(donnés) a et b tels que : f : x où a est le coefficient directeur de f et b l ordonnée à l origine.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "(donnés) a et b tels que : f : x où a est le coefficient directeur de f et b l ordonnée à l origine."

Transcription

1 ❶ - Fonctions affines I-1- Définitions et vocabulaire Définition 1: On dit que f est une fonction affine si pour tout réel, il eistent deu réels (donnés) a et b tels que : f : a + b où a est le coefficient directeur de f et b l ordonnée à l origine. Si b = 0, f () = a : f est une fonction linéaire. Si a = 0, f() = b : f est une fonction constante. Eemples : f : 1 fonction affine; 1 + f : fonction linéaire; f : 1 fonction constante. I-- Tau de variation Définition : On note tau de variation d une fonction affine f entre 1 et, le nombre réel τ, f noté par τ = ( ) f ( ) 1 1. Théorème 1 : Si f est une fonction affine, alors pour tous réels 1 et avec 1, le tau de Démonstration : variation entre 1 et est contant et égal à a, donc τ =a. Cours fonctions affines-classe de nde - 1

2 I-- Représentation graphique d une fonction affine Définition : Dans un repère, une fonction affine est représentée graphiquement par une droite d'équation : y = a + b, où a est le coefficient directeur de ; et b est l'ordonnée à l'origine de. Remarques: - Si la fonction est linéaire, alors sa droite représentative passe par l origine du repère. - Si la fonction est constante,, alors sa droite représentative est parallèle à l ae des abscisses. Eercice 1: Construire dans le repère ci-dessous les représentations graphiques des fonctions f, g 1 et h définies sur R par : f() = +1, g() = et h() =. Cours fonctions affines-classe de nde -

3 Eercice : 7 si On donne la fonction f ( ) = + si si a) Tracer le graphe de f. b) Résoudre les équations f() =, puis f() =. c) Résoudre l inéquation f() <. ] ; ] ] ;4] ] 4; + [ Cours fonctions affines-classe de nde -

4 II- Étude des fonctions affines Pour toute la suite, on note f la fonction affine définie par : f : a + b. II-1- Ensemble de définition de f f() eiste pour toutes les valeurs de dans R donc D f = R, ainsi l ensemble de définition des fonctions affines est toujours R. II-- Étude des variations f Théorèmes : Si a > 0, alors f est croissante sur R. Si a < 0,. alors f est décroissante sur R. Si a = 0,. alors f est constante sur R. Démonstration : Par la méthode des différences Cours fonctions affines-classe de nde - 4

5 III- Étude du signe des fonctions affines Pour toute la suite, on note f la fonction affine définie par : f : a + b. Théorèmes : Si a 0, alors pour tout de R, f()=a + b est du signe de a pour les valeurs supérieures à b b et du signe de l opposé de a pour les valeurs inférieurs à. a a Si a = 0, alors pour tout de R, f()= b est du signe de b. Démonstration : En résumé, si a 0, alors : Si a=0, alors : b a f = a + L opposé du signe de a 0 Signe de a ( ) b + f = a + Signe de b ( ) b + Cours fonctions affines-classe de nde - 5

6 Eercice : Résoudre les inéquations suivantes : 5 1) ( I 1 ) 6 ) ( ) 1 7 ( I ) ) ( I ) 1 + ( ) Cours fonctions affines-classe de nde - 6

7 Cours fonctions affines-classe de nde - 7

8 Cours fonctions affines-classe de nde - 8 Eercice 4: 1) Montrer que : ( )( ) 6 + = + ( )( ) = + ) Déterminer l ensemble de définition des fonctions suivantes: ( ) ( )( ) = f ; ( ) = g

9 ❷ - Équation cartésienne d une droite Dans ce cours, on se place dans un plan munis d un repère ( O i, j ) repère. ( y) M, est un point quelconque du plan un plan. ;, où O est l origine du I- 1-Définition d une équation Définition 4 : Une équation d une courbe est une relation que vérifient les coordonnées de tous les points qui appartiennent à cette courbe. I- -Définition d un vecteur directeur Définition 5 : Soit D est une droite et A et B deu points de cette droite. On appelle vecteur directeur de D, tout vecteur u non nul colinéaire au vecteur AB. I- -Définition de l équation cartésienne d une droite Théorème 4 : Une droite D du plan est l ensemble des points ( y) M, vérifiant : a + by + c = 0, avec a, b et c trois réels tels que a et b ne soient pas simultanément nuls. Réciproquement, si a, b et c trois réels tels que a et b ne soient pas simultanément nuls, alors l ensemble { ( y) M, + by + c = 0 a } est une droite de vecteur directeur u ( b, a). La relation définie par a + by + c = 0 est appelée une équation cartésienne de la droite D. Démonstration : Eercice 5: Soit d la droite définie par le point A(; 1) et son vecteur directeur ( 1,) Déterminer une équation cartésienne de la droite d. u. Eercice 6: Soient A et B deu points deu coordonnées respectives A( 1, ) et B(1; ). Déterminer une équation cartésienne de la droite (AB). Cours fonctions affines-classe de nde - 9

10 Remarques: Deu équations cartésiennes d une même droite du plan ont des coefficients proportionnelles. Si d a pour équation = c, alors v ( 0,1) est un vecteur directeur de d. II- Parallélisme de deu droites Définition 6: On dit que deu droites du plan sont parallèles, si et seulement si les vecteurs directeurs de ces droites sont colinéaires. Théorème 5 : Deu droites D : a + by + c = 0 et Dɓ : a + b y + c = 0 du plan sont parallèles, si et seulement si a b a b = 0. Démonstration : Conséquence importante : Deu droites D : a + by + c = 0 et Dˊ : a + b y + c = 0 du plan sont sécantes si et. seulement si, les vecteurs directeurs de D et Dˊ ne sont pas colinéaires : c est-à-dire a b a b 0 Eercice 7: Soient d et d deu droites d équations respectives : y + = 0 et + 4y + 1 = 0. Déterminer leur position relative. Cours fonctions affines-classe de nde - 10

11 III-Définition de l équation réduite d une droite Définition 7 : Lorsque b 0, alors a + by + c = 0 réduite de D, ou encore donné par v ( 1,m) y = m + p (avec a m = et b a c y = est appelée l équation b b c p = ), un vecteur directeur de D est b Théorème 6 :Soit A( A ; y A ) et B( B ; y B ) deu points d une droite (AB) tels que A B, alors les coefficients de l équation réduite de (AB) sont donnés par: ya yb m s appelle la pente et correspond au calcul : m = A B p s appelle l ordonnée à l origine et donne la hauteur à laquelle la droite coupe l ae y et correspond au calcul : p = y A m Démonstration : A Revoir le début de ce cours sur les fonctions affines où ces relations ont été démontrées. Eercice 8: Soient A et B deu points deu coordonnées respectives A( 1, ) et B(1; ). Déterminer une équation réduite de la droite (AB). Théorèmes 7 (admis): Deu droites d équations Deu droites d équations m m = 1. y = m + p et y = m + p sont parallèles si et seulement si m = m. y = m + p et y = m + p sont perpendiculaires si et seulement si Cours fonctions affines-classe de nde - 11

12 ❸- Milieu d un segment et la distance entre deu points dans un repère orthonormé 1- Milieu d un segment Théorème 8 (admis) : Soient A et B deu points du plan, avec A ( A ; y A ) et ( B y B ) milieu I du segment [AB] a pour coordonnées A + B ya + yb I ;. - La distance entre deu points dans un repère orthonormé On se place dans un plan munis d un repère orthonormé ( O i, j ) ;. B ;, alors le Attention : La propriété suivante, nécessite que l on soit dans un repère orthonormé. Théorème 9 : Soient A et B deu points d un repère orthonormé ( O i, j ) ;, avec ( ) A A ; y A et B ( B ; y B ), alors la longueur du segment [AB] est donnée par : AB ( ) + ( y y ) Démonstration : B A B A =. Cours fonctions affines-classe de nde - 1

13 ❹ Système d équations linéaires 1. Définition Définition 8 : On appelle système d équations linéaires de deu équations à deu inconnues et y, le système ( S ) défini par : a + by = c ( S ): où a, b, c, a, b et c sont des réels donnés. a + b y = c. Eistence de solution Dans un système linéaire à deu inconnues, chaque équation est assimilable à une équation cartésienne d une droite. Donc résoudre un système linéaire à deu inconnues, revient à étudier la position relative de ces deu droites et dans le cas où ces deu droites sont sécantes, considérer les coordonnées du point d intersection comme le couple de solutions du système (S). Théorèmes 10 (admis) : L eistence de solution d un système linéaire de deu équations à deu inconnues dépend de l intersection des deu droites (d) et (d ), en effet : Si a b a b 0 alors (S) admet un couple unique de solutions. Si a b a b = 0 alors, il faut étudier la différence : a c a c si, a c a c 0 alors (S) n admet aucune solution et dans ce cas, les droites associées sont strictement parallèles; si a c a c = 0, alors (S) admet une infinité de solutions et dans ce cas, les droites associées sont confondues. Remarque: Pour résoudre un système de deu équations à deu inconnues on utilise soit la méthode par combinaison, soit la méthode par substitution vues en classe de ème. Eemples: Résolvons les systèmes d équations suivants : ( S 1) : 4 + y = 17 + y = 1 ; ( S ) : + y = 4 + 5y = 1 ; ( S ) : 4 + y = y = 10 ; ( S 4 ) : + y = y = Solutions : Résolvons ( S 1) : On remarque que a b a b = 4 = 1 0, donc ( S 1) admet un couple de solution. Pour ( S 1), on applique la méthode par combinaison qui consiste à multiplier les équations par des coefficients de façon à éliminer une inconnue par addition entre les deu équations : Par eemple, on décide d éliminer y. Pour cela, il suffit de multiplier la 1 ère équation par () et la ème équation par. En effet, ici comme les coefficients devant y sont de même signe, et que l on veut éliminer y par combinaison (ou encore addition), il est nécessaire de multiplier les équations par des coefficients de signes contraires. ( S 1) : ( ) 4 + y = y = 4 = = + y = y = 6 + y = 1 + y = 1 S = ;. On trouve finalement = et y=, d où {( )} Cours fonctions affines-classe de nde - 1

14 + y = 4 Résolvons ( S ) : + 5y = 1 On remarque que a b a b = 5 1 = 7 0, donc ( S 1) admet un couple de solution. Pour ( S ), on applique, la méthode par substitution qui consiste à eprimer une inconnue en fonction de l autre et substituer cette inconnue par cette epression dans la seconde équation. Ici, on isole y dans la première équation : ( S ) : + y = 4 + 5y = 1 y = ( 4) = 1 y = 4 7 = 1 y = = ( ) 4 On trouve finalement = et y=, d où = {( ;) } S. 4 + y = 5 Résolvons ( S ) : 8 + 6y = 10 On remarque que a b a b = = 4 4 = 0, on doit donc pousser les recherches plus loin en établissant la différence : a c a c = = = 0, ainsi ( S ) admet une Infinité de solutions ( en effet dans ce cas les équations de sont assimilables au équations de 4 5 deu droites confondues) et les solutions de ( S ) sont de la forme : S = ; + ou y 5 encore S = + ; y y = 1 Résolvons ( S 4 ) : 4 + y = On remarque que a b a b = 4 1 = 4 4 = 0, on doit donc pousser les recherches plus loin en établissant la différence : a c a c = 4 1 = 6 4 = 0, ainsi ( S 4 ) n admet aucune de solution ( en effet dans ce cas les équations de sont assimilables au équations de deu droites strictement parallèles), donc S =. Eercice 9: Les droites d1, d et d ont respectivement pour équations : 6 y= ; y= 1 et 4 + y=. Montrer que les droites d1, d sont parallèles et les droites d et d sont sécantes. Cours fonctions affines-classe de nde - 14

15 Eercice 10: On considère le triangle ABC donné par ses sommets : A( ; 5), B(4 ; 1) et C( ; 1) a) Soit H le pied de la hauteur issue du sommet A relative au côté [AC], calculer les coordonnées du point H. b) Déterminer la longueur de la hauteur [AH ]. c) En déduire l'aire du triangle ABC. Cours fonctions affines-classe de nde - 15

16 Eercice 11: Résoudre dans R les inéquations suivantes : Eercice 1: Résoudre dans R les inéquations suivantes : Eercice 1: Déterminer l ensemble de définition de la fonction suivante: Eercice 14: f ( ) = a) Résoudre dans R les inéquations suivantes : + + puis b) En déduire les solutions du système : 4 Eercice 15: Déterminer les équations des médianes du triangle ABC de côtés: y 1=0 ; + y 7=0 ; y =0. Quelles sont les coordonnées du point d intersection de ces médianes? Eercice 16: Déterminer les équations des côtés du triangle ABC connaissant C( ; ), ainsi que les équations de la hauteur (h) et de la médiane (m) issue d un même sommet autre que C : (h) : 4 y = 0 et (m) : y = 0. Eercice 17: On considère deu carrés ABCD et DEFG (de côté a R * + ), disposés comme sur la figure suivante. Soit H le point d intersection de (AE) et de (BF). Montrer que les points H, C et G sont alignés. Indication : Utilisez le repère ( D DA, DC) figure. ; et définissez les coordonnées de tous les points de la Cours fonctions affines-classe de nde - 16

17 Eercices complémentaires sur les vecteurs Eercice 1 : Soit un parallélogramme ABCD. 1) Construire les points E et F tels que CE = CD et BF = BC ) Déterminer les coordonnées de AE et AF dans la base ( AB, AC) ) En déduire que les points A, E et F sont alignés. Eercice : Soient A(;5), B( 6; y +1), C(8; y), D(5 +1;8), E(5;1) et F( +1;7) avec, y R. Peut-on trouver et y tels que : a) E soit le milieu de [AB]? b) ABCD soit un parallélogramme? c) E soit l image de A par la symétrie de centre D? d) E soit le centre de gravité du triangle ABC? e) t DA ( F ) = E. Eercice : ; un repère du plan. On considère les points E( ; ), F(5 ; 4) et G(1 ; 5). a) Déterminer les coordonnées du point H tel que EHFG soit un parallélogramme. E ; EF, EG est un repère du plan. Soit ( O i, j ) b) Justifier que ( ) c) Eprimer les vecteurs i et j en fonction des vecteurs EF et EG. d) Déterminer les coordonnées du point O dans le repère ( E EF, EG) ;. Cours fonctions affines-classe de nde - 17

Vecteurs et droites. u = 0 et on dit que

Vecteurs et droites. u = 0 et on dit que Vecteurs et droites ) Rappels sur les vecteurs Généralités Définitions : ) Un vecteur u ou B est défini par : une direction (la droite (B)) un sens (de vers B) une longueur : la norme du vecteur u ou B

Plus en détail

On dit que M est l origine du vecteur et N son extrémité.

On dit que M est l origine du vecteur et N son extrémité. ❶ - Vecteurs I-- Définition d un vecteur Définition : Lorsqu on choisit deux points distincts M et N dans cet ordre, on définit : - une direction : celle des droites parallèles à (MN) ; - un sens : de

Plus en détail

Chapitre 10 : Fonctions affines

Chapitre 10 : Fonctions affines Chapitre 10 : Fonctions affines I Fonctions affines Définition Une fonction f est affine s il eiste deu nombres réels a et b tels que pour tout réel f() = a+b. On peut toujours définir une fonction affine

Plus en détail

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment Chapitre : Géométrie plane 1 Calcul vectoriel 1.1 coordonnées d un vecteur dans un repère Définition 1. Soit #» u un vecteur du plan. Pour tout point O du plan, il existe un unique point M tel que OM #»

Plus en détail

1. Généralités sur les fonctions et fonctions polynômes

1. Généralités sur les fonctions et fonctions polynômes Comment faire pour Généralités sur les fonctions et fonctions polnômes86 Repérage 88 Dérivation90 Comportements asmptotiques et étude de fonctions9 5 Calcul vectoriel et barcentre 96 6 Produit scalaire

Plus en détail

Repérage dans le plan

Repérage dans le plan Repérage dans le plan I Les repères a) Définition Définition : Un repère du plan est défini par la donnée de trois points distincts non alignés O, I et J. Le repère est alors noté (O ; I ; J). Le point

Plus en détail

TRIGONOMÉTRIE REPÉRAGE POLAIRE

TRIGONOMÉTRIE REPÉRAGE POLAIRE TRIGNMÉTRIE REPÉRAGE PLAIRE I Angles orientés Remarque n considère le cercle de centre et de rayon, que l'on appelle cercle trigonométrique. Le périmètre de ce cercle est. n considère la droite graduée

Plus en détail

Équations cartésiennes de plans et de droites

Équations cartésiennes de plans et de droites Chapitre 4 Équations cartésiennes de plans et de droites Sommaire 4.1 Équation cartésienne d un plan........................................... 25 4.1.1 Équation cartésienne d un plan........................................

Plus en détail

1S DS 4 Durée : 2h. ( 5,5 points ) Exercice 1

1S DS 4 Durée : 2h. ( 5,5 points ) Exercice 1 1S DS Durée : h Exercice 1 (, points ) Dans un repère orthonormé (annexe exercice 1), on donne la droite (d) d équation x 3y + 6 = 0, le point A(1; 7) et le vecteur v (; 3). 1. Pour tracer (d) on peut

Plus en détail

La fonction carré est la fonction définie pour tout réel x par f(x)=x 2

La fonction carré est la fonction définie pour tout réel x par f(x)=x 2 Lcée JANSON DE SAILLY I FONCTION CARRÉ DÉFINITION La fonction carré est la fonction définie pour tout réel par f)= 2 PROPRIÉTÉS Un carré est toujours positif ou nul. Pour tout réel, on a 2 0. Un nombre

Plus en détail

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES Configurations du plan Le théorème de Pythagore s applique à un triangle rectangle ; le théorème de Thalès, à une figure qui comprend des droites parallèles

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. I- Droites et plans de l espace : Rappels des règles de base Par deux points distincts de l espace, passe une unique droite. Par trois points non alignés passe un

Plus en détail

Exercices supplémentaires Géométrie plane

Exercices supplémentaires Géométrie plane Exercices supplémentaires Géométrie plane Partie A : Coordonnées de vecteurs, colinéarité Exercice 1 Dans un repère, on considère 6; 1, ; 1, 15; 4 et ; 2. 1) Les points, et sont-ils alignés? Justifier.

Plus en détail

Montrer que le vecteur n

Montrer que le vecteur n Polynésie juin 4 EXERCICE (5 points) Dans un repère orthonormé de l espace, on considère les points A (5 ; 5 ; ), B ( ; ; ), C ( ; ; ) et D (6 ; 6 ; ).. Déterminer la nature du triangle BCD et calculer

Plus en détail

Chapitre 9 : Géométrie vectorielle

Chapitre 9 : Géométrie vectorielle Chapitre 9 : Géométrie vectorielle I Notion de vecteur 1 Translation et vecteur Soit A et B deux points du plan La translation qui transforme A en B associe à tout point C du plan l unique point D tel

Plus en détail

Correction du devoir commun de Seconde : Mathématiques

Correction du devoir commun de Seconde : Mathématiques Correction du devoir commun de Seconde : Mathématiques Exercice 1 5 points On se place dans un repère orthonormé, on donne les points suivants : Enfin, I est le milieu du segment 1 ) Faire une figure soignée

Plus en détail

I Exercices I I I I I I I I I I I-2

I Exercices I I I I I I I I I I I-2 Chapitre 9 Équations de droites TABLE DES MATIÈRES page -1 Chapitre 09 Équations de droite s Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel Sommaire 1 Vecteurs Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel 2 Vecteurs colinéaires Définition Conséquences 3 Base du

Plus en détail

FONCTIONS AFFINES. Un antécédent ne peut avoir qu une image (elle est unique), mais une image peut avoir plusieurs antécédents.

FONCTIONS AFFINES. Un antécédent ne peut avoir qu une image (elle est unique), mais une image peut avoir plusieurs antécédents. FONCTIONS AFFINES 1. Vocabulaire Soit D une partie de l ensemble des nombres réels R. Une fonction f définie sur D associe à tout nombre réel x de D un unique nombre réel noté f(x). D est appelé ensemble

Plus en détail

Calculer les dérivées des fonctions suivantes (il n est pas demandé de préciser l ensemble de définition) :

Calculer les dérivées des fonctions suivantes (il n est pas demandé de préciser l ensemble de définition) : 1S A-C DS 6 jeudi 28 janvier 2016 Exercice 1 : (1,5 points) Calculer les dérivées des fonctions suivantes (il n est pas demandé de préciser l ensemble de définition) : Exercice 2 : (4,5 points) Vrai ou

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

4 e série Exercices sur les études de fonctions

4 e série Exercices sur les études de fonctions e série Eercices sur les études de fonctions Pour les courbes, on vérifiera sur calculatrice graphique On rappelle également que les tableau de variations (tableau récapitulatifs) doivent comporter les

Plus en détail

Les vecteurs du plan

Les vecteurs du plan Les vecteurs du plan Colinéarité Lycée du golfe de Saint Tropez Année 2015/2016 Première S ( Lycée du golfe de Saint Tropez) Vecteurs Année 2015/2016 1 / 13 1 Vecteurs colinéaires Définition et première

Plus en détail

DEVOIR COMMUN DE SECONDE - MATHEMATIQUES La calculatrice est autorisée.

DEVOIR COMMUN DE SECONDE - MATHEMATIQUES La calculatrice est autorisée. Mardi 13 Mars 01 DEVOIR COMMUN DE SECONDE - MATHEMATIQUES La calculatrice est autorisée. Eercice 1 / 4 On donne dans le repère orthonormé (O ; I, J) ci-dessous la courbe représentative C d une fonction

Plus en détail

Equations cartésiennes. Fiche(1)

Equations cartésiennes. Fiche(1) Fiche(1) Le tableau suivant indique, dans la case située ligne l et colonne c, l altitude (exprimée en centaines de mètres) au point dont l abscisse est c et l ordonnée l : par exemple, l altitude du point

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Géométrie analytique dans l espace

Géométrie analytique dans l espace Généralités Points coplanaires Quatre points de l espace sont dits coplanaires s ils appartiennent à un même plan (rappel : 3 points d un plan sont dits alignés s ils appartiennent à une même droite) Vecteurs

Plus en détail

Exercices supplémentaires : Produit scalaire dans l espace

Exercices supplémentaires : Produit scalaire dans l espace Exercices supplémentaires : Produit scalaire dans l espace Dans tous les exercices, sauf quand cela est précisé, on considère un repère orthonormal de l espace ; ; ;. Partie A : Repère et vecteurs coplanaires

Plus en détail

Exercices de géométrie analytique

Exercices de géométrie analytique Exercice 1 Exercices de géométrie analytique (1) Déterminer les coordonnées des vecteurs représentés dans la base ( i, j ) () Déterminer les coordonnées des vecteurs représentés dans la base ( j, i ) ()

Plus en détail

Chapitre 11 Produit scalaire dans l'espace

Chapitre 11 Produit scalaire dans l'espace I. Produit scalaire Chapitre 11 Produit scalaire dans l'espace 1) Produit scalaire dans l'espace Définition : Soient u et v deux vecteurs de l'espace et A, B, C trois points tels que u= AB et v= AC. Les

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

2 nde S CALCULS VECTORIELS ET BARYCENTRE. Boubacar MANÉ boubacarmane.jimdo.com 14 janvier 2013

2 nde S CALCULS VECTORIELS ET BARYCENTRE. Boubacar MANÉ boubacarmane.jimdo.com 14 janvier 2013 2 nde S CALCULS VECTORIELS ET BARYCENTRE Boubacar MANÉ boubacarmane.jimdo.com boubacarmane2@gmail.com 14 janvier 201 Table des matières 1 Calculs vectoriels........................................ 2 1.1

Plus en détail

Les droites affines Les fonctions polynômes Les fonctions rationnelles... 5

Les droites affines Les fonctions polynômes Les fonctions rationnelles... 5 Les droites affines... ) Rappels... ) Eemples... ) Tangente à une courbe... Les fonctions polynômes... ) Plan d étude... ) Tableau des dérivées utiles pour les fonctions polynômes... ) Fonctions du ème

Plus en détail

Géométrie _ Equations de droites

Géométrie _ Equations de droites Géométrie _ Equations de droites Exercice 1 : Cinéma et concert Sous thème : Coordonnées d un point, droites (livre Maths, 2 nde, Nathan 2010) Un groupe d amis, dont certains sont étudiants, va au cinéma.

Plus en détail

I. Droites parallèles

I. Droites parallèles Chapitre 6 : position relative de droites Etudier la position relative de deu droites, c est se demander : si elles sont parallèles si elles sont sécantes, et dans ce cas là déterminer les coordonnées

Plus en détail

TS Géométrie vectorielle dans l espace Cours. Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace

TS Géométrie vectorielle dans l espace Cours. Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace TS Géométrie vectorielle dans l espace Cours I. Vecteurs de l espace 1. Notion de vecteur dans l espace Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace Deux vecteurs

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

Chapitre 2 Géométrie plane

Chapitre 2 Géométrie plane Chapitre 2 Géométrie plane I. Colinéarité de deux vecteurs 1) Vecteurs colinéaires Définition : Soit u et v deux vecteurs non nuls. Les vecteurs u et v sont colinéaires si l'un est le produit de l'autre

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN 1 sur 12 REPERAGE DANS LE PLAN I. Repère du plan Trois points distincts deux à deux O, I et J du plan forment un repère, que l on peut noter (O, I, J). L origine O et les unités OI et OJ permettent de

Plus en détail

Systèmes d équations et d inéquations linéaires. Un système de deux équations à deux inconnues x et y a pour forme

Systèmes d équations et d inéquations linéaires. Un système de deux équations à deux inconnues x et y a pour forme CHAPITRE Sstèmes d équations et d inéquations linéaires I. Sstèmes d équations linéaires.. Définition. Un sstème de deu équations à deu inconnues et a pour forme a+ b = c a, a, b, b, c, c sont des réels

Plus en détail

Fonctions affines. A. Définition et premières propriétés. 1- Définition. 2- Représentation graphique d'une fonction affine

Fonctions affines. A. Définition et premières propriétés. 1- Définition. 2- Représentation graphique d'une fonction affine Fonctions affines A. Définition et premières propriétés 1- Définition Une fonction f définie sur R est une fonction affine s'il existe deux réels a et b tels que pour tout réel x, f(x) = ax + b. Pour calculer

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. : la perspective cavalière Pour représenter un objet de l espace par une figure plane, on adopte un mode de représentation appelé «perspective cavalière» qui est

Plus en détail

Bilan fin de seconde. 1. Statistiques

Bilan fin de seconde. 1. Statistiques Bilan fin de seconde Les questions concernant des notions pour une première particulière sont précisées (remarque : les programmes de mathématiques de TL et TID sont les mêmes) Pour chaque question, il

Plus en détail

La fonction f n est définie sur [1;3] f n est pas continue sur R. = lim(x a) lim

La fonction f n est définie sur [1;3] f n est pas continue sur R. = lim(x a) lim Lcée Camille SEE I CONTINUITÉ D UNE FONCTION DÉFINITION Soit f une fonction définie sur un intervalle I de R et a un réel appartenant à I.. Dire que f est continue en a signifie que lim a f()= f(a). Dire

Plus en détail

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y.

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. LES FONCTIONS I - RAPPELS I-1 - Définition Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. L ensemble des point tel f(x)=y est représenté

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Dossier Synthèse. Faites votre bilan! Généralités sur les fonctions I-Etrait du programme officiel de BEP/CAP. a) Eemples de modes de générations de fonctions. Eemples de description d une situation à

Plus en détail

Chapitre 1 : Équations de la droite dans le plan

Chapitre 1 : Équations de la droite dans le plan EQUATIONS DE LA DROITE DANS LE PLAN 1 Chapitre 1 : Équations de la droite dans le plan 1.1 Introduction Exercice d introduction : On considère l équation vectorielle: x = 3 3 + k. y 2 2 Représenter, dans

Plus en détail

La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apporté au devoir. Vous devez composer sur le sujet.

La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apporté au devoir. Vous devez composer sur le sujet. Composition n 1 de Mathématiques NOM : Prénom : Seconde... 3 novembre 2011 Note : /20 Signature : Observations : La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apporté au devoir.

Plus en détail

Seconde. Eric Leduc 2014/2015

Seconde. Eric Leduc 2014/2015 Seconde Lycée Jacquard 2014/2015 Rappel du plan 1 2 3 Équation courbe Définition n o 1: courbe Une équation de courbe est une relation qui lie les coordonnées de tous les points de la courbe. Autrement

Plus en détail

BBBBBBBBBNNNVVRRVVNNNBBBBBBBBB

BBBBBBBBBNNNVVRRVVNNNBBBBBBBBB S Devoir n 7 lundi 9 mars 05 Eercice : ( points) Soient A, B,C et D des points situés sur le cercle trigonométrique associés respectivement au réels:. a. Déterminer les réels de qui correspondent au points

Plus en détail

Troisième - Objectifs de l année en mathématique

Troisième - Objectifs de l année en mathématique Troisième - Objectifs de l année en mathématique Chapitre 0 : Les nombres réels *Document téléchargeable sur http://www.cspu.be/~termollem dans «Documents» 1. Nommer les ensembles de nombres et donner

Plus en détail

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 I) Produit scalaire Dans tout ce paragraphe, on travaillera dans un repère orthonormé

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Prérequis Vecteurs système d équations Plan du cours 1. Équations cartésiennes 2. Caractérisations vectorielles et représentations paramétriques 3. Intersections et parallélisme 4. Orthogonalité 1. Équations

Plus en détail

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan Produit scalaire de deux vecteurs de l espace 1 Rappels sur le produit scalaire de deux vecteurs du plan 1.1 Définition Soit u et v deux vecteurs du plan. Si u = 0 ou v = 0, alors u v = 0 (Attention! On

Plus en détail

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES Géométrie analytique C est Descartes (1596-1650) qui a développé l idée de représenter les figures géométriques dans un repère, les points du plan étant définis

Plus en détail

Leçon : Les fonctions

Leçon : Les fonctions Leçon : Les fonctions 1. Notion de fonction et généralités 1.a) Fonction Soit D une partie R. Définir une fonction sur un ensemble D, c est associer à chaque réel x de D, un unique réel, appelé image de

Plus en détail

Sujet A. Exercice 1. Dans cette partie, les réponses seront justifiées sur la copie. 1S Devoir surveillé n 7 : lundi 4 avril 2011

Sujet A. Exercice 1. Dans cette partie, les réponses seront justifiées sur la copie. 1S Devoir surveillé n 7 : lundi 4 avril 2011 S Devoir surveillé n 7 : lundi avril 0 Sujet A Eercice Pour les parties A et B, indiquer pour chaque affirmation si elle est e ou fausse. Chaque réponse eacte rapporte un demi-point et chaque réponse fausse

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

DEVOIR COMMUN DE MATHÉMATIQUES Seconde 2 heures

DEVOIR COMMUN DE MATHÉMATIQUES Seconde 2 heures DEVOIR COMMUN DE MATHÉMATIQUES Seconde heures Mars 013 L usage de la calculatrice est autorisé pour cette épreuve. Le candidat est invité à faire figurer toute trace de recherche, même incomplète ou non

Plus en détail

Seconde Chapitre 1 : Les vecteurs (1) Page 1 sur 6

Seconde Chapitre 1 : Les vecteurs (1) Page 1 sur 6 Seconde Chapitre 1 : Les vecteurs (1) Page 1 sur 6 I ) Translation : Activité : Une télécabine se déplace le long d un câble de A vers B. Dessiner ci dessus la télécabine lorsqu elle sera arrivée au terminus

Plus en détail

1 Équations cartésiennes, équations polaires d un ensemble de points

1 Équations cartésiennes, équations polaires d un ensemble de points Plans, cercles, droites et sphères Ce chapitre aborde les objets fondamentaux utilisés en géométrie : droites et cercles dans le plan, plans, droites et sphères dans l espace. Les objectifs du chapitre

Plus en détail

Pour démarrer la classe de seconde. Paul Milan

Pour démarrer la classe de seconde. Paul Milan Pour démarrer la classe de seconde Tout ce qu il faut savoir Paul Milan DERNIÈRE IMPRESSION LE 1 juin 014 à 1:7 Table des matières 1 Calcul 1 Calcul sur les fractions................................ Calcul

Plus en détail

Fiche d exercices 9 : Géométrie et orthogonalité dans l espace

Fiche d exercices 9 : Géométrie et orthogonalité dans l espace Fiche d exercices 9 : Géométrie et orthogonalité dans l espace Droites et plans de l espace Exercice SABC est un tétraèdre, la droite (SA) est orthogonale au plan (ABC), le triangle ABC est rectangle en

Plus en détail

Radian et cercle trigonométrique

Radian et cercle trigonométrique Seconde Chapitre 7 : Angles et Trigonométrie 5- I Radian et cercle trigonométrique I. Le radian Le radian est une unité de mesure des angles choisie de façon que l angle plat de 8 degrés ait une mesure

Plus en détail

Les définitions et opérations sur les vecteurs du plan se généralisent dans l espace

Les définitions et opérations sur les vecteurs du plan se généralisent dans l espace Lcée Camille SEE 08 décembre 2011 GÉMÉTRIE DANS L ESPACE I VECTEUR DE L ESPACE Les définitions et opérations sur les vecteurs du plan se généralisent dans l espace 1 VECTEURS CLINÉAIRES Dire que deu vecteurs

Plus en détail

Equations, inéquations et fonctions affines

Equations, inéquations et fonctions affines Equations, inéquations et fonctions affines A) Fonctions affines 1 Définition d une fonction affine Définition : f est une fonction affine, si et seulement si, il existe deux réels a et b tels que : pour

Plus en détail

Exercices Géométrie plane

Exercices Géométrie plane I Notions élémentaires et compléments sur les vecteurs Savoir-faire 1 : Démontrer avec des vecteurs Exercice 1 ABCD et BDFE sont deux parallélogrammes. Le point K est défini par BK = CB. 1. Justifier les

Plus en détail

Exercices sur les fonctions affines

Exercices sur les fonctions affines Eercices sur les fonctions affines Dans chaque cas, on donne l epression d une fonction affine f : a b où a et b sont deu réels indépendants de. Vocabulaire : epression d une fonction affine. variable

Plus en détail

π π ; 2 π tel que z = 1 + e i θ.

π π ; 2 π tel que z = 1 + e i θ. EXERIE 1 (5 points) Dans le plan complexe muni d'un repère orthonormal (O ; u, v ) (unité graphique : cm), on considère les points, et d'affixes respectives a, b 1 i et c 1 + i. 1. a. Placer les points,

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace

Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace Notes : dans cette synthèse de cours, on suppose connues les notions du programme de 1 ère S relatives au produit scalaire dans

Plus en détail

Les droites du plan. Vocabulaire Soit (d) une droite sécante à l axe des ordonnées.

Les droites du plan. Vocabulaire Soit (d) une droite sécante à l axe des ordonnées. Les droites du plan Le plan est muni d un repère orthogonal. contrôles résumés de cours Vocabulaire Soit (d) une droite sécante à l axe des ordonnées. Quels que soient les points M et N de la droite, le

Plus en détail

x g(x) Si f est une fonction affine non constante, alors tout nombre admet un antécédent par la fonction f et cet antécédent est unique.

x g(x) Si f est une fonction affine non constante, alors tout nombre admet un antécédent par la fonction f et cet antécédent est unique. Chapitre 2 : Fonction linéaire et fonction affine. I- Définitions. ) Fonction affine. a et b désignent deu nombres relatifs donnés. Une fonction affine est une fonction qui, à un nombre, associe le nombre

Plus en détail

Systèmes de deux équations à deux inconnues.

Systèmes de deux équations à deux inconnues. Systèmes de deux équations à deux inconnues. 1. Généralités. 1.1. Equation à deux inconnues du premier degré Définition: Soient a, b et c trois nombres réels donnés. Une équation du type une équation à

Plus en détail

2 : LIMITE ET CONTINUITE

2 : LIMITE ET CONTINUITE : LIMITE ET CONTINUITE LISTE DES COMPTENCES CODE L0 L0 L0 L04 L05 L06 L07 L08 L09 L0 DENOMINATION Savoir calculer la ite en un point d un monôme Savoir calculer la ite en l infini d un monôme Savoir calculer

Plus en détail

Applications affines Homothéties, translations et groupe affine, Symétries et projections

Applications affines Homothéties, translations et groupe affine, Symétries et projections Applications affines Homothéties, translations et groupe affine, Symétries et projections Activité 3 - Projection et symétries :, Etudier les extraits de cours ci-après (source : Géométrie, Term C et E,

Plus en détail

I - Équations à une inconnue

I - Équations à une inconnue 1/ Définition I - Équations à une inconnue Une équation à une inconnue est une égalité dans laquelle figure une lettre représentant une valeur inconnue que l on cherche à déterminer. s : (E 1 ) : x + 1

Plus en détail

GÉOMÉTRIE DANS L ESPACE

GÉOMÉTRIE DANS L ESPACE GÉOMÉTRIE DANS L ESPACE On se place dans un repère orthonormal du plan ( O ; i, j, k ) I Équation de plan Exercice 1 : On considère le point A ( 0;1;4) et le vecteur n ( ;3; ) Déterminer une équation du

Plus en détail

K.Fares Progression mathématiques seconde Lycée Hélène Boucher

K.Fares Progression mathématiques seconde Lycée Hélène Boucher K.Fares Progression mathématiques seconde Lycée Hélène Boucher 2014-2015 Les di érents chapitres de l année rangés suivant les 3 parties du programme : Fonctions, Géométrie, Statistiques et. Chapitre Axe

Plus en détail

Formulaire de mathématiques

Formulaire de mathématiques NOM : Prénom : Classe : Formulaire de mathématiques Ce formulaire contient l essentiel de la matière de 3 ème ainsi que des synthèses de 4 ème. Complète-le, prends-le avec toi au cours et au remédiations

Plus en détail

On appelle H la projection orthogonale de A sur la droite (BC).

On appelle H la projection orthogonale de A sur la droite (BC). Première S 2010-2011 Exercices sur le produit scalaire, équations de droite et de cercles Exercice 1 : Distance d'un point à une droite. On se donne une droite ( ) dont l'équation cartésienne est de la

Plus en détail

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités Chapitre 5 Généralités sur les fonctions numériques 5.1 Généralités Définition 5.1 Une fonction numérique permet d associer à chaque nombre x d un ensemble D un autre nombre que l on note f(x). On note

Plus en détail

Fonctions Affines Problèmes du premier degré

Fonctions Affines Problèmes du premier degré Fonctions Affines Problèmes du premier degré Christophe ROSSIGNOL Année scolaire 2016/2017 Table des matières 1 Fonctions Affines 2 1.1 Définition Représentation graphique.................................

Plus en détail

I) Equation du premier degré à deux inconnues.

I) Equation du premier degré à deux inconnues. 1 I) Equation du premier degré à deux inconnues. Exemples : 5x + 3y = 1 Si x = 0 alors 5 0 + 3y = 1 3y = 1 y = 1 3 Donc le couple ( 0 ; 1 ) est solution de l équation. 3 Si x = 1 5 alors 5 1 5 + 3y = 1

Plus en détail

Vecteurs de l espace

Vecteurs de l espace Vecteurs de l espace Définitions règles de calcul On étend à l espace la notion de vecteur définie dans le plan, ainsi que les opérations associées : somme de vecteurs multiplication par un réel Définition-

Plus en détail

2 nde. Mathématiques. Pascal CHAUVIN. 11 janvier 2017

2 nde. Mathématiques. Pascal CHAUVIN. 11 janvier 2017 Mathématiques Pascal CHAUVIN 2 nde 11 janvier 2017 cbed Paternité Pas d utilisation commerciale Partage des conditions initiales à l identique Licence Creative Commons 2.0 France 2 Table des matières 1

Plus en détail

Géométrie Chapitre 1 : Vecteurs et droites du plan

Géométrie Chapitre 1 : Vecteurs et droites du plan Géométrie Chapitre 1 : Vecteurs et droites du plan I- Rappels et compléments sur les vecteurs 1) Vecteurs égaux La translation qui transforme en est appelée la translation de vecteur. Le point s appelle

Plus en détail

1S Le 19 septembre 2014 Corrigé du D.S de Mathématiques n 1 Calculatrice autorisée Durée : 1 h 45

1S Le 19 septembre 2014 Corrigé du D.S de Mathématiques n 1 Calculatrice autorisée Durée : 1 h 45 1S Le 19 septembre 14 Corrigé du D.S de Mathématiques n 1 Calculatrice autorisée Durée : 1 h 45 EXERCICE 1 Le barème est donné à titre indicatif sur 5 (1 points) A compléter sur l énoncé La courbe (C)

Plus en détail

2 nde Savoirs minimaux Enoncés Droites

2 nde Savoirs minimaux Enoncés Droites 2 nde Savoirs minimaux Enoncés Droites Le plan est muni d un repère O, I, J Exercice 9 p 186 Les points A 3 ; 2, B 0 ; 5, C 12 ; 47 et D 1 ; 3 appartiennent-ils à la droite d équation y 3x 11? Exercices

Plus en détail

Liaison Collège Lycée Rentrée Lycée Le Corbusier Lycée Charles de Gaulle

Liaison Collège Lycée Rentrée Lycée Le Corbusier Lycée Charles de Gaulle Liaison Collège Lycée Rentrée 04 Lycée Le Corbusier Lycée Charles de Gaulle Pour réussir son début de seconde La clef de la réussite c est bien sûr un travail régulier et approfondi tout au long de l année.

Plus en détail

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé TS. Contrôle 4 -Correction 8 points ) Sur le graphique de l annee, on a tracé, dans le plan muni d un repère orthonormé la courbe représentative C d une fonction f définie et dérivable sur l intervalle

Plus en détail

Devoir commun de Mathématiques Correction - Premières S

Devoir commun de Mathématiques Correction - Premières S Devoir commun de Mathématiques Correction - Premières S EXERCICE 1 : ( points) Restitution organisée de connaissances Dans un repère, (d) et (d ') sont les droites d'équations cartésiennes respectives

Plus en détail

Factorisation et études de signes

Factorisation et études de signes MS_F4_chapitrecomplet 4/3/4 :45 page # Factorisation et études de signes FONCTIONS Connaissances du collège nécessaires à ce chapitre Résoudre une équation de type ab = une équation produit une inéquation

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace Terminale S Ch.8 PARTIE Géométrie dans l'espace Ú La perspective cavalière C'est un ensemble de règles permettant de représenter un volume dans un plan; ce n'est pas ce que nous voyons dans la réalité.

Plus en détail

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice 1 (sur 8 points)

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice 1 (sur 8 points) 5 ème /6 ème année décembre 2014 durée : 4 60 DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1 Eercice 1 (sur 8 points) PARTIE A Soit la onction g déinie sur 1. Calculer g. ; 0 par : 2 2 ln 1 g. 2.

Plus en détail

I- Droites d équations x = c. Dans le repère ci-contre, placer 10. points dont l abscisse (x) est 4. L ensemble des points du plan dont

I- Droites d équations x = c. Dans le repère ci-contre, placer 10. points dont l abscisse (x) est 4. L ensemble des points du plan dont I- Droites d équations x = c Dans le repère cicontre, placer 10 points dont l abscisse (x) est 4. L ensemble des points du plan dont l abscisse est 4 est la droite d équation x = 4. (la tracer et la nommer

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques ère STID I - Cercle trigonométrique - Mesure des angles orientés Définition Dans le plan muni d un repère ; i, j, le cercle trigonométrique est le cercle de centre et de rayon

Plus en détail

TRIGONOMÉTRIE. I Cercle trigonométrique - Radian. Définition. Remarques. Exemples ( voir animation )

TRIGONOMÉTRIE. I Cercle trigonométrique - Radian. Définition. Remarques. Exemples ( voir animation ) TRIGNMÉTRIE I Cercle trigonométrique - Radian sens trigonométrique M Le plan est rapporté à un repère orthonormé ( i, j ). n appelle cercle trigonométrique le cercle de centre et de rayon 1, sur lequel

Plus en détail

Partie A - bilan numérique

Partie A - bilan numérique Partie A - bilan numérique Exercice 1. Effectuer les calculs suivants. A = 1 3 1 3 4 7 ; B = 2 3 + 3 2 ; C = (5 3 1 5 ) (1 6 + 3 2 ) ; D = 1 + 1 3 3 4 1 ; E = 10 3 (10 2 1 10 ) ; 2 F = 114 3 2 5 6 5 7

Plus en détail