Droites du plan ; droites et plans de l espace Fiche corrigée par Arnaud Bodin 1 Droites dans le plan Exercice 1 Soit P un plan muni d un repère R(O, i, j), les points et les vecteurs sont exprimés

Plus en détail

Extension du produit scalaire à l espace

Extension du produit scalaire à l espace Extension du produit scalaire à l espace Table des matières 1 Rappel du produit scalaire dans le plan 2 1.1 Définitions.................................................. 2 1.2 Orthogonalité................................................

Plus en détail

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES Configurations du plan Le théorème de Pythagore s applique à un triangle rectangle ; le théorème de Thalès, à une figure qui comprend des droites parallèles

Plus en détail

Classe de Terminale S

Classe de Terminale S Pˆr o dˆuˆiˆt Œs c a l aˆiˆr e d e l e sœp a c e Classe de Terminale S I. GÉNÉRALISATION DU PRODUIT SCALAIRE À L ESPACE. Exercice 1 ABCDEFGH est un cube d arête 1, O est le centre de la face EFGH. 1. a)

Plus en détail

Vecteurs et barycentres

Vecteurs et barycentres nnée 2005-2006 hap II : Vecteurs et barycentres I Vecteurs 1 Définitions Définition 1 : Un vecteur est défini par une direction, un sens et une longueur appelée norme La norme du vecteur est la longueur

Plus en détail