A] Propriétés et classement des solides. Exercice supplémentaire 1 Théorie. a) Donne la définition précise d un polyèdre.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "A] Propriétés et classement des solides. Exercice supplémentaire 1 Théorie. a) Donne la définition précise d un polyèdre."

Transcription

1 A] Propriétés et classement des solides Exercice supplémentaire 1 Théorie a) Donne la définition précise d un polyèdre. b) Remplis le tableau suivant (coche sous la bonne colonne) Nom Polyèdre Prisme droit Polygone Rectangle Cylindre Prisme droit Cône Tétraèdre Sphère Cube Disque Hexagone Pentagone Pavé droit Triangle Pyramide Octogone Autre (précise le nom) c) Justifie pourquoi un cube est un pavé droit. Exercice supplémentaire 2 Théorie 2 No de l objet Nom précis du solide Polyèdre? Nombre de faces Pour les polyèdres : Nombre de sommets MNA Nombre d arêtes

2 Exercice supplémentaire 3 Parmi les solides suivants, quels sont ceux qui sont des prismes droits (précise alors la nature des bases)? Justifie tes réponses. B] Développements Exercice supplémentaire 4 Quels dessins représentent le développement d un pavé droit? Justifie. MNA

3 Exercice supplémentaire 5 Quelques constructions de développements! a) Construis le développement d un pavé droit de dimensions 4,5 cm ; 6,2 cm et 3 cm. b) Réalise le patron de ce cube de 3,6 cm d arête tout en sachant que les faces opposées sont identiques : c) Construis le développement d un prisme droit dont la base est un triangle de côtés 5 cm, 4 cm et 3 cm et dont la hauteur du prisme est 2 cm. d) Construis le patron d un prisme droit de hauteur 3 cm ayant pour base un triangle rectangle dont l angle droit est formé par des côtés de 2,5 cm et 4 cm. e) Dessine trois croquis de développements différents d un parallélépipède rectangle de dimensions 3 cm, 4 cm et 5 cm. Exercice supplémentaire 6 Complète les longueurs manquantes Exercice supplémentaire 7 Quel(s) dessin(s) représentent le patron d un prisme droit? Exercice supplémentaire 8 Entoure les patrons de cube juste. MNA

4 Exercice supplémentaire 9 On a dessiné le schéma d un solide en perspective cavalière puis son développement. Sur le patron, indique les longueurs que tu connais et code les segments de même longueur. Indique le nom précis de ce solide. C] Perspectives MNA

5 Exercice supplémentaire 10 Parmi les figures suivantes, entoure celles qui sont des représentations en perspective cavalière de pavés droits. Exercice supplémentaire 11 a) Dessine les perspectives cavalière et isométrique d un cube de 3 cm d arête. b) Dessine les perspectives cavalière et isométrique d un pavé droit de dimensions 3 cm ; 40 mm et 0,9 dm. c) Cite les principaux critères à respecter lors d une construction en perspective isométrique. d) Cite les principaux critères à respecter lors d une construction en perspective cavalière. Exercice supplémentaire 12 MNA

6 CORRIGE MNA

7 A] Propriétés et classement des solides Exercice supplémentaire 1 Théorie a) Donne la définition précise d un polyèdre. Un polyèdre est un solide composé de faces de formes polygonales (surface délimitée par des segments). b) Remplis le tableau suivant (coche sous la bonne colonne) Nom Polyèdre Prisme droit Polygone Rectangle x Cylindre Prisme droit x x Cône Tétraèdre Sphère Cube x x Disque Hexagone x Pentagone x Pavé droit x x Triangle x Pyramide Octogone x Autre (précise le nom) Non-polyèdre Non-polyèdre Pyramide Non-polyèdre Non-polygone Pyramide c) Justifie pourquoi un cube est un pavé droit. Car c est : - Un polyèdre - Dont ses arêtes sont parallèles deux à deux donc c est un prisme. - Ses faces latérales sont des rectangles donc c est un prisme droit. - Il est composé de 6 faces rectangulaires donc c est un pavé droit. Exercice supplémentaire 2 Théorie 2 MNA

8 No de l objet Nom précis du solide Polyèdre? Nombre de faces Pour les polyèdres : Nombre de sommets Nombre d arêtes 1 Prisme droit à base oui triangulaire 2 Cylindre (droit) NON 3 Cône NON 4 Cube oui Pavé droit oui Exercice supplémentaire 3 Parmi les solides suivants, quels sont ceux qui sont des prismes droits (précise alors la nature des bases)? Justifie tes réponses. 1) est un prisme droit à base triangulaire car c est un polyèdre dont les arêtes sont parallèles deux à deux (prisme) et dont les faces latérales sont des rectangles (prisme droit). 2) n est pas un prisme droit car ce n est pas un polyèdre. 3) n est pas un prisme droit car ses arêtes ne sont pas parallèles deux à deux (ce n est même pas un prisme mais uniquement un polyèdre) 4) est un prisme droit à base triangulaire car c est un polyèdre dont les faces latérales sont des rectangles et dont les arêtes sont parallèles deux à deux. 5) n est pas un prisme droit car ce n est pas un polyèdre. 6) est un prisme droit à base en trapèze (il ne repose pas sur sa base!) car c est un polyèdre dont les arêtes sont parallèles deux à deux (prisme) et dont les faces latérales sont des rectangles (prisme droit). 7) n est pas un prisme droit car ce n est pas un polyèdre. 8) n est pas un prisme droit car c est un pyramide donc ce n est pas un prisme (les arêtes ne sont pas parallèles deux à deux) et ses faces latérales ne sont pas des rectangles (prisme droit). 9) est un prisme droit à base triangulaire car c est un polyèdre dont les arêtes sont parallèles deux à deux (prisme) et dont les faces latérales sont des rectangles (prisme droit). B] Développements MNA

9 Exercice supplémentaire 4 Quels dessins représentent le développement d un pavé droit? Justifie. Le développement 1 est le développement d un pavé droit car il possède 6 faces rectangulaires et les arêtes communes sont isométriques. Le développement 2 n est pas un développement d un pavé droit car il possède une face en trop. Le développement 3 est le développement d un cube et par conséquent il est également le développement d un pavé droit (le cube est un pavé droit). Le développement 4 est le développement d un pavé droit car il possède 6 faces rectangulaires et les arêtes communes sont isométriques. Le développement 5 n est pas le développement d un pavé droit car certaines arêtes communes ne sont pas isométriques : Exercice supplémentaire 5 Quelques constructions de développements! a) Construis le développement d un pavé droit de dimensions 4,5 cm ; 6,2 cm et 3 cm. Il y a plusieurs possibilités mais le développement doit avoir : - 6 faces rectangulaires - 2 faces avec un rectangle de 4,5 x 6,2-2 faces avec un rectangle de 4,5 x 3-2 faces avec un rectangle de 6,2 x 3 dont voici un exemple : MNA

10 b) Réalise le patron de ce cube de 3,6 cm d arête : toutes les arêtes mesurent 3,6 cm! MNA

11 c) Construis le développement d un prisme droit dont la base est un triangle de côtés 5 cm, 4 cm et 3 cm et dont la hauteur du prisme est 2 cm. P triangle = = 12 cm Les bases peuvent être déplacées mais il est important d en retrouver une de chaque côté de l aire latérale (ce qui sépare les deux base est la hauteur de 2 cm)! (si la précision est là, nous devons obtenir des bases en triangle rectangle). Il est important de construire les bases à l aide du compas car si les triangles ne sont pas rectangles, il est très difficile d être précis avec uniquement une équerre et une règle Bien vérifier que les arêtes isométriques le soient vraiment! MNA

12 d) Construis le patron d un prisme droit de hauteur 3 cm ayant pour base un triangle rectangle dont l angle droit est formé par des côtés de 2,5 cm et 4 cm. 1. Construire une des bases pour trouver la 3 e dimension du triangle : 4,7 cm 2. Construire les faces latérales rectangulaires. P triangle = 4, ,5 = 11,2 cm 3. Construire la deuxième base. e) Dessine trois croquis de développements différents d un parallélépipède rectangle de dimensions 3 cm, 4 cm et 5 cm. Il y a plusieurs possibilités mais par exemple : MNA

13 Exercice supplémentaire 6 Complète les longueurs manquantes Exercice supplémentaire 7 Quel(s) dessin(s) représentent le patron d un prisme droit? Haut à gauche : Le patron du prisme droit à base triangulaire est erroné car une des bases (celle d en haut) a été construite à l envers, certaines arrêtes confondues ne sont pas isométriques. Haut à droit : Le patron du prisme droit à base triangulaire est erroné car il y a une face en trop (un rectangle) donc forcément une collision! En bas : le développement est du prisme droit à base en trapèze est juste! MNA

14 Exercice supplémentaire 8 Entoure les patrons de cube juste. Les développements justes sont : a c d g k Exercice supplémentaire 9 On a dessiné le schéma d un solide en perspective cavalière puis son développement. Sur le patron, indique les longueurs que tu connais et code les segments de même longueur. Indique le nom précis de ce solide. C est un prisme droit à base triangulaire car il possède deux bases en forme de triangle et ses faces latérales sont des rectangles. MNA

15 C] Perspectives Exercice supplémentaire 10 Parmi les figures suivantes, entoure celles qui sont des représentations en perspective cavalière de pavés droits. Perspective cavalière juste : aucune a) Pas d angle de 45 pour les arêtes fuyantes b) Pas d angle de 45 pour les arêtes fuyantes c) Arêtes ne sont pas parallèles deux à deux d) Pas d angle de 45 pour les arêtes fuyantes e) Arêtes ne sont pas parallèles deux à deux f) Pas d angle de 45 pour les arêtes fuyantes g) Pas d angle de 45 pour les arêtes fuyantes h) Pas d angle de 45 pour les arêtes fuyantes Exercice supplémentaire 11 a) Dessine les perspectives cavalière et isométrique d un cube de 3 cm d arête. MNA

16 b) Dessine les perspectives cavalière et isométrique d un pavé droit de dimensions 3 cm ; 40 mm et 0,9 dm. c) Cite les principaux critères à respecter lors d une construction en perspective isométrique. - Les arêtes fuyantes «dévient» selon des angles de 30 - Toutes les arêtes sont de dimensions réelles. - Les arêtes parallèles dans la réalité restent parallèles lors de la construction - Les arêtes verticales restent verticales. - Les arêtes cachées ne sont pas dessinées. MNA

17 d) Cite les principaux critères à respecter lors d une construction en perspective cavalière. - Une face est construite à l aide des dimensions réelles - Les arêtes fuyantes (3 e dimension) «dévient» selon des angles de 45 - Les longueurs des arêtes fuyantes sont diminuées de moitié par rapport à la réalité. - Les arêtes parallèles dans la réalité restent parallèles lors de la construction - Les arêtes verticales restent verticales. - Les arêtes cachées sont dessinées en traits-tirés. Exercice supplémentaire 12 MNA

COURS. Le polyèdre représenté ci-dessus n est pas convexe : il n est pas situé tout entier du même côté du plan contenant la face JBCK.

COURS. Le polyèdre représenté ci-dessus n est pas convexe : il n est pas situé tout entier du même côté du plan contenant la face JBCK. EC 9A : ELEMENTS DE MATHEMATIQUES GEOMETRIE DANS L ESPACE COURS Objectifs du chapitre : Reconnaître et utiliser les propriétés relatives aux faces, arêtes et sommets pour les solides suivants : cube, pavé

Plus en détail

1 Les solides de 6e et de 5e.

1 Les solides de 6e et de 5e. 1 Les solides de 6e et de 5e. 1.1 Le pavé droit et le cube Le pavé droit a six faces rectangulaires, 8 sommets et 12 arêtes (3 dimensions d arêtes). Vue en perspective cavalière : Patron : Aire : l aire

Plus en détail

Mathématiques SOLIDES

Mathématiques SOLIDES SOLIDES I. Prismes 1. Définitions Prisme Un prisme est un polyèdre délimité par : - deux faces polygonales isométriques situées dans des plans parallèles. Ce sont les bases du prisme. - des parallélogrammes.

Plus en détail

Solides et patrons. Table des matières. Paul Milan. Professeurs des écoles le 29 septembre 2009 TABLE DES MATIÈRES 1

Solides et patrons. Table des matières. Paul Milan. Professeurs des écoles le 29 septembre 2009 TABLE DES MATIÈRES 1 TABLE DES MATIÈRES 1 Solides et patrons. Paul Milan Professeurs des écoles le 29 septembre 2009 Table des matières 1 Les polyedres 2 1.1 Définition.................................. 2 1.2 Représentation

Plus en détail

GEOMETRIE. Point, droite, segment

GEOMETRIE. Point, droite, segment GEOMETRIE Gé 1 Point, droite, segment Le point : - Il désigne un endroit bien précis. - Il est représenté par une croix. - On le nomme avec une lettre majuscule. La droite : A X Le point B est situé exactement

Plus en détail

2 Pour identifier que 2 droites sont perpendiculaires, j utilise le signe sur le dessin.

2 Pour identifier que 2 droites sont perpendiculaires, j utilise le signe sur le dessin. Les droites perpendiculaires éfinition (e) eux droites sont perpendiculaires si elles se coupent en formant un angle droit. (f) Pour identifier que droites sont perpendiculaires, j utilise le signe sur

Plus en détail

12.2 Les solides L aire des prismes et des pyramides Le cylindre et l aire des solides décomposables Les mesures manquantes

12.2 Les solides L aire des prismes et des pyramides Le cylindre et l aire des solides décomposables Les mesures manquantes 12.2 Les solides 12.3 L aire des prismes et des pyramides 14.4 Le cylindre et l aire des solides décomposables 12.4 Les mesures manquantes Notes de cours Mathématiques 2 e secondaire Mars et avril 2016

Plus en détail

Nom : Groupe : Enseignant(e) : Des polygones aux polyèdres

Nom : Groupe : Enseignant(e) : Des polygones aux polyèdres e Nom : Groupe : Enseignant(e) : 12 2013-2014 Des polygones aux polyèdres Les polygones réguliers et les différents solides fascinent les mathématiciens et les mathématiciennes depuis plus de 2000 ans.

Plus en détail

PANORAMA 12 - Aire des polygones réguliers / polyèdres

PANORAMA 12 - Aire des polygones réguliers / polyèdres PANORAMA 12 - Aire des polygones réguliers / polyèdres 12.1 Aire d un polygone régulier Apothème: c est le segment qui relie le centre du polygone régulier au milieu d un de ses côtés. L apothème est perpendiculaire

Plus en détail

Chapitre 12 Géométrie dans l Espace Cours

Chapitre 12 Géométrie dans l Espace Cours Capitre 12 Géométrie dans l Espace Cours I. SOLIDES USUELS 1) Prisme droit Un prisme droit est un polyèdre dont les bases (faces parallèles) sont deux polygones identiques et dont les faces latérales sont

Plus en détail

Solides et patrons. 2 Solides de révolution Le cylindre Le cône La sphère... 5

Solides et patrons. 2 Solides de révolution Le cylindre Le cône La sphère... 5 DERNIÈRE IMPRESSION LE 30 juin 2016 à 15:12 Solides et patrons Table des matières 1 Les polyèdres 2 1.1 Définition................................. 2 1.2 Représentation d un polyèdre......................

Plus en détail

GEOMETRIE. A. Les familles de polygones GEO 8. LES QUADRILATERES

GEOMETRIE. A. Les familles de polygones GEO 8. LES QUADRILATERES GEOMETRIE GEO 1. LES INSTRUMENTS DU DESSIN A. La règle B. L équerre C. Le compas D. Le calque E. Le quadrillage F. Le gabarit GEO 2. POINTS, LIGNES, DROITES ET SEGMENTS A. Le point B. La droite C. LE SEGMENT

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE 1 Les instruments pour reproduire 2 Reproduire des figures planes 3 Les polygones 4 Les quadrilatères 5 Le carré et le rectangle 6 Les triangles 7 Construire des figures géométriques

Plus en détail

QSJp130. ES56 Esquisse et développement. Espace 11 e. Page Par exemple: a) b) c) d) e) 2. A Faux. B Correct: un parallélépipède rectangle

QSJp130. ES56 Esquisse et développement. Espace 11 e. Page Par exemple: a) b) c) d) e) 2. A Faux. B Correct: un parallélépipède rectangle Page 21 QSJp130 1. Par exemple: a) b) c) d) e) 2. A Faux B Correct: un parallélépipède rectangle C Correct: un prisme droit dont la base est un hexagone régulier D Faux 3. Par exemple: ES56 Esquisse et

Plus en détail

PARALLÉLÉPIPÈDE RECTANGLE

PARALLÉLÉPIPÈDE RECTANGLE PARALLÉLÉPIPÈDE RECTANGLE Objectifs : Fabriquer un parallélépipède rectangle de dimensions données, à partir de la donnée du dessin de l un de ses patrons. Reconnaître un parallélépipède rectangle de dimensions

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace I - Prismes Prisme droit : Un prisme droit est un solide composé : De deux bases polygonales parallèles et superposables, De faces latérales rectangulaires perpendiculaires aux

Plus en détail

CHAPITRE 16 : GEOMETRIE DANS L ESPACE

CHAPITRE 16 : GEOMETRIE DANS L ESPACE CHAPITRE 16 : GEOMETRIE DANS L ESPACE Ce chapitre rappelle les notions de base pour connaitre le vocabulaire et les propriétés attachées aux solides, pour savoir lire les représentations planes de ces

Plus en détail

2 Construire et représenter un cylindre de révolution

2 Construire et représenter un cylindre de révolution 1 Construire et représenter un prisme droit OJECTIF 1 Description DÉFINITION Un prisme droit est un solide qui a : deux faces parallèles et superposables qui sont des polygones, appelées bases ; des faces

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE Constructions pour le plaisir avec des cercles: page 25: la cible page 26: la rosace page 27: la rosace double page 28: la rose page 29: le mandala Pages 2 à 9: 1 Les instruments

Plus en détail

NOM : GEOMETRIE DANS L ESPACE 4ème

NOM : GEOMETRIE DANS L ESPACE 4ème Exercice 1 E H F G On dispose d un pavé droit dont les dimensions sont indiquées sur la figure ci-contre. On extrait de ce pavé droit une pyramide DBCG. 1) Donne la nature la plus précise possible des

Plus en détail

Construction de solides

Construction de solides Le matériel pour construire les solides est composé de 5 figures planes: *des carrés *des rectangles *des triangles rectangles *des triangles isocèles *des triangles équilatéraux. 1 Redonne leurs noms

Plus en détail

Vocabulaire de base de la géométrie

Vocabulaire de base de la géométrie Géom 1 Vocabulaire de base de la géométrie Un point En géométrie, un point est représenté par une petite croix. On lui donne le nom d une lettre en majuscule, qu on écrit juste à côté. X A Un segment C

Plus en détail

CORRIGÉ. b) L hypoténuse mesure 76,32 cm et une cathète mesure 58,42 cm ; l autre cathète mesure

CORRIGÉ. b) L hypoténuse mesure 76,32 cm et une cathète mesure 58,42 cm ; l autre cathète mesure EXERCICES DE RÉVISION PYTHAGORE ET LES SOLIDES La relation de Pythagore et sa réciproque 1. Comment se nomme : a) le côté opposé à l angle droit d un triangle rectangle? Hypoténuse. b) chacun des côtés

Plus en détail

GEOMETRIE DANS L ESPACE

GEOMETRIE DANS L ESPACE GEOMETRIE DANS L ESPACE 1. Les polyèdres Définition Un polyèdre est un solide délimité par des faces qui sont toutes des polygones. Le mot vient du grec poly = plusieurs et èdre = face L intersection de

Plus en détail

PRISME DROIT. II- Vue en perspective et vocabulaire: Les triangles ABC et A'B'C' sont les bases du prisme

PRISME DROIT. II- Vue en perspective et vocabulaire: Les triangles ABC et A'B'C' sont les bases du prisme PRISME DROIT I- Patron: En traçant deux triangles et trois rectangles disposés de la manière ci-contre et en pliant, on obtient un prisme droit à base triangulaire II- Vue en perspective et vocabulaire:

Plus en détail

Rapport de similitude k =

Rapport de similitude k = SAVOIRS Les solides semblables Deux solides sont semblables si l un est un agrandissement, une réduction ou la reproduction exacte de l autre. Par exemple, les homothéties et les reproductions à l échelle

Plus en détail

Récupération 3 e secondaire Vision 5 : Solides semblables

Récupération 3 e secondaire Vision 5 : Solides semblables Récupération 3 e secondaire Vision 5 : Solides semblables 1. Dans chaque cas, détermine si les deux polygones illustrés sont semblables. S ils le sont, détermine le rapport de similitude (k). S ils ne

Plus en détail

GÉOMÉTRIE DANS L ESPACE

GÉOMÉTRIE DANS L ESPACE GÉOMÉTRIE DANS L ESPACE DROITE ET PLANS DE L ESPACE. Pour décrire les positions relatives de droites et de plans dans l espace voici l exemple du cube : Les 8 sommets du cube sont : A, B, C, D, E, F, G,

Plus en détail

Vocabulaire en géométrie

Vocabulaire en géométrie G1 Vocabulaire en géométrie : on trace une petite croix. On utilise des lettres pour désigner les points. x A : c est un trait qui passe par 2 points. On l écrit avec des parenthèses. Une droite est infinie

Plus en détail

Polyèdre régulier: Toutes ses faces sont congruentes et ses angles sont congrus (tétraèdre, hexaèdre, octaèdre, dodécaèdre et icosaèdre).

Polyèdre régulier: Toutes ses faces sont congruentes et ses angles sont congrus (tétraèdre, hexaèdre, octaèdre, dodécaèdre et icosaèdre). Définitions Surface: Figure à 2 dimensions. Elle n'a pas d'épaisseur. Solide: Figure à 3 dimensions. Corps rond : Solide qui contient au moins une surface courbée. Polygone: Surface plane qui est fermée.

Plus en détail

Le vocabulaire de géométrie

Le vocabulaire de géométrie Géom1 Le vocabulaire de géométrie En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire : Un point A A X Un segment [AB] (d) Une droite (d)

Plus en détail

GÉOMÉTRIE. Ecole santa cruz M.Cohen

GÉOMÉTRIE. Ecole santa cruz M.Cohen GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d C3 Géométrie : droite, segment, milieu Leçon Géom1 CM1/2 La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

Plus en détail

Table des matières DANS L ESPACE 24. N Leçon Niveau 1 Niveau 2 Niveau 3 Page

Table des matières DANS L ESPACE 24. N Leçon Niveau 1 Niveau 2 Niveau 3 Page Géométrie Table des matières N Leçon Niveau 1 Niveau 2 Niveau 3 Page DANS LE PLAN 3 Gé1 Les lignes X X X 4 Gé2 La droite X X X 5 Gé3 Les points alignés X X 5 Gé4 Le segment X X 6 Gé5 La demi-droite X X

Plus en détail

Géométrie dans l espace (Chapitre 4)

Géométrie dans l espace (Chapitre 4) Géométrie dans l espace (Chapitre 4) I. Représentations planes de figures de l espace 1) Les patrons d un solide Définition : Un patron d un solide est obtenu en plaçant toutes ses faces dans un même plan.

Plus en détail

GEOMETRIE. Points, lignes, droites et segments Tableaux et quadrillages Reproduire une figure Cercle et compas Construire une figure géométrique

GEOMETRIE. Points, lignes, droites et segments Tableaux et quadrillages Reproduire une figure Cercle et compas Construire une figure géométrique SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GEOMETRIE GEOM 0 GEOM 1 GEOM 2 GEOM 3 GEOM 4 GEOM 5 GEOM 6 GEOM 7 GEOM 8 GEOM 9 GEOM 10 GEOM 11 GEOM 12 GEOM 13 Points, lignes, droites

Plus en détail

Chapitre 7 : Géométrie dans l espace.

Chapitre 7 : Géométrie dans l espace. Chapitre 7 : Géométrie dans l espace. I Rappels. 1 Parallélépipède rectangle et cube. Un parallélépipède rectangle, ou pavé droit, est un solide ayant 6 faces rectangulaires. Un cube est un parallélépipède

Plus en détail

THEME : PYRAMIDES ET CONES - RAPPELS PRISME. V = B x h B. Prisme ( oblique ) Remarque : Un parallélépipède rectangle ( ou pavé droit ) est un prisme

THEME : PYRAMIDES ET CONES - RAPPELS PRISME. V = B x h B. Prisme ( oblique ) Remarque : Un parallélépipède rectangle ( ou pavé droit ) est un prisme THEME : PYRAMIDES ET CONES - RAPPELS PRISME B Prisme ( oblique ) Un prisme est le solide délimité par deux polygones ( bases ), situés dans des plans parallèles, dont les sommets sont joints. Il y a autant

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GÉOMÉTRIE GEOM 0 Points, lignes, droites et segments GEOM 1 Tableaux et quadrillages GEOM 2 Reproduire une figure GEOM 3 ercle et compas

Plus en détail

Chapitre 8 : Géométrie dans l espace

Chapitre 8 : Géométrie dans l espace Chapitre 8 : Géométrie dans l espace Seconde 11 Mme FELT 1 2 I Représentation dans l espace 1. Perspective cavalière La perspective cavalière est une convention mathématique de représentation des solides

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE. Points, lignes, droites et segments Tableaux et quadrillages

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE. Points, lignes, droites et segments Tableaux et quadrillages SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GÉOMÉTRIE GÉOM 0 GÉOM 1 GÉOM 2 GÉOM 3 GÉOM 4 GÉOM 5 GÉOM 6 GÉOM 7 GÉOM 8 GÉOM 9 GÉOM 10 GÉOM 11 GÉOM 12 GÉOM 13 Points, lignes, droites

Plus en détail

EC 9A : ELEMENTS DE MATHEMATIQUES GEOMETRIE DANS L ESPACE EXERCICES

EC 9A : ELEMENTS DE MATHEMATIQUES GEOMETRIE DANS L ESPACE EXERCICES EC 9A : ELEMENTS DE MATHEMATIQUES GEOMETRIE DANS L ESPACE EXERCICES EXERCICE N 1 : Voici un certain nombre de solides. Déterminer, si possible, le nombre de faces, de sommets, d arêtes pour chacun d eux.

Plus en détail

La famille des prismes droits

La famille des prismes droits La famille des prismes droits On a représenté ci-dessus quatre solides en perspective cavalière. Pour chaque solide effectuer le travail suivant : déterminer le nombre de sommets, déterminer le nombre

Plus en détail

Géom 1 Connaître le vocabulaire et le codage géométrique

Géom 1 Connaître le vocabulaire et le codage géométrique Géom 1 Connaître le vocabulaire et le codage géométrique En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer, tracer

Plus en détail

Chapitre 07 : Les solides

Chapitre 07 : Les solides Chapitre 7 : Les solides Le «volume d'un solide» est le nombre de cubes (dont les arrêtes mesurent unité de longueur) nécessaires pour le remplir complètement. Unités de volume Le mètre cube (m) est l'unité

Plus en détail

Ch 10 Solides de l'espace : Prisme et cylindres 5 ème F

Ch 10 Solides de l'espace : Prisme et cylindres 5 ème F Ch 10 Solides de l'espace : Prisme et cylindres 5 ème F Table des matières I. Prismes droits...2 A. Description...2 B. Patron d'un prisme droit...2 II. Cylindres de révolution...2 A. Description...2 B.

Plus en détail

Sommaire géométrie. Le segment de droite Point, droite, demi-droite et segment de droite. Droites perpendiculaires Droites parallèles

Sommaire géométrie. Le segment de droite Point, droite, demi-droite et segment de droite. Droites perpendiculaires Droites parallèles Sommaire géométrie ans le plan Géom 01 Géom 02 Géom 03 Géom 04 Géom 05 Géom 06 Géom 07 Géom 08 Géom 09 Géom 10 Géom 11 Géom 12 Géom 13 Géom 14 Géom 15 Géom 16 Dans l espace Géom 17 Géom 18 Géom 19 Géom

Plus en détail

CHAPITRE 9 : Exercices Seconde, 2014, L. JAUNATRE

CHAPITRE 9 : Exercices Seconde, 2014, L. JAUNATRE PTR 9 : xercices Seconde, 2014, L. UNTR xercice 1. essiner en perspective cavalière un cube dont les arêtes mesurent 4 cm. 1. vec un angle de fuite α = 30 o et un coefficient de fuite k = 0.85. 2. vec

Plus en détail

PAVE DROIT VOLUMES. Toutes les faces du solide ne sont pas représentées. On convient de dessiner en pointillés les arêtes que l'on ne voit pas :

PAVE DROIT VOLUMES. Toutes les faces du solide ne sont pas représentées. On convient de dessiner en pointillés les arêtes que l'on ne voit pas : PV ROIT VOLUMS 1) Vocabulaire onsidérons le solide suivant : I,,, sont des faces du solide.,,,, sont des sommets du solide. [], [], [], sont des arêtes du solide. Toutes les faces du solide ne sont pas

Plus en détail

Espace et géométrie Cycle 3

Espace et géométrie Cycle 3 Espace et géométrie Cycle 3 Les tableaux suivants résument les grandes lignes de la progressivité des apprentissages sur l ensemble du cycle 3, tels qu ils sont proposés par la méthode «Cap Maths», avec

Plus en détail

Avec utilisation des TICE

Avec utilisation des TICE Avec utilisation des TICE TYPE D ACTIVITÉ PÉDAGOGIQUE : Introduction d une notion. THÈME : Sections planes de solides. NIVEAU : 3ème. CE DOSSIER COMPREND : 2 pages d exercices. TRAVAIL DEMANDÉ : 1. Proposer

Plus en détail

SECTION 5 : LES SOLIDES Leçon 11 : L identification des solides. Aide-mémoire

SECTION 5 : LES SOLIDES Leçon 11 : L identification des solides. Aide-mémoire SECTION 5 : LES SOLIDES Leçon 11 : L identification des solides Aide-mémoire Les solides sont les figures qui ont trois dimensions : une longueur, une largeur et une hauteur. Les propriétés des solides

Plus en détail

GEOMETRIE. Tableaux et quadrillages. Reproduire une figure. Droites perpendiculaires. Droites parallèles. Les quadrilatères

GEOMETRIE. Tableaux et quadrillages. Reproduire une figure. Droites perpendiculaires. Droites parallèles. Les quadrilatères GEOMETRIE GEOM. 1 Le vocabulaire GEOM. 2 Des instruments pour tracer, mesurer, vérifier GEOM. 3 Tableaux et quadrillages GEOM. 4 Reproduire une figure GEOM. 5 Les angles GEOM. 6 Droites perpendiculaires

Plus en détail

LA PYRAMIDE ET LE CÔ NE.

LA PYRAMIDE ET LE CÔ NE. LASSE DE 4EME ATIVITES GEOMETRIQUES LA PYRAMIDE ET LE Ô NE. Rappels du programme de 5 ème. 1. Le prisme droit. 1.1 Description. Un prisme droit est un solide dont les faces sont des rectangles. Il possède

Plus en détail

Le parallélépipède rectangle a faces, sommets, arêtes.

Le parallélépipède rectangle a faces, sommets, arêtes. SOLIDES solide, cube, parallélépipède, tétraèdre, face, sommet, arête, prisme, pyramide, polyèdre 61 sommets arêtes sommets arêtes faces face Cube Parallélépipède rectangle Tétraèdre Le cube a faces, sommets,

Plus en détail

Activité 1 Construire et représenter un prisme droit Objectif 1

Activité 1 Construire et représenter un prisme droit Objectif 1 Activité 1 Construire et représenter un prisme droit Objectif 1 Un menuisier doit réaliser pour l un de ses clients un meuble d angle de rangement (avec une porte) de dimensions : - 60 cm, 80 cm et 1 m

Plus en détail

Exercices supplémentaires 1

Exercices supplémentaires 1 6.36 Exercices supplémentaires 1 Leçon 1 : Explorer les triangles 1. Construis 3 triangles différents. Mesure la longueur de chaque côté et inscris-la sur le dessin. Indique si chaque triangle est équilatéral,

Plus en détail

Pyramides et Cônes de révolution

Pyramides et Cônes de révolution Pyramides et Cônes de révolution Objectifs : Connaître la définition et les caractéristiques d'une pyramide Connaître la définition et les caractéristiques d'une pyramide régulière Connaître la définition

Plus en détail

GEOMETRIE CM1. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté.

GEOMETRIE CM1. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. x I x K x F Une droite est un alignement infini de points. On la désigne par

Plus en détail

ÉPREUVE EXTERNE COMMUNE SOLIDES ET FIGURES LIVRET 3 JEUDI 16 JUIN FORMATION HISTORIQUE ET GÉOGRAPHIQUE. historique et géographique

ÉPREUVE EXTERNE COMMUNE SOLIDES ET FIGURES LIVRET 3 JEUDI 16 JUIN FORMATION HISTORIQUE ET GÉOGRAPHIQUE. historique et géographique ÉPREUVE EXTERNE COMMUNE CEB2016 SOLIDES ET FIGURES LIVRET 3 JEUDI 16 JUIN FRANÇAIS SAVOIR ÉCOUTER français SAVOIR ÉCRIRE savoir MATHÉMATIQUES écouter GRANDEURS savoir écrire SOLIDES ET mathématiques FIGURES

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. Géom 1 CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. Géom 1 CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE La géométrie exige rigueur et précision dans le vocabulaire utilisé. Géom 1 Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix

Plus en détail

Progression des activités géométriques au cycle 3 (programmes 2002)

Progression des activités géométriques au cycle 3 (programmes 2002) Progression des activités géométriques au cycle 3 (programmes 2002) Vocabulaire spécifique CE2 CM Repérage, utilisation de plans, de cartes Repérer une case ou un point sur un quadrillage Ecrire les coordonnées

Plus en détail

CHAPITRE 12 GÉOMÉTRIE DANS L'ESPACE

CHAPITRE 12 GÉOMÉTRIE DANS L'ESPACE CHAPITRE 12 GÉOMÉTRIE DANS L'ESPACE A) Perspective cavalière 1) Types de perspectives On ne peut représenter sur un solide sur un plan qu'en "trichant". On utilise généralement la perspective cavalière

Plus en détail

Chapitre 12 : Aires et volumes. Module 1 : Calculs d aires

Chapitre 12 : Aires et volumes. Module 1 : Calculs d aires Module 1 : Calculs d aires Tous les calculs d aires s appuient sur ce formulaire : Exemples : Exemple 1 : L aire du carré représenté ci-contre est : A 9 81 cm Exemple : L aire du rectangle représenté ci-contre

Plus en détail

Chapitre 5 : agrandissement, réduction ; sections de solides

Chapitre 5 : agrandissement, réduction ; sections de solides Chapitre 5 : agrandissement, réduction ; sections de solides I. Rappels et sections de solides 1/ Parallélépipède rectangle Description/Figure Un parallélépipède rectangle ou un pavé droit est une figure

Plus en détail

Géom 1 Connaître le vocabulaire et le codage géométrique

Géom 1 Connaître le vocabulaire et le codage géométrique Géom 1 Connaître le vocabulaire et le codage géométrique La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc

Plus en détail

PARALLEL E PIPEDE rectangle

PARALLEL E PIPEDE rectangle PARALLEL E PIPEDE rectangle 1 I. Le parallélépipède rectangle ou pavé droit Vient du grec «parellêlos»= parallèle et «epipedon» = surface plane Le parallélépipède possède 12 arêtes, 6 faces (des rectangles)

Plus en détail

Cahier de devoir Panorama 12. Nom: Enseignant :

Cahier de devoir Panorama 12. Nom: Enseignant : Cahier de devoir Panorama 12 Nom: Enseignant : Enseignants de l école Félix-Leclerc 2014 1 DEVOIR 1 : Aire des polygones 1. Complète les égalités suivantes. a) 423 cm 2 = mm 2 b) 32,5 dm 2 = m 2 c) 65,3

Plus en détail

Vocabulaire de la géométrie

Vocabulaire de la géométrie GEOM 1 Vocabulaire de la géométrie 1 Le point Le point est un endroit précis du plan. On le représente par une croix dont il est le centre et on le nomme avec une lettre majuscule. 2 Droite Trois points

Plus en détail

Géom1. Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé.

Géom1. Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé. Connaître le vocabulaire et le codage en géométrie Géom1 La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc

Plus en détail

ESPACE ET GÉOMÉTRIE Programmes cycle 2

ESPACE ET GÉOMÉTRIE Programmes cycle 2 Connaissances ESPACE ET GÉOMÉTRIE Programmes cycle 2 Capacités Repérage, orientation - Situer un objet, une personne par rapport à soi ou par rapport à une - Connaître et savoir utiliser le vocabulaire

Plus en détail

Géométrie Cycle 3. Aide-mémoire. J appartiens à : version 1.0. Sommaire. 1. Distinguer : point, droite, segment, demi-droite, alignement de points

Géométrie Cycle 3. Aide-mémoire. J appartiens à : version 1.0. Sommaire. 1. Distinguer : point, droite, segment, demi-droite, alignement de points ide-mémoire Géométrie Cycle 3 Sommaire 1. Distinguer : point, droite, segment, demi-droite, alignement de points 2. Mesurer et tracer des segments 3. Se repérer dans un quadrillage 4. Repérer les angles

Plus en détail

- Pyramide régulière à base carrée (type Khéops) Construis la pyramide de sommet I et de base EFGH. - Pyramides non régulières à base carrée

- Pyramide régulière à base carrée (type Khéops) Construis la pyramide de sommet I et de base EFGH. - Pyramides non régulières à base carrée S PYRMIS Je te propose de construire des pyramides en te servant du cube G qui est supposé transparent. ttention, les pyramides ne sont pas transparentes : tu dois donc bien repérer les arêtes cachées.

Plus en détail

L14 : Patron et Perspective cavalière du pavé droit.

L14 : Patron et Perspective cavalière du pavé droit. L14 : Patron et Perspective cavalière du pavé droit. I Rappel : Définition des solides : Un solide est un objet géométrique de l espace. Remarque : Une figure est un objet géométrique du plan. Définition

Plus en détail

Exploitation Solides

Exploitation Solides Nom :... Prénom :... lasse :... xploitation Solides Questions relatives à la restitution des connaissances 1) Vrai ou faux? oche la bonne réponse. Tout cube est un prisme droit. Toute pyramide est un polyèdre

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE.

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE. CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc pas

Plus en détail

Evaluation n 1 : Les polygones. Evaluation n 1 : Les polygones. ! J ai quatre égaux, mes côtés sont parallèles, je n ai pas d angle droit, je suis un.

Evaluation n 1 : Les polygones. Evaluation n 1 : Les polygones. ! J ai quatre égaux, mes côtés sont parallèles, je n ai pas d angle droit, je suis un. Date : Evaluation n 1 : Les polygones Consigne 1 : Complète (orthographe importante). Comment appelle-t-on : L ensemble des polygones à 3 côtés? Les... Prénom et Nom : Date : Evaluation n 1 : Les polygones

Plus en détail

Exercices sur le volume

Exercices sur le volume Exercices sur le volume Question 1 Aire de polygones Compare l aire des polygones suivants (plus petit au plus grand) Justifie ta réponse. Réponse : Les trois polygones ont la même aire. Pour arriver à

Plus en détail

1 : VOCABULAIRE, REPRÉSENTATION. e. La figure de gauche représente un cylindre de révolution.

1 : VOCABULAIRE, REPRÉSENTATION. e. La figure de gauche représente un cylindre de révolution. SÉRI 1 : VOBULIR, RPRÉSNTTION 1 omplète le tableau suivant. Nom du solide Prisme droit Prisme droit Pavé droit Pyramide ylindre Tronc de cône Nombre de sommets 6 8 8 4 Nombre de faces 5 6 6 4 Nombre d'arêtes

Plus en détail

Géométrie CM1/CM2 - FH

Géométrie CM1/CM2 - FH Gm1 : Connaître le vocabulaire et les instruments de géométrie. En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Gm2 : Identifier et

Plus en détail

1 Définitions Représentation dans l espace La sphère Les pyramides Les plans. 10

1 Définitions Représentation dans l espace La sphère Les pyramides Les plans. 10 Sommaire 1 Définitions. 2 2 Représentation dans l espace. 4 3 La sphère. 5 4 Les pyramides. 8 5 Les plans. 10 6 Section d un solide par un plan. 11 6.1 Section d un cylindre par un plan..................

Plus en détail

Les faces latérales sont représentées par des parallélogrammes, mais dans la réalité, ce sont des rectangles.

Les faces latérales sont représentées par des parallélogrammes, mais dans la réalité, ce sont des rectangles. Chapitre 8 GEOMETRIE GEOMETRIE DANS L ESPACE 1 ) Solides usuels de l espace le cube La face avant et la face arrière sont représentées par des carrés. Les faces latérales sont représentées par des parallélogrammes,

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Ex 1 : Vrai ou faux

Plus en détail

PROGRESSION POSSIBLE POUR LE COURS DE GEOMETRIE DANS LE CYCLE 10-12

PROGRESSION POSSIBLE POUR LE COURS DE GEOMETRIE DANS LE CYCLE 10-12 LES LIGNES Pré-requis PROGRESSION POSSIBLE POUR LE COURS DE GEOMETRIE DANS LE CYCLE 10-12 Sous-compétences à développer Identifier des lignes : Horizontales Verticales Obliques Brisées Courbes : ouvertes

Plus en détail

CST. Mathématiques CST - Figures planes équivalentes - Figures planes équivalentes. Deux figures planes sont équivalentes si elles ont la même aire.

CST. Mathématiques CST - Figures planes équivalentes - Figures planes équivalentes. Deux figures planes sont équivalentes si elles ont la même aire. - Figures planes équivalentes - Figures planes équivalentes Deux figures planes sont équivalentes si elles ont la même aire. Ex. : A A D 4 cm 2 cm B 3 cm C B 3 cm C A = A = A = b x h 2 3 x 4 2 2 A = b

Plus en détail

Construire et représenter un prisme droit

Construire et représenter un prisme droit Tous les fichiers texte modifiables de ces activités sont disponibles sur le site www.bordas-myriade.fr. Construire et représenter un prisme droit Un menuisier doit réaliser pour l un de ses clients un

Plus en détail

Connaître le vocabulaire et le codage en géométrie. Connaître le vocabulaire et le codage en géométrie. res

Connaître le vocabulaire et le codage en géométrie. Connaître le vocabulaire et le codage en géométrie. res Ge1 Connaître le vocabulaire et le codage en géométrie. Ge2 Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée

Plus en détail

PRISME DROIT ET CYLINDRE DE REVOLUTION

PRISME DROIT ET CYLINDRE DE REVOLUTION TP 2 PRIS ROIT T YLINR RVOLUTION 1. Je me souviens 1. Un parallélépipède rectangle à 4 faces? 6 faces? ou 12 faces? 2. Un parallélépipède rectangle a.. 6 sommets? 8 sommets? ou 12 sommets? 3. Un parallélépipède

Plus en détail

On considère le prisme droit ABCDEF dont la base est un triangle ABC rectangle en A, et dont la hauteur est [AD].

On considère le prisme droit ABCDEF dont la base est un triangle ABC rectangle en A, et dont la hauteur est [AD]. Prismes 1 Prisme à base un triangle rectangle 1 Pavés droits 1 Le pavé droit 1 Le cube Pyramides pyramide dans pavé droit ctivité pyramide à base rectangulaire, d'arêtes égales. alques et résultats. 4

Plus en détail

GÉOMÉTRIE. Définition Méthode de tracé avec la règle et l'équerre GM.04 Tracer 2 droites parallèles

GÉOMÉTRIE. Définition Méthode de tracé avec la règle et l'équerre GM.04 Tracer 2 droites parallèles GÉOMÉTRIE GM.0 Objets et notations Le point La ligne et la droite Le segment Intersection GM.0 Les instruments de dessin La règle L'équerre Le compas Le calque Le gabarit GM.0 Tracer droites perpendiculaires

Plus en détail

Chapitre 15 : Solides

Chapitre 15 : Solides utour du solide 1 Sur le solide ci-dessous, a colorie une face en rouge ; b repasse une arête en vert ; marque un sommet en bleu d Nomme toutes ses faces e Que représente le segment [] pour ce solide?

Plus en détail

PANORAMA 14 - Du cercle aux corps ronds

PANORAMA 14 - Du cercle aux corps ronds PANORAMA 14 - Du cercle aux corps ronds 14.1 Cercle et circonférence Cercle: ligne fermée dont tous les points sont à égale distance d un même point appelé le centre. Rayon : segment ou longueur d un segment

Plus en détail

M1 Droites et segments

M1 Droites et segments M1 Droites et segments Le segment [AB] comprend: -Le point A. -Le point B. -Tous les points alignés avec A et B et situés entre A et B. La droite (CD) comprend: -Le point C. -Le point D. -Tous les points

Plus en détail

I La perspective cavalière :

I La perspective cavalière : Mathématiques Année 2012 201 Module n 4 : Géométrie dans l espace 1 ( solides usuels ) 2 nde I La perspective cavalière : Pour représenter un objet en trois dimensions par une figure plane ( feuille de

Plus en détail

Géom1. Connaitre le vocabulaire et les instruments géométriques

Géom1. Connaitre le vocabulaire et les instruments géométriques Connaitre le vocabulaire et les instruments géométriques Géom1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer,

Plus en détail

SECTIONS PLANES DE SOLIDES DE L ESPACE

SECTIONS PLANES DE SOLIDES DE L ESPACE SECTIONS PLANES DE SOLIDES DE L ESPACE I) Activité : 1) Visionnage de la vidéo 2) Questions a) A quelle condition deux plans sont-ils parallèles? b) A quelle condition une droite est perpendiculaire à

Plus en détail

Géométrie cycle 3 Objets de l espace, géométrie 3D

Géométrie cycle 3 Objets de l espace, géométrie 3D Avertissement Cette présentation est destinée aux enseignants qui ont suivi le stage. Elle n est lisible qu avec les accompagnements (oraux et activités) faits durant le stage. Géométrie cycle 3 Objets

Plus en détail

PLANS et DROITES de l ESPACE LE CUBE

PLANS et DROITES de l ESPACE LE CUBE PLANS et DROITES de l ESPACE LE CUBE Le cube est un solide dont les six faces sont des carrés. Ces faces sont les représentations de plans Examiner les neuf schémas et retenir les différentes notions de

Plus en détail

Chapitre 15 : Solides

Chapitre 15 : Solides utour du solide 1 Sur le solide ci-dessous, a colorie une face en rouge ; b repasse une arête en vert ; marque un sommet en bleu d Nomme toutes ses faces e Que représente le segment [] pour ce solide?

Plus en détail