Sujet 3 Radiation terrestre; l'effet de serre

Dimension: px
Commencer à balayer dès la page:

Download "Sujet 3 Radiation terrestre; l'effet de serre"

Transcription

1 Radiation terrestre (infrarouge éloigné) Sujet 3 Radiation terrestre; l'effet de serre La Terre absorbe de l'énergie solaire, de courtes longueurs d'onde et se réchauffe. La température du sol est, en moyenne, de 15 C (288 K, température absolue), température bien inférieure à celle du Soleil (elle est entre 250 et 300 K). Donc, selon la loi de Planck, l'énergie émise par la Terre est moindre que celle émise par le Soleil et les radiations électromagnétiques correspondantes sont de longueurs d'onde plus élevée. Les radiations terrestres se situent dans la bande des infrarouges éloignés de longueur d'onde de 4 à 80 micromètres, avec un maximum d'énergie entre 8 et 12 micromètres. (rappel: La loi de Planck nous dit que l'intensité de l'énergie émise par un corps dépend de sa température: plus celle-ci est élevée, plus la longueur d'onde des radiations émises est courte et plus l'intensité de ces radiations est grande.) source: Anthes 1992 p.50 Figure 3-1: Émission d un corps noir de (a) un corps chaud tel que le soleil et (b) un corps plus froid tel que la Terre. (En comparant les courbes notez que l énergie du soleil est de fois plus grande que celle de la terre). 3-1

2 source: Anthes 1992 p.55 Figure

3 Définitions Corps noir: si un élément de surface d'un corps reçoit une certaine quantité d'énergie rayonnée, il en renvoie une partie (réfléchie ou diffusée), et absorbe le reste. La fraction d'énergie absorbée (qu on représente par A) est le coefficient d'absorption de la surface (qui dépend de l'angle d'incidence et de la longueur d'onde du rayonnement reçu). On appelle corps noir un corps pour lequel le coefficient d'absorption (A) est unitaire (A = 1), peut importe la longueur d'onde du rayonnement reçu. Le corps noir absorbe tout le rayonnement qu'il reçoit et est donc noir. On dit parfois qu un corps est noir pour une bande de longueurs d'onde. Par exemple le sol absorbe tout le rayonnement dans la bande de l'infrarouge éloigné (4 à 80 micromètres) mais réfléchit une partie du rayonnement dans le spectre du Soleil (0,3 à 4 micromètres). Les corps noirs émettent des radiations avec les mêmes longueurs d'ondes qu'ils absorbent. Leur émissivité est égale à leur coefficient d'absorption. Si, pour un intervalle de longueur d'onde donné, un corps émet de l'énergie comme un corps noir (selon la loi de Planck) on dit que son émissivité est 1 dans cet intervalle. S'il émet 50% de cette énergie son émissivité est 0,5. Le sol et les nuages se comportent comme un corps noir dans la bande de l'infrarouge éloigné. Les gaz de l'atmosphère, par contre, émettent (et absorbent) des radiations seulement dans certaines bandes de longueurs d'onde et dans le spectre du Soleil et dans le spectre de l'infrarouge éloigné. Absorption par l'atmosphère Si un corps a une émissivité égale à 1 pour une certaine bande de longueurs d'onde, le corps absorbe tous les rayonnements appartenant à cette bande qui arrivent sur sa surface. Voir figure ci-dessous. source: Courtin, et al., 1992 Figure 3-3: L amplitude de l effet de serre est liée à la transmission des basses couches de l atmosphère pour le rayonnement infrarouge. La courbe (A) représente l absorption du mélange de gaz carbonique et de vapeur d eau (qui sont les principaux «gaz à effet de serre» sur Terre). On voit une «fenêtre» importante entre 0,5 et 1 µm de longueur d onde, ce qui laisse le passage libre au rayonnement solaire visible, très puissant de cette zone (partie gauche de la courbe B). À partir de 4 µm de longueur d onde, l absorption de l atmosphère (courbe A) est importante, sauf dans une fenêtre située entre 8 et 12 µm. La partie droite de la courbe B donne le rayonnement planétaire dont le maximum est situé à une longueur d onde bien plus grande que celui du 3-3

4 Soleil car la température est plus faible. Le rayonnement émis par la terre peut «s échapper» par la fenêtre 8-12 µm et limite l amplitude de l effet de serre. Dans cette figure, nous voyons que les gaz atmosphériques sont transparents aux rayons du Soleil (0,4 à 0,7 micromètre) mais absorbent une grande fraction des radiations émises par la Terre (4 à 80 micromètres) à l'exception d'une "fenêtre" entre 8 et 12 micromètres. Cette bande de longueurs d'onde est la fenêtre à travers laquelle la Terre renvoie l'énergie vers l'espace. Cette perte d'énergie est nommée "refroidissement radiatif". Le refroidissement radiatif est intense pendant les nuits sans nuages. L'absence de nuages permet à plus de radiation terrestre de s'échapper vers l'espace parce que les nuages absorbent même les radiations terrestres dans la fenêtre. Ils se réchauffent donc davantage, et émettent à leur tour (aussi dans la bande de fenêtre) en toutes les directions, dont une partie retourne au sol pour y être absorbée. Effet de serre La plupart de l'énergie solaire traverse l'atmosphère et arrive au sol (50%). Par contre 90% de l'énergie émise par le sol est absorbée par l'atmosphère (gaz et nuages). L'atmosphère (gaz et nuages) se réchauffe alors davantage et émet l'énergie dans toutes les directions, une partie est donc absorbée à nouveau par le sol. Le sol reçoit ainsi deux fois plus d'énergie infrarouge éloignée que d'énergie directement du Soleil. Le comportement radiatif du système Terre - atmosphère est souvent comparé à celui d'une serre. L'énergie de courte longueur d'onde (UV et Visible) pénètre l'atmosphère. Cette énergie est absorbée, diffusée, réfléchie et une grande fraction (50%) de la quantité originale atteint le sol. La quantité totale réfléchie vers l'espace (30%) est l'albédo terrestre. Dans une serre l'énergie incidente est elle aussi absorbée, diffusée et réfléchie. Le verre absorbe le rayonnement UV qui dans l'atmosphère est absorbé par l'ozone. La plupart des rayons visibles entrent dans la serre où ils sont absorbés par le sol et les plantes. Le sol et les plantes se réchauffent et émettent des radiations infrarouges. Comme le verre n'est pas transparent aux IR, une bonne partie de l'énergie est absorbé par le verre qui se réchauffe et émet des radiations infrarouges dans toutes les directions dont une bonne partie vers l'intérieur qui s'ajoute à l'énergie dans le visible. (Le verre aussi réduit la perte de chaleur par conduction et convection mais cette analogie ne s'applique pas à l'atmosphère). 3-4

5 source: Courtin, et al., 1992 Figure 3-4 Dans l'environnement, l'eau et la surface terrestre sont aussi chauffées par les radiations visibles et émettent l'énergie dans la bande de IR. Les rayons infrarouges en dehors de la "fenêtre" (entre 8 et 12 micromètres) sont absorbés par la vapeur d'eau, le dioxyde de carbone (CO 2 ) et les aérosols de la basse atmosphère (Troposphère). Les nuages, lorsqu'ils sont présents absorbent même dans la "fenêtre". L'air se réchauffe. Le réchauffement de l'atmosphère et le réchauffement d'une serre sont des mécanismes semblables d'où l'habitude d'utiliser le terme "effet de serre" pour faire référence au réchauffement de la planète. Cet effet n'est pas nécessairement une catastrophe. Sans cela, la température moyenne du globe serait de 35 C plus froide: -20 C au lieu de +15 C, et la vie telle que nous la connaissons serait impossible. 3-5

6 Gaz à effet de serre: Les gaz qui dans l'atmosphère ont la propriété de laisser passer le rayonnement qui nous arrive du soleil (0,3 à 4 micromètres) et d'absorber les rayons qui proviennent de la Terre (4 à 80 micromètres) sont dits "gaz à effet de serre". Les principaux sont: 1 - Le Gaz carbonique, CO 2, produit par les combustions et par la respiration et la décomposition de la matière vivante. 2 - Les clorofluorocarbures, CFC, entièrement d'origine humaine, utilisés dans les bombes à aérosols, les mousses expansées, les solvants, la réfrigération: ils sont aussi responsables de l'amenuisement de la couche protectrice d'ozone de la stratosphère. 3 - Le méthane, CH 4, vient des marais, des rizières, des fermentations gastriques de certains animaux, des décharges d'ordures. 4 - Le protoxyde d'azote, N 2 O, est produit par certaines combustions et par l'action des bactéries du sol sur les engrais azotés. 5 - L'ozone, O 3, de la basse atmosphère, est surtout dérivé des polluants automobiles. Le danger pour la planète ne vient pas de l'effet de serre lui même mais de son probable renforcement. En effet, des mesures précises ont montré que les concentrations de gaz à effet de serre se sont nettement accrues depuis le début de l'ère industrielle. Sources et puits des gaz à effet de serre: Les "puits" d'une substance sont les processus qui la font disparaître du milieu où elle se trouve, soit physiquement en la transportant ailleurs, soit chimiquement (ou biochimiquement) en la transformant en autre chose. Clorofluorocarbures, CFC: C'est la situation la plus simple. Ces gaz, inventés vers 1930, sont entièrement d'origine humaine. Ce sont des composés extrêmement stables. Au bout de quelques dizaines d'années ils montent dans la stratosphère et s'y transforment en d'autres composés chlorés qui rongent la couche protectrice d'ozone. Ozone de la troposphère: Ce gaz est surtout formé à partir de divers polluants sous l'action de la chaleur et des rayons ultraviolets du soleil. C'est un des composants du brouillard photochimique (smog). Formé dans les villes et près des voies à grande circulation, l'ozone que demeure sur place est transformé la nuit en oxygène par des réactions d'oxydation, en particulier la transformation du monoxyde d'azote (NO), "puits d'ozone" en dioxyde (NO 2 ). Protoxyde d'azote, N 2 O: Les sources de ce gaz sont pour les deux tiers naturelles, et pour un tiers dues aux activités humaines (anthropogéniques). Le "puits" de N 2 O est sa photolyse dans la stratosphère. La montée prend 5 à 8 ans. En haut la photolyse prend en moyenne 170 ans. Méthane, CH 4 : Comme le précédent, ce gaz a des sources naturelles (40%) et anthropogéniques (60%). Les sources naturelles sont essentiellement les marais et zones humides, les termites et autres insectes, océans, fermentations gastriques (faune sauvage), lacs, toundra et autres. Les sources humaines sont principalement les fermentations gastriques (bétail), brûlage de biomasse, rizières, décharge d'ordures, pertes de gaz naturel. Les "puits" sont des réactions chimiques dans la troposphère le transport et des réactions dans la stratosphère et absorption par les bactéries du sol. Les puits sont moins efficaces que les sources ce qui explique la monté des concentrations de méthane. 3-6

7 Gaz carbonique, CO 2 : le carbone constitue environ 4 % de la masse de la Terre, mais la plus grande partie est contenue dans des roches stables. Ce qui nous importe sont les 0,04 % qui circulent entre l'atmosphère, les océans et la biomasse dans ce qu'on appelle le cycle du carbone. Le carbone entre et sort de la biomasse par les réactions (inverses) de photosynthèse et de respiration (plus combustion et décomposition). Grosso modo, la photosynthèse a lieu le jour et la respiration la nuit. Pour le gaz carbonique atmosphérique, les sources sont les océans (respiration de la biomasse, rejets de CO 2 dissous), la biomasse terrestre (respiration, décomposition), combustibles fossiles (combustion), déforestation, défrichage, bétonnage. Les puits sont les océans (photosynthèse, dissolution), photosynthèse par la biomasse terrestre. Les sources sont plus importantes que les puits. Ainsi environ 3 milliards de tonnes de gaz carbonique s'accumulent chaque année dans l'atmosphère. source: Courtin, et al., 1992 Figure

8 Comprendre l effet de serre énergie fenêtre aile gauche aile droite 4µm longueur d'onde 50 µm Figure 3-6 Avant d aborder l effet de serre, il faut savoir que la figure 3-6 représente un spectre d énergie, c est-à-dire la quantité d énergie qui est émise pour chaque longueur d onde. La ligne noire représente l énergie émise pour chaque longueur d onde par un corps noir à une certaine température. Il faut aussi mentionner que l énergie totale est représentée sur la figure 3-6 par l aire sous la courbe. On peut diviser la figure 3-6 en trois parties. La partie du centre représente la quantité d énergie qui est émise entre 8 µm et 12 µm. Cette partie se nomme la fenêtre puisque, cette énergie n est presque pas absorbée par l atmosphère en absence de nuage (voir les figures 2-6 c et 3-3) et donc, selon la loi de Kirchoff, l atmosphère sans nuages n émettra pas non plus dans cette bande. C est donc par cette fenêtre que le sol envoie, en absence de nuage, l énergie directement vers l espace. Les parties de gauche et de droite se nomment les ailes. La partie de gauche se nomme l aile gauche et cette partie représente la quantité d énergie qui est émise entre 4 µm et 8 µm. La partie de droite est l aile droite et représente la quantité d énergie qui est émise entre 12 µm et plus de 50 µm. Dans ces bandes, les gaz atmosphériques sont de très bons absorbants (voir les figures 2-6 c et 3-3) et donc, selon la loi de Kirchoff, de bons émetteurs aussi. 3-8

9 Hauteur (Z) vers l'espace D f C énergie venant de la couche au-dessus du sol à T=12 C 4µm longueur d'onde 50 µm énergie D a D b énergie radiative émise par le sol à 15 C 10 C énergie G a G b µm longueur d'onde 50 µm sol T=15 C énergie radiative absorbée par le sol (nuit nuageuse) bilan radiatif: -26 nuit clair Figure

10 L effet des nuages Hauteur (Z) 3 longueur d'onde nuage énergie énergie venant du sol énergie radiative absorbée par le nuage 0 C énergie 4µm longueur d'onde 50 µm 2 énergie radiative émise par le nuage à 0 C longueur d'onde énergie venant du nuage énergie venant de la couche au-dessus du sol énergie - 18 énergie venant de l'atmosphère au-dessous du nuage énergie radiative émise par le sol à 15 C 5 C 10 C température de l'atmosphère 4 énergie µm longueur d'onde µm sol T=15 C énergie radiative absorbée par le sol (nuit nuageuse) bilan radiatif: -10 nuit nuageuse Figure 3-8 Maintenant, nous allons pouvoir comprendre pourquoi, toutes autres conditions égales, qu il fait plus chaud une nuit nuageuse qu une nuit où le ciel est clair. Dans le cas d une nuit claire, sur la figure 3-7, il n y a pas de nuage au coucher du Soleil et la température du sol est de 15 C. Le sol émet comme un corps noir (courbe à droite) selon la loi de Planck. On voit que l énergie dans la fenêtre (D f ) s échappe vers l espace puisque l atmosphère n absorbe pas dans cette bande. En plus, si l atmosphère n absorbe pas dans cette bande, selon la loi de Kirchoff, elle n émet pas non plus. C est donc pourquoi il n y a pas d énergie dans la fenêtre qui arrive au sol dans la figure 3-7 à gauche. Pour ce qui est des ailes, celles qui proviennent du sol sont absorbées par l atmosphère qui est juste au-dessus du sol (elles sont représentées par les flèches D a et D b ). Parce que l atmosphère absorbe ces bandes, selon la loi de Kirchoff, elle émet aussi. Donc, les ailes qui arrivent (et sont absorbées) au sol proviennent de la couche juste au-dessus du sol. Parce que la température diminue avec la hauteur, la couche de l air au-dessus du sol est plus froide que le sol. Étant donné que l énergie émise dépend de la température, l énergie venant de l atmosphère dans les ailes est légèrement plus petite que l énergie émise dans les ailes du sol (on remarque que les flèches G a et G b sont légèrement plus petites que les flèches D a et D b ). On peut faire maintenant un bilan d énergie reçue à la surface. Dans la figure 3-7 à droite, on voit qu il y a 27 unités qui partent des ailes et 18 unités qui partent de la fenêtre. Pour la 3-10

11 figure 3-7 à gauche, il y a 19 unités qui arrivent au sol des ailes et rien qui arrive au sol de la fenêtre. Si on considère positif ce qui arrive au sol et négatif ce qui quitte le sol, en soustrayant ce qui arrive et ce qui part, on a donc = -26. On a donc un bilan radiatif négatif au sol, c est-à-dire qu il y a plus d unités qui quitte le sol que d unités qui en arrivent, ce qui fait le sol se refroidit. Pour une nuit nuageuse, parce que l atmosphère n absorbe pas l énergie émise dans la fenêtre, on voit sur la figure 3-8 que l énergie émise par le sol (courbe 1) dans la fenêtre arrive au nuage et l énergie émise par le nuage (courbe 3) dans la fenêtre arrive au sol. En ce qui concerne le reste de l énergie émise par le sol, les ailes du spectre sont complètement absorbées par l atmosphère entre le sol et le nuage. On remarque aussi qu il y a des ailes qui sont présentes sur le spectre d énergie qui est absorbé par le nuage (courbe 2). Ces ailes sont de l énergie émise par une couche atmosphérique située juste au-dessous du nuage. Pour ce qui est de l énergie émise par le nuage, les ailes du spectre sont aussi complètement absorbées par l atmosphère (entre le nuage et le sol). Donc, les ailes que l on retrouve sur le spectre au sol, ce sont les ailes du spectre d énergie émise par une couche atmosphérique juste au-dessus du sol. En faisant le bilan radiatif de ce qui arrive au sol, on voit que sur la courbe 1, il y a 27 unités qui partent des ailes et 18 unités qui partent de la fenêtre, ce qui donne 45 unités qui quittent le sol. Sur la courbe 4, il y a 19 unités qui arrivent au sol des ailes et 16 unités qui arrivent au sol de la fenêtre, ce qui donne 35 unités qui arrivent au sol. En soustrayant ce qui arrive au sol et ce qui quitte le sol, on a: = -10 unités. On a donc un bilan radiatif négatif au sol. En comparant le cas du ciel clair (figure 3-7) et le ciel nuageux (figure 3-8), on voit que le bilan est plus négatif en ciel clair qu en ciel nuageux (-26 unités contre -10 pour une même quantité d énergie émise par le sol (45 unités)). Cette différence est dûe au fait que dans le cas nuageux, le sol reçoit l énergie émise dans la fenêtre par le nuage (16 unités) alors que dans le cas du ciel clair, comme il n y a pas de nuage, l énergie de la fenêtre est absente donc, comme le sol reçoit 16 unités de moins dans le cas d une nuit claire, le sol refroidit plus vite. C est donc pourquoi il fait plus chaud lors d une nuit nuageuse que lors d une nuit où le ciel est clair. Tout autres conditions égales, si le nuage est plus haut, donc plus froid, qu arrive-t-il au bilan d énergie au sol? Parce qu on est à conditions égales, la température du sol est la même donc, l énergie émise par le sol est la même. Comme la température décroît avec la hauteur, plus un nuage est haut, plus il est froid. Plus un nuage est froid moins il émet d énergie dans la fenêtre. Ceci fait que la quantité d énergie reçue par le sol dans la fenêtre est moins grande pour un nuage haut que pour un nuage plus bas. On se retrouve donc avec un bilan radiatif au sol qui est plus négatif dans le cas d un nuage haut que dans le cas d un nuage bas. Donc, le sol va refroidir plus rapidement lorsqu on a un nuage haut que lorsqu on a un nuage bas et, pour toutes conditions égales, les nuits avec des nuages bas sont plus chaudes que celles avec des nuages plus hauts. On peut donc dire que lorsqu on a des nuages bas il fait plus chaud, lorsqu on a des nuages haut il fait un peu plus froid et lorsqu il y a absence de nuages, il fait encore plus froid. 3-11

12 Z T=2 C 2Km température moyenne de la couche: 7 C T=9 C 1Km molécules de gaz absorbant T=12 C 0,5 Km température moyenne de la couche: 12 C E A E S EA E S EA=+3 ES= -5 nuit sèche température au sol: 15 C Figure 3-9 Z T=2 C 2Km température moyenne de la couche: 5 C T=9 C T=12 C 1Km 0,5 Km molécules de gaz absorbant température moyenne de la couche: 10 C E A E S E A E S température moyenne de la couche: 13 C EA=+4 ES= -5 nuit humide température au sol: 15 C L effet de vapeur d eau Figure

13 En se référant à la figure 2-6, on voit que la vapeur d eau absorbe beaucoup et donc, selon la loi de Kirchoff émet beaucoup entre 2,5 µm et 3,5 µm, entre 4,5 µm et 7 µm, et entre 18 µm et près de 100 µm. Afin de comprendre pourquoi, tout autres conditions égales, il fait plus froid une nuit sèche et qu il fait plus chaud une nuit humide, on va considérer pour le cas de la vapeur d eau qu on se trouve dans ces bandes d absorption Sur les figures 3-9 et 3-10, où on considère que les molécules des figures sont des molécules de vapeur d eau. Tout d abord, il faut considérer les quatre aspects suivants: 1) De la loi de Planck, on sait que l émission de l énergie radiative est essentiellement une fonction de la température (f (T)). Plus il fait chaud, plus la quantité d émission est grande. Même un corps noir qui reçoit aucune radiation va émettre de la radiation selon sa température et la loi de Planck. De plus, un objet dont la température est très froide peut recevoir beaucoup d énergie, mais il ne va émettre que très peu d énergie. 2) Même si dans une bande on a un gaz qui est un bon absorbant - émetteur (corps noir dans la bande), il faut quand même avoir assez de molécules de ce gaz pour tout absorber dans la bande et émettre selon la loi de Planck dans la bande. 3) Si on connaît le nombre de molécules de gaz dans l atmosphère, on peut déterminer l épaisseur de la couche nécessaire pour tout absorber et émettre selon la loi de Planck. 4) La température de l atmosphère décroît avec la hauteur dans la couche. Dans les figures 3-9 et 3-10, supposons qu il faut 13 molécules pour émettre de l énergie selon la loi de Planck (représenté par 13 points sur les figures). Dans ce cas, pour une nuit humide (figure 3-10), ça prend seulement une couche de 0,5 km pour avoir assez de molécules pour émettre de l énergie selon la loi de Planck. Dans le cas d une nuit sèche (figure 3-9), la couche qui possède assez de molécules afin d émettre de l énergie selon la loi de Planck a une épaisseur de 1 km. Comme la température de l atmosphère décroît avec la hauteur, on va pouvoir déterminer la température moyenne de chaque couche. On voit que plus la couche au-dessus du sol possède des molécules pouvant émettre de l énergie selon la loi de Planck, est épaisse, plus sa température moyenne est froide et plus cette couche est mince, plus sa température sera élevée. On remarque que sur la figure 3-10, la couche de 0,5 km est plus chaude en moyenne que la couche de 1 km sur la figure 3-9. Étant donné que la couche de 0,5 km d épaisseur sur la figure 3-10 (nuit humide) est en moyenne plus chaude que la couche de 1 km d épaisseur sur la figure 3-9 (nuit sèche), la couche de 0,5 km d épaisseur (nuit humide) émettra plus d énergie vers le sol (qui est tout absorbé par le sol). Le sol reçoit donc, plus d énergie dans l infrarouge les nuits humides que les nuits sèches (comparer la longueur des E A dans les figures 3-9 et 3-10). Notez que le sol reçoit de l énergie seulement de la couche de 13 molécules. Les couches supérieures émettent elles aussi de l énergie, cependant, cette énergie est absorbées par les 13 molécules qui sont suffisante pour tout absorber l énergie, donc, cette énergie n arrive pas au sol. De plus, comme les températures de surface dans ces figures sont égales dans les deux cas (nuit sèche et nuit humide), soit de 15 C, la quantité d énergie émise (E S ) par le sol est la 3-13

14 même dans les deux figures ( 5 unités dans chaque cas ). Donc, le bilan radiatif infrarouge (différence entre la radiation émise par le sol et celle reçue de l atmosphère) est de -2 unités dans le cas d une nuit sèche, alors qu il est de -1 unité lors d une nuit humide. Lord d une nuit sèche, le bilan radiatif est plus négatif que pour une nuit humide, donc le sol refroidit plus vite durant une nuit sèche. L effet de doublement de CO 2 Le raisonnement est similaire pour ce qui est du dioxyde de carbone (CO 2 ). Lorsqu on augmente la concentration de CO 2, on augmente le nombre de molécules de CO 2. Donc, si on double la concentration du gaz, pour une couche de même épaisseur, on va avoir deux fois plus de molécules. Ceci se voit très bien sur les figures 3-9 et 3-10 où, pour une couche atmosphérique de 1 km il y a 13 molécules dans le cas 1CO 2 (figure 3-9) et 26 molécules si on considère que la concentration de dioxyde de carbone à doublée (2CO 2, figure 3-10). Si comme dans le cas de la vapeur d eau on suppose qu il faut 13 molécules de CO 2 pour émettre de l énergie selon la loi de Planck alors, l épaisseur de la couche qui sera nécessaire afin d émettre de l énergie selon la loi de Planck sera deux fois moins grande pour le cas de 2CO 2, c est-à-dire 0,5 km (voir figure 3-10). Tout comme dans le cas précédant, puisque la température décroît avec la hauteur, la température moyenne de la couche 2CO 2 (figure 3-10) sera plus chaude que celle de 1CO 2 (figure 3-9) et l énergie reçue par le sol sera plus grande dans le cas 2CO 2. Donc, on aura un bilan radiatif plus positif lorsque la concentration de CO 2 augmente, c est-àdire que le sol refroidit moins rapidement. On comprend maintenant pourquoi il fait plus chaud lorsque la concentration du CO 2, qui est un gaz à effet de serre, augmente. Les saisons La répartition de l'énergie reçue du Soleil et émise par la Terre est très inégale. La quantité de radiation solaire tombant sur un mètre carré de surface terrestre horizontale dépend de plusieurs facteurs. Les plus importants sont de natures géométriques. La Terre décrit une orbite complète autour du Soleil en une année. Cette orbite est elliptique. En moyenne la distance entre la Terre et le soleil est 150 millions de kilomètres. Elle varie d'un maximum de 153 millions de kilomètres à un minimum de 147 millions de kilomètres. La Terre se déplace dans un plan qui passe par le centre du Soleil et que l'on appelle le plan de l'écliptique. La Terre tourne sur elle même en une journée. Cette rotation se fait autour d'un axe passant par les pôles nord et sud. L'axe de rotation de la Terre (à courte échéance) garde toujours la même orientation par rapport aux étoiles éloignées (fixes). Cet axe est incliné 66.5 par rapport au plan de l'écliptique. 3-14

15 source: Hidore 1984 p.30 Figure 3-11: Orbite de la Terre autour du Soleil, les saisons et les variations de la longueur des journées La quantité d'énergie reçue dans les différentes latitudes dépend de l'inclinaison de l'axe de rotation de la Terre par rapport au plan de l'orbite et de la distance Terre - Soleil. Quand un faisceau de lumière arrive obliquement sur une surface, la densité d'énergie de radiation par mètre carré de la surface est moindre que s'il arrive plus perpendiculairement à la surface. Au long de l'année, le déplacement de la Terre autour du Soleil change l'angle d incidence de la radiation sur la surface horizontale à toutes les latitudes. Selon la latitude, ceci peut faire varier grandement la densité de l'énergie de radiation par mètre carré de surface horizontale. Par exemple, à la latitude de Montréal, 45 Nord, la densité la plus grande est mesurée vers la fin du mois de juin alors que la distance entre la Terre et le soleil est près de son maximum. Inversement, c'est à la fin du mois de décembre que la densité de radiation solaire y passe par son minimum annuel, alors que la distance entre la Terre et le Soleil est près de son minimum. 3-15

16 source: Anthes 1992 p.57 Figure 3-12: L intensité de la radiation solaire dépend de l angle avec lequel les rayons du Soleil touchent la surface terrestre. (a) Les angles d incidence a, b, c et la distance parcourue par les rayons dans l atmosphère, d1, d2 et d3 à différentes latitudes. (b) La variation de l aire touchée par les rayons selon différents angles d incidences. C'est cette variation de l'inclinaison relative de l'axe de rotation de la Terre par rapport au Soleil qui est le facteur principal dans la succession des saisons. La température maximale est de 1 à 2 mois en retard par rapport au maximum d'insolation parce que la Terre et surtout la mer, prennent du temps à se réchauffer à cause de leurs grandes capacités de stocker de l'énergie. Au fur et à mesure qu'ils se réchauffent, la quantité d'énergie d'infrarouge émise augmente jusqu'au moment où l'infrarouge émis égal au rayonnement solaire reçu. 3-16

17 Maximum de température diurne Par une belle journée, le maximum de température ne se produit que vers le milieu ou la fin de l'après-midi plusieurs heures après le maximum d'insolation. En effet la température augmente lorsque le bilan d'énergie radiatif du sol est positif. C est-à-dire lorsque le sol reçoit plus d énergie du Soleil qu il n en perd. source: Anthes 1992 p.62 source: Devuyst 1972 p.28 Figures 3-13 source: Anthes 1992 p.62 Dans la région autour de l'équateur l'absorption d'énergie solaire est plus importante que la perte par émission infrarouge alors que l'on observe l'inverse dans les régions polaires. Cette situation donne un bilan radiatif positif dans la région équatoriale et un bilan négatif près des pôles. Ce résultat, en soi, signifierait une augmentation constante de la température à l'équateur et une baisse constante de température près des pôles. On ne l'observe pas parce que la circulation atmosphérique (vents) et océanique (courants) transfert de l'énergie de l'équateur vers les pôles. 3-17

18 source: Devuyst 1972 p.31 Figure 3-14: Les courbes I et II représentent la moyenne annuelle d insolation et d émission d ondes longues respectivement, à la tropopause. Figure 3-15: Radiation moyenne absorbée (I) et émise (II) par la Terre et son atmosphère. 3-18

19 source: Hidore 1984 p.63 Figure 3-16: Distribution mondiale de la variation moyenne de température pour une année. 3-19

20 source: Hidore 1984 p.61 Figure 3-17: Distribution mondiale de la température moyenne pour le mois de Janvier. 3-20

21 source: Hidore 1984 p.62 Figure 3-18: Distribution mondiale de la température moyenne pour le mois de Juillet. 3-21

22 3-22

Comprendre l Univers grâce aux messages de la lumière

Comprendre l Univers grâce aux messages de la lumière Seconde / P4 Comprendre l Univers grâce aux messages de la lumière 1/ EXPLORATION DE L UNIVERS Dans notre environnement quotidien, les dimensions, les distances sont à l échelle humaine : quelques mètres,

Plus en détail

Activité 1 : Rayonnements et absorption par l'atmosphère - Correction

Activité 1 : Rayonnements et absorption par l'atmosphère - Correction Activité 1 : Rayonnements et absorption par l'atmosphère - Correction Objectifs : Extraire et exploiter des informations sur l'absorption des rayonnements par l'atmosphère terrestre. Connaitre des sources

Plus en détail

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 02. La lumière des étoiles. Exercices : Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur

Plus en détail

LA A RESPIRATION CELLULAIRE

LA A RESPIRATION CELLULAIRE Instructions aux professeurs Domaine : 1.1 Le transport de substances, réaction chimique de la respiration cellulaire, p. 6 Travail à réaliser : Les élèves répondent aux questions. Matériel : Feuilles

Plus en détail

Rayonnements dans l univers

Rayonnements dans l univers Terminale S Rayonnements dans l univers Notions et contenu Rayonnements dans l Univers Absorption de rayonnements par l atmosphère terrestre. Etude de documents Compétences exigibles Extraire et exploiter

Plus en détail

Chapitre 1 : Qu est ce que l air qui nous entoure?

Chapitre 1 : Qu est ce que l air qui nous entoure? Chapitre 1 : Qu est ce que l air qui nous entoure? Plan : 1. Qu est ce que l atmosphère terrestre? 2. De quoi est constitué l air qui nous entoure? 3. Qu est ce que le dioxygène? a. Le dioxygène dans la

Plus en détail

L inégale répartition de l énergie solaire est à l origine des courants atmosphériques

L inégale répartition de l énergie solaire est à l origine des courants atmosphériques L inégale répartition de l énergie solaire est à l origine des courants atmosphériques I/ Objectif : Dans la partie 2 du programme de seconde «enjeux planétaires contemporains : énergie et sol», sous partie

Plus en détail

Application à l astrophysique ACTIVITE

Application à l astrophysique ACTIVITE Application à l astrophysique Seconde ACTIVITE I ) But : Le but de l activité est de donner quelques exemples d'utilisations pratiques de l analyse spectrale permettant de connaître un peu mieux les étoiles.

Plus en détail

Correction ex feuille Etoiles-Spectres.

Correction ex feuille Etoiles-Spectres. Correction ex feuille Etoiles-Spectres. Exercice n 1 1 )Signification UV et IR UV : Ultraviolet (λ < 400 nm) IR : Infrarouge (λ > 800 nm) 2 )Domaines des longueurs d onde UV : 10 nm < λ < 400 nm IR : 800

Plus en détail

Le réchauffement climatique, c'est quoi?

Le réchauffement climatique, c'est quoi? LE RECHAUFFEMENT CLIMATIQUE Le réchauffement climatique, c'est quoi? Le réchauffement climatique est l augmentation de la température moyenne à la surface de la planète. Il est dû aux g az à effet de serre

Plus en détail

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Séquence 9 Consignes de travail Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Travaillez les cours d application de physique. Travaillez les exercices

Plus en détail

INTRODUCTION À LA SPECTROSCOPIE

INTRODUCTION À LA SPECTROSCOPIE INTRODUCTION À LA SPECTROSCOPIE Table des matières 1 Introduction : 2 2 Comment obtenir un spectre? : 2 2.1 Étaller la lumière :...................................... 2 2.2 Quelques montages possibles

Plus en détail

Q U E S T I O N S. 2/ Le soleil nous procure (plusieurs réponses correctes) De la lumière De l énergie Du feu De la chaleur De la pluie

Q U E S T I O N S. 2/ Le soleil nous procure (plusieurs réponses correctes) De la lumière De l énergie Du feu De la chaleur De la pluie 1 Q U E S T I O N S 1/ Le soleil est : Une étoile Une planète 2/ Le soleil nous procure (plusieurs réponses correctes) De la lumière De l énergie Du feu De la chaleur De la pluie 3/ Le soleil tourne-t-il

Plus en détail

L ÉNERGIE C EST QUOI?

L ÉNERGIE C EST QUOI? L ÉNERGIE C EST QUOI? L énergie c est la vie! Pourquoi à chaque fois qu on fait quelque chose on dit qu on a besoin d énergie? Parce que l énergie est à l origine de tout! Rien ne peut se faire sans elle.

Plus en détail

DIFFRACTion des ondes

DIFFRACTion des ondes DIFFRACTion des ondes I DIFFRACTION DES ONDES PAR LA CUVE À ONDES Lorsqu'une onde plane traverse un trou, elle se transforme en onde circulaire. On dit que l'onde plane est diffractée par le trou. Ce phénomène

Plus en détail

L éclairage naturel première partie : Principes de base

L éclairage naturel première partie : Principes de base Suzel BALEZ L5C 2007-08 L éclairage naturel première partie : Principes de base Hertzog et Partner Bât. De bureaux à Wiesbaden Plan Notions préliminaires La vision Grandeurs photométriques Le flux lumineux

Plus en détail

Chapitre 6 La lumière des étoiles Physique

Chapitre 6 La lumière des étoiles Physique Chapitre 6 La lumière des étoiles Physique Introduction : On ne peut ni aller sur les étoiles, ni envoyer directement des sondes pour les analyser, en revanche on les voit, ce qui signifie qu'on reçoit

Plus en détail

FICHE DE DONNEES DE SECURITE

FICHE DE DONNEES DE SECURITE PAGE 1/7 DATE DE MISE A JOUR : 16/11/2011 1/ - IDENTIFICATION DU PRODUIT ET DE LA SOCIETE Identification du produit : Gaines, films, housses, et/ou sacs transparents et colorés en polyéthylène. Famille

Plus en détail

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE OBJECTIFS : - Distinguer un spectre d émission d un spectre d absorption. - Reconnaître et interpréter un spectre d émission d origine thermique - Savoir qu un

Plus en détail

Science et technologie : Le truc de Newton

Science et technologie : Le truc de Newton Science et technologie : Le truc de Newton Une caractéristique fondamentale de la science c est le lien étroit qui l unit à la technologie. La science cherche les règles du monde matériel et la technologie

Plus en détail

LE CORPS NOIR (basé sur Astrophysique sur Mesure / Observatoire de Paris : http://media4.obspm.fr/public/fsu/temperature/rayonnement/)

LE CORPS NOIR (basé sur Astrophysique sur Mesure / Observatoire de Paris : http://media4.obspm.fr/public/fsu/temperature/rayonnement/) LE CORPS NOIR (basé sur Astrophysique sur Mesure / Observatoire de Paris : http://media4.obspm.fr/public/fsu/temperature/rayonnement/) Le corps noir est... noir D'où vient le terme corps noir? Notons tout

Plus en détail

Les Énergies Capter et Stocker le Carbone «C.C.S»

Les Énergies Capter et Stocker le Carbone «C.C.S» Les Énergies Capter et Stocker le Carbone «C.C.S» La lutte contre le changement climatique Initiative concertée au niveau mondial Pour limiter à 2 à 3 C l élévation moyenne de la température, il faudrait

Plus en détail

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4) PHYSIQUE-CHIMIE 4 ème TRIMESTRE 1 PROGRAMME 2008 (v2.4) Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique Les Cours Pi e-mail : lescourspi@cours-pi.com site : http://www.cours-pi.com

Plus en détail

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Ariane Lançon (Observatoire de Strasbourg) en collaboration avec: Jean-Luc Vergely,

Plus en détail

TEMPÉRATURE DE SURFACE D'UNE ÉTOILE

TEMPÉRATURE DE SURFACE D'UNE ÉTOILE TEMPÉRATURE DE SURFACE D'UNE ÉTOILE Compétences mises en jeu durant l'activité : Compétences générales : Etre autonome S'impliquer Elaborer et réaliser un protocole expérimental en toute sécurité Compétence(s)

Plus en détail

LA MAISON ECOCITOYENNE ITINERANTE

LA MAISON ECOCITOYENNE ITINERANTE LA MAISON ECOCITOYENNE ITINERANTE LIVRET D'ACCOMPAGNEMENT PEDAGOGIQUE Passer de citoyen témoin à citoyen acteur en intégrant la préservation de l environnement au quotidien, c est utile et c est possible

Plus en détail

Évolution du climat et désertification

Évolution du climat et désertification Évolution du climat et désertification FACTEURS HUMAINS ET NATURELS DE L ÉVOLUTION DU CLIMAT Les activités humaines essentiellement l exploitation de combustibles fossiles et la modification de la couverture

Plus en détail

METEOROLOGIE CAEA 1990

METEOROLOGIE CAEA 1990 METEOROLOGIE CAEA 1990 1) Les météorologistes mesurent et prévoient le vent en attitude à des niveaux exprimés en pressions atmosphériques. Entre le niveau de la mer et 6000 m d'altitude, quels sont les

Plus en détail

Bilan des émissions de gaz à effet de serre

Bilan des émissions de gaz à effet de serre Bilan des émissions de gaz à effet de serre SOMMAIRE 1 Contexte réglementaire 3 2 Description de la personne morale 4 3 Année de reporting de l exercice et l année de référence 6 4 Emissions directes de

Plus en détail

Mesures de PAR. Densité de flux de photons utiles pour la photosynthèse

Mesures de PAR. Densité de flux de photons utiles pour la photosynthèse Densité de flux de photons utiles pour la photosynthèse Le rayonnement lumineux joue un rôle critique dans le processus biologique et chimique de la vie sur terre. Il intervient notamment dans sur les

Plus en détail

L'ABC. Le gaz naturel

L'ABC. Le gaz naturel Le gaz naturel Composition SAVIEZ-VOUS QUE? Le pourcentage exact de méthane dans le gaz naturel varie légèrement d'un endroit à l'autre. Dans le réseau de distribution du Québec, il y a 95,4 % de méthane.

Plus en détail

Monitoring de surface de sites de stockage de CO 2 SENTINELLE. (Pilote CO2 de TOTAL Lacq-Rousse, France) Réf. : ANR-07-PCO2-007

Monitoring de surface de sites de stockage de CO 2 SENTINELLE. (Pilote CO2 de TOTAL Lacq-Rousse, France) Réf. : ANR-07-PCO2-007 Monitoring de surface de sites de stockage de CO 2 (Pilote CO2 de TOTAL Lacq-Rousse, France) SENTINELLE Réf. : ANR-07-PCO2-007 Ph. de DONATO (INPL-CNRS) (Coordonnateur) PARTENAIRES Durée : 3 ans + 7 mois

Plus en détail

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire Chapitre 6 : les groupements d'étoiles et l'espace interstellaire - Notre Galaxie - Amas stellaires - Milieu interstellaire - Où sommes-nous? - Types de galaxies - Interactions entre galaxies Notre Galaxie

Plus en détail

Le Soleil. Structure, données astronomiques, insolation.

Le Soleil. Structure, données astronomiques, insolation. Le Soleil Structure, données astronomiques, insolation. Le Soleil, une formidable centrale à Fusion Nucléaire Le Soleil a pris naissance au sein d un nuage d hydrogène de composition relative en moles

Plus en détail

Piegeage et stockage du CO 2

Piegeage et stockage du CO 2 Piegeage et stockage du CO 2 Résumé du rapport spécial du GIEC, le Groupe d experts intergouvernemental sur l évolution du climat Un résumé réalisé par: LE PIÉGEAGE ET STOCKAGE DU DIOXYDE DE CARBONE (PSC)

Plus en détail

Fluorescent ou phosphorescent?

Fluorescent ou phosphorescent? Fluorescent ou phosphorescent? On entend régulièrement ces deux termes, et on ne se préoccupe pas souvent de la différence entre les deux. Cela nous semble tellement complexe que nous préférons rester

Plus en détail

Bilan GES Entreprise. Bilan d émissions de Gaz à effet de serre

Bilan GES Entreprise. Bilan d émissions de Gaz à effet de serre Bilan GES Entreprise Bilan d émissions de Gaz à effet de serre Conformément à l article 75 de la loi n 2010-788 du 12 Juillet 2010 portant engagement national pour l environnement (ENE) Restitution pour

Plus en détail

Atelier : L énergie nucléaire en Astrophysique

Atelier : L énergie nucléaire en Astrophysique Atelier : L énergie nucléaire en Astrophysique Elisabeth Vangioni Institut d Astrophysique de Paris Fleurance, 8 Août 2005 Une calculatrice, une règle et du papier quadrillé sont nécessaires au bon fonctionnement

Plus en détail

La vie des étoiles. La vie des étoiles. Mardi 7 août

La vie des étoiles. La vie des étoiles. Mardi 7 août La vie des étoiles La vie des étoiles Mardi 7 août A l échelle d une ou plusieurs vies humaines, les étoiles, que l on retrouve toujours à la même place dans le ciel, au fil des saisons ; nous paraissent

Plus en détail

101 Adoptée : 12 mai 1981

101 Adoptée : 12 mai 1981 LIGNE DIRECTRICE DE L OCDE POUR LES ESSAIS DE PRODUITS CHIMIQUES 101 Adoptée : 12 mai 1981 «Spectres d'absorption UV-VIS» (Méthode spectrophotométrique) 1. I N T R O D U C T I O N I n f o r m a t i o n

Plus en détail

Questions fréquentes. Citations des présentes questions : Lors de la citation d un groupe de questions, donner la référence suivante :

Questions fréquentes. Citations des présentes questions : Lors de la citation d un groupe de questions, donner la référence suivante : Extraits du Rapport accepté par le Groupe de travail I du Groupe d experts intergouvernemental sur l évolution du climat mais non approuvé dans les détails Questions fréquentes Citations des présentes

Plus en détail

FICHE TECHNIQUE : NOTION DE CONSERVATION

FICHE TECHNIQUE : NOTION DE CONSERVATION LE SERVICE D INFORMATION ET DE DOCUMENTATION SID, Mars 2009 DE LA FONDATION ALLIANCE FRANÇAISE FICHE TECHNIQUE : NOTION DE CONSERVATION D UN FONDS D ARCHIVES D UNE ALLIANCE FRANÇAISE. SOMMAIRE Les objectifs...

Plus en détail

Caractéristiques des ondes

Caractéristiques des ondes Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace

Plus en détail

Principe de fonctionnement de la façade active Lucido. K:\15.Lucido \Dossier d'envoi\annexe\2011_12_explicatif du principe de la façade Lucido.

Principe de fonctionnement de la façade active Lucido. K:\15.Lucido \Dossier d'envoi\annexe\2011_12_explicatif du principe de la façade Lucido. Principe de fonctionnement de la façade active Lucido K:\15.Lucido \Dossier d'envoi\annexe\2011_12_explicatif du principe de la façade Lucido.doc 0. Préambule Le présent document est élaboré dans le but

Plus en détail

Changement Climatique (1/2) : Qu est-ce que c est?

Changement Climatique (1/2) : Qu est-ce que c est? Dossier pédagogique 3 Langues, géographie, sciences, histoire Changement Climatique (1/2) : Qu est-ce que c est? plus de 100 ans de recherches scientifiques Changement climatique, Effet de serre, gaz à

Plus en détail

C3. Produire de l électricité

C3. Produire de l électricité C3. Produire de l électricité a. Electricité : définition et génération i. Définition La matière est constituée d. Au centre de l atome, se trouve un noyau constitué de charges positives (.) et neutres

Plus en détail

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable. DE3: I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable. Aujourd hui, nous obtenons cette énergie électrique en grande partie

Plus en détail

L ENERGIE CORRECTION

L ENERGIE CORRECTION Technologie Lis attentivement le document ressource mis à ta disposition et recopie les questions posées sur une feuille de cours (réponds au crayon) : 1. Quelles sont les deux catégories d énergie que

Plus en détail

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de

Plus en détail

Qu'est-ce que la biométhanisation?

Qu'est-ce que la biométhanisation? Qu'est-ce que la biométhanisation? La biométhanisation consiste en une série d'opérations de dégradations biologiques de matières organiques qui se produisent en l'absence d'oxygène. Les produits résultants

Plus en détail

Capteur optique à dioxygène

Capteur optique à dioxygène Capteur optique à dioxygène Référence PS- 2196 Connectique de la sonde mini DIN Tête de la sonde Embout de protection et stockage Port mini DIN du capteur Eléments inclus 1. Capteur à dioxygène optique

Plus en détail

Annexe 3 Captation d énergie

Annexe 3 Captation d énergie 1. DISPOSITIONS GENERALES 1.a. Captation d'énergie. Annexe 3 Captation Dans tous les cas, si l exploitation de la ressource naturelle est soumise à l octroi d un permis d urbanisme et/ou d environnement,

Plus en détail

L échelle du ph est logarithmique, c està-dire

L échelle du ph est logarithmique, c està-dire Le ph Qu est-ce que le ph? Le ph mesure l acidité d un liquide. Sa valeur s exprime sur une échelle graduée de 0 à 14 où 1 désigne une substance fortement acide, 7, une substance neutre, et 14, une substance

Plus en détail

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre

Plus en détail

ANALYSE SPECTRALE. monochromateur

ANALYSE SPECTRALE. monochromateur ht ANALYSE SPECTRALE Une espèce chimique est susceptible d interagir avec un rayonnement électromagnétique. L étude de l intensité du rayonnement (absorbé ou réémis) en fonction des longueurs d ode s appelle

Plus en détail

TP 03 B : Mesure d une vitesse par effet Doppler

TP 03 B : Mesure d une vitesse par effet Doppler TP 03 B : Mesure d une vitesse par effet Doppler Compétences exigibles : - Mettre en œuvre une démarche expérimentale pour mesurer une vitesse en utilisant l effet Doppler. - Exploiter l expression du

Plus en détail

Économiser l Électricité

Économiser l Électricité Économiser l Électricité c est simple Document réalisé par l Agence Régionale Pour l Environnement Midi-Pyrénées Agence Régionale Pour l Environnement Midi-Pyrénées Observatoire Régional de l Énergie Midi-Pyrénées

Plus en détail

IR Temp 210. Thermomètre infrarouge. Des techniques sur mesure

IR Temp 210. Thermomètre infrarouge. Des techniques sur mesure IR Temp 210 Thermomètre infrarouge Contenu 1. Spécifications...26 2. Touches et affichages...28 3. Utilisation...30 4. Entretien...31 5. Elimination des piles et de l appareil...31 6. Tableau de facteur

Plus en détail

Panneau solaire ALDEN

Panneau solaire ALDEN SOMMAIRE 1. Présentation... 1.1. Mise en situation... 1.2. Analyse du besoin... 4 1.. Problématique... 4 1.4. Expression du besoin... 5 1.5. Validation du besoin... 5 2. Analyse fonctionnelle... 2.1. Définition

Plus en détail

Objectifs pédagogiques : spectrophotomètre Décrire les procédures d entretien d un spectrophotomètre Savoir changer l ampoule d un

Objectifs pédagogiques : spectrophotomètre Décrire les procédures d entretien d un spectrophotomètre Savoir changer l ampoule d un CHAPITRE 6 : LE SPECTROPHOTOMETRE Objectifs pédagogiques : Citer les principaux éléments d un dun spectrophotomètre Décrire les procédures d entretien d un spectrophotomètre p Savoir changer l ampoule

Plus en détail

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Objectifs : Exploiter un spectre infrarouge pour déterminer des groupes caractéristiques Relier un spectre

Plus en détail

Sujet. calculatrice: autorisée durée: 4 heures

Sujet. calculatrice: autorisée durée: 4 heures DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Spectrophotomètre à réseau...2 I.Loi de Beer et Lambert... 2 II.Diffraction par une, puis par deux fentes rectangulaires... 3

Plus en détail

PROPRIÉTÉS D'UN LASER

PROPRIÉTÉS D'UN LASER PROPRIÉTÉS D'UN LASER Compétences mises en jeu durant l'activité : Compétences générales : S'impliquer, être autonome. Elaborer et réaliser un protocole expérimental en toute sécurité. Compétence(s) spécifique(s)

Plus en détail

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE Thème : L eau CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 Domaine : Eau et énergie CORRIGE 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE 2.1. Enoncé L'alimentation électrique d'une navette spatiale

Plus en détail

Centre de Développement des Energies Renouvelables Caractéristiques techniques des Chauffe-eau eau solaires M. Mohamed El Haouari Directeur du Développement et de la Planification Rappels de thermique

Plus en détail

Bilan GES Entreprise. Bilan d émissions de Gaz à effet de serre

Bilan GES Entreprise. Bilan d émissions de Gaz à effet de serre Bilan GES Entreprise Bilan d émissions de Gaz à effet de serre Conformément à l article 75 de la loi n 2010-788 du 12 Juillet 2010 portant engagement national pour l environnement (ENE) Restitution pour

Plus en détail

Étude et modélisation des étoiles

Étude et modélisation des étoiles Étude et modélisation des étoiles Étoile Pistol Betelgeuse Sirius A & B Pourquoi s intéresser aux étoiles? Conditions physiques très exotiques! très différentes de celles rencontrées naturellement sur

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Suite énoncé des exos du Chapitre 14 : Noyaux-masse-énergie I. Fission nucléaire induite (provoquée)

Plus en détail

LAMPES FLUORESCENTES BASSE CONSOMMATION A CATHODE FROIDE CCFL

LAMPES FLUORESCENTES BASSE CONSOMMATION A CATHODE FROIDE CCFL LAMPES FLUORESCENTES BASSE CONSOMMATION A CATHODE FROIDE CCFL Economisons notre énergie et sauvons la planète Présentation générale 2013 PRESENTATION I. Principes de fonctionnement d une ampoule basse

Plus en détail

1STI2D - Les ondes au service de la santé

1STI2D - Les ondes au service de la santé 1STI2D - Les ondes au service de la santé De nombreuses techniques d imagerie médicale utilisent les ondes : la radiographie utilise les rayons X, la scintigraphie utilise les rayons gamma, l échographie

Plus en détail

Module HVAC - fonctionnalités

Module HVAC - fonctionnalités Module HVAC - fonctionnalités Modèle de radiation : DO = Discrete Ordinates On peut considérer l échauffement de solides semi transparents causé par le rayonnement absorbé par le solide. On peut également

Plus en détail

PNUE. Secrétariat de l ozone Programme des Nations Unies pour l environnement

PNUE. Secrétariat de l ozone Programme des Nations Unies pour l environnement La Convention de Vienne pour la protection de la couche d ozone PNUE Secrétariat de l ozone Programme des Nations Unies pour l environnement Publication (novembre 2001) du Secrétariat de la Convention

Plus en détail

Présentation générale des principales sources d énergies fossiles.

Présentation générale des principales sources d énergies fossiles. Présentation générale des principales sources d énergies fossiles. Date : 19/09/2012 NOM / Name SIGNATURE Etabli / Prepared Vérifié / Checked Approuvé /Approved G J-L & R-SENE R.SENE R.SENE Sommaire 1.

Plus en détail

LA MAISON ECOCITOYENNE ITINERANTE

LA MAISON ECOCITOYENNE ITINERANTE LA MAISON ECOCITOYENNE ITINERANTE LIVRET D'ACCOMPAGNEMENT PEDAGOGIQUE Passer de citoyen témoin à citoyen acteur en intégrant la préservation de l environnement au quotidien, c est utile et c est possible

Plus en détail

Energie nucléaire. Quelques éléments de physique

Energie nucléaire. Quelques éléments de physique Energie nucléaire Quelques éléments de physique Comment produire 1 GW électrique Nucléaire (rendement 33%) Thermique (38%) Hydraulique (85%) Solaire (10%) Vent : 27t d uranium par an : 170 t de fuel par

Plus en détail

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre) Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre) 1. A la découverte de la radioactivité. Un noyau père radioactif est un noyau INSTABLE. Il se transforme en un noyau fils STABLE

Plus en détail

3 - Description et orbite d'un satellite d'observation

3 - Description et orbite d'un satellite d'observation Introduction à la télédétection 3 - Description et orbite d'un satellite d'observation OLIVIER DE JOINVILLE Table des matières I - Description d'un satellite d'observation 5 A. Schéma d'un satellite...5

Plus en détail

FORMATION DES PERSONNES-RESSOURCES EN SCIENCE ET TECHNOLOGIE LE CYCLE DU JOUR ET DE LA NUIT (CYCLE DIURNE)

FORMATION DES PERSONNES-RESSOURCES EN SCIENCE ET TECHNOLOGIE LE CYCLE DU JOUR ET DE LA NUIT (CYCLE DIURNE) FORMATION DES PERSONNES-RESSOURCES EN SCIENCE ET TECHNOLOGIE LE CYCLE DU JOUR ET DE LA NUIT (CYCLE DIURNE) Pierre Chastenay astronome Planétarium de Montréal Source : nia.ecsu.edu/onr/ocean/teampages/rs/daynight.jpg

Plus en détail

Fiche-conseil C5 Production d eau chaude sanitaire

Fiche-conseil C5 Production d eau chaude sanitaire Service d information sur les économies d énergie Fiche-conseil C5 Production d eau chaude sanitaire 1 Préparation de l eau chaude sanitaire 2 1) Différents systèmes de production A Chaudière combinée

Plus en détail

pka D UN INDICATEUR COLORE

pka D UN INDICATEUR COLORE TP SPETROPHOTOMETRIE Lycée F.BUISSON PTSI pka D UN INDIATEUR OLORE ) Principes de la spectrophotométrie La spectrophotométrie est une technique d analyse qualitative et quantitative, de substances absorbant

Plus en détail

Comment réduire les émissions de CO 2? Les réponses de l'ifp

Comment réduire les émissions de CO 2? Les réponses de l'ifp Septembre 2005 Comment réduire les émissions de CO 2? Les réponses de l'ifp L'IFP inscrit les travaux sur la réduction des émissions de CO 2 au cœur de ses programmes de recherche. La stratégie de l'ifp

Plus en détail

Projet SENTINELLE Appel àprojets «CO 2»Déc. 2007

Projet SENTINELLE Appel àprojets «CO 2»Déc. 2007 Projet SENTINELLE Appel àprojets «CO 2»Déc. 2007 Philippe de DONATO Université de Lorraine/CNRS Co-auteurs: C. PRINET, B. GARCIA, H. LUCAS, Z. POKRYSZKA, S. LAFORTUNE, P. FLAMANT, F. GIBERT, D. EDOUART,

Plus en détail

La Terre mise en scène

La Terre mise en scène Objectif La pièce peut servir d «évaluation des performances» et offrir aux élèves la possibilité de montrer de manière créative ce qu ils ont appris sur la Terre en tant que système. Vue d ensemble La

Plus en détail

Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008

Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008 GMPI*EZVI0EFSVEXSMVIH%WXVSTL]WMUYIHI&SVHIEY\ 1. Introduction à Celestia Celestia 1.1 Généralités 1.2 Ecran d Ouverture 2. Commandes Principales du Menu 3. Exemples d Applications 3.1 Effet de l atmosphère

Plus en détail

Champ électromagnétique?

Champ électromagnétique? Qu est-ce qu un Champ électromagnétique? Alain Azoulay Consultant, www.radiocem.com 3 décembre 2013. 1 Définition trouvée à l article 2 de la Directive «champs électromagnétiques» : des champs électriques

Plus en détail

Le four solaire modèle BISS

Le four solaire modèle BISS Réchou Léopold 1 ère S-SVT Touchard Léo Tanghe Maxime Le four solaire modèle BISS Comment tout est mis en œuvre dans un four solaire pour atteindre une température optimale? Lycée Jacques de Vaucanson

Plus en détail

août La météo Congrès provincial de l AEFNB Journée de perfectionnement professionnel

août La météo Congrès provincial de l AEFNB Journée de perfectionnement professionnel août La météo Congrès provincial de l AEFNB Journée de perfectionnement professionnel Bienvenue Tribond - La danse de la pluie L oeil dans la météo A yous que la météo fit dans mon programme Météo everywhere

Plus en détail

B- Météorologie. En présence de cumulus alignés en bande parallèles vous prévoyez un vent: R : de même direction que les alignements

B- Météorologie. En présence de cumulus alignés en bande parallèles vous prévoyez un vent: R : de même direction que les alignements B- Météorologie Nuages Brouillard Les brouillards côtiers sont du type: R : brouillard d'advection Il y a brouillard dès que la visibilité est inférieure à: R : 1 km Les facteurs favorisant l'apparition

Plus en détail

CIRCULAIRE N 2983 DU 18/01/2010

CIRCULAIRE N 2983 DU 18/01/2010 CIRCULAIRE N 2983 DU 18/01/2010 Objet : Utilisation des fluides frigorigènes dans les installations de réfrigération A l'attention de(s) : Pour information : Monsieur l'administrateur général de l'administration

Plus en détail

III RESULTATS LE LONG DU TRACE PREFERENTIEL DE LA LIGNE 2

III RESULTATS LE LONG DU TRACE PREFERENTIEL DE LA LIGNE 2 FUTURE LIGNE 2 DE TRAMWAY DE L'AGGLOMERATION DE MONTPELLIER Etat initial des principaux traceurs de la pollution liée au trafic routier Résumé Rédacteur : AFM Date : 29/1/3 pages I CONTEXTE Etude réalisée

Plus en détail

Modèle de Climat de Titan

Modèle de Climat de Titan Planétologie - GSMA - Université de Reims Champagne-Ardenne Modèle de Climat de Titan Le contexte général : Titan, le plus gros satellite de Saturne, possède une atmosphère dense de 1.4 bar essentiellement

Plus en détail

CHAPITRE IX : Les appareils de mesures électriques

CHAPITRE IX : Les appareils de mesures électriques CHAPITRE IX : Les appareils de mesures électriques IX. 1 L'appareil de mesure qui permet de mesurer la différence de potentiel entre deux points d'un circuit est un voltmètre, celui qui mesure le courant

Plus en détail

METEOROLOGIE. Aéroclub Besançon La Vèze. Cours MTO - Ivan TORREADRADO 1. F-SO au FL65 over LFQM

METEOROLOGIE. Aéroclub Besançon La Vèze. Cours MTO - Ivan TORREADRADO 1. F-SO au FL65 over LFQM METEOROLOGIE Aéroclub Besançon La Vèze F-SO au FL65 over LFQM Cours MTO - Ivan TORREADRADO 1 L air L atmosphère terrestre L humidité La stabilité, l instabilité La convection/l advection Les masses d air

Plus en détail

Savoir lire une carte, se situer et s orienter en randonnée

Savoir lire une carte, se situer et s orienter en randonnée Savoir lire une carte, se situer et s orienter en randonnée Le b.a.-ba du randonneur Fiche 2 Lire une carte topographique Mais c est où le nord? Quel Nord Le magnétisme terrestre attire systématiquement

Plus en détail

Bilan des émissions de gaz à effet de serre (BEGES)

Bilan des émissions de gaz à effet de serre (BEGES) Bilan des émissions de gaz à effet de serre (BEGES) BEGES TABLE DES MATIÈRES 1- INTRODUCTION 2 1-1 - OBJET 2 1-2 - LE CADRE REGLEMENTAIRE 2 1-3 - CONTENU DU RAPPORT 3 1-4 - DEFINITIONS 3 2- BILAN DES EMISSIONS

Plus en détail

Matériels de Formation du GCE Inventaires Nationaux de Gaz à Effet de Serre. Secteur de l'energie Combustion de Combustibles

Matériels de Formation du GCE Inventaires Nationaux de Gaz à Effet de Serre. Secteur de l'energie Combustion de Combustibles Convention Cadre des Nations Unies sur les Changements Climatiques Matériels de Formation du GCE Inventaires Nationaux de Gaz à Effet de Serre Secteur de l'energie Combustion de Combustibles Version du

Plus en détail

Que nous enseigne la base de données PAE?

Que nous enseigne la base de données PAE? Que nous enseigne la base de données PAE? Séminaire auditeurs PAE 8 juin 2009 Nicolas Heijmans, ir Division Energie et Climat CSTC - Centre Scientifique et Technique de la Construction 00/00/2006 Contenu

Plus en détail

ne définition de l arbre.

ne définition de l arbre. LA PHYSIOLOGIE DES ARBRES. U ne définition de l arbre. L es arbres sont des êtres vivants qui occupent une place à part dans le monde végétal. Ils sont indispensables à la vie sur terre et ils ont largement

Plus en détail

Vie et mort des étoiles. Céline Reylé Observatoire de Besançon

Vie et mort des étoiles. Céline Reylé Observatoire de Besançon Vie et mort des étoiles Céline Reylé Observatoire de Besançon Qu est-ce qu une étoile? Sphère de gaz hydrogène (¾) hélium (¼) pèse sur le centre qui est alors chauffé E. Beaudoin Sphère de gaz hydrogène

Plus en détail