Dérivabilité d une fonction numérique.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Dérivabilité d une fonction numérique."

Transcription

1 34

2 Chapitre 6 Dérivabilité d une fonction numérique. 6.1 Taux d accroissement Définition : Soient f une fonction numérique et I D f un intervalle ouvert. Soit c I, on appelle taux d accroissement de f en c la fonction φ(x) =, définie sur I {c}. f(x) f(c) x c Exemple : On pose pour cet exemple : c = 1.4, x 0 = 0.2 La droite bleue passe par les points (c, f(c)) et (x 0, f(x 0 )), elle a pour équation 6.2 Dérivabilité en un point y = f(c) + f(x 0) f(c) x x 0 c Définition : Soient f une fonction numérique et I D f un intervalle ouvert. Soit c I, on dit que f est dérivable f(x) f(c) en c si le taux d accroissement φ(x) = admet une limite finie l en c. On notera alors f (c) = l. x c f est dérivable sur I si elle est dérivable en tout point de I. L application x f (x) est alors appelée dérivée de f. Remarque : Souvent, on écrira le taux d accroissement sous la forme ψ(h) = f(c + h) f(c) h et on recherchera la limite quand h tend vers 0. Exercice : Etudier la dérivabilité des fonctions f(x) = x 2 et g(x) = x 2. Remarques : 1. On dit que f n est pas dérivable en c si l une au moins des deux limites (limite à gauche ou limite à droite) n existe pas ou n est pas finie ou si les deux limites (à gauche et à droite) ne sont pas égales. On dit que f n est pas dérivable à gauche en a si la limite à gauche n existe pas ou n est pas finie 2. Interprétation géométrique : la droite y = f(c) + (x c)f (c) est la tangente au graphe de f en c. Le nombre f (c) est la pente (on dit aussi le coefficient directeur) de la droite, il est égal à la tangente de l angle entre la droite tangente à la courbe et l axe des x. 6.3 Dérivée à droite, dérivée à gauche Définition : Soient f une fonction numérique et [a, b] D f. La dérivée à droite de f en a est la limite, si elle existe, f(x) f(a) de lorsque x tend vers a par valeurs supérieures. x a La dérivée à gauche de f en b est la limite, si elle existe, de f(x) f(b) x b lorsque x tend vers b par valeurs inférieures. On dit que f est dérivable sur [a, b] si f est dérivable sur ]a, b[ et si elle est dérivable à droite en a et à gauche en b. Remarque : Pour que f soit dérivable en c I, il faut et il suffit que les dérivées à gauche et à droite en c existent et qu elles soient égales. 35

3 36 CHAPITRE 6. DÉRIVABILITÉ D UNE FONCTION NUMÉRIQUE. Proposition : Si f est dérivable à droite en c alors f est continue à droite en c. Si f est dérivable à gauche en c alors f est continue à gauche en c. Donc si f est dérivable à droite et à gauche en tout point d un intervalle ouvert I, elle est continue sur I. 6.4 Dérivable implique continue Théorème : Si f est dérivable en c alors f est continue en c. Remarque : ATTENTION : une fonction continue n est pas nécessairement dérivable, par exemple g(x) = x 2 est continue en 2 mais elle n est pas dérivable en Fonctions de classe C p Définition : Soient f une fonction numérique et I D f un intervalle ouvert. Si f est dérivable sur I et si f est elle même dérivable, (f ) est la dérivée seconde, elle est notée f. Par récurrence, on définit, si elle existe, la dérivée d ordre p pour p N et on la note f (p). Par convention, la dérivée d ordre 0 de f est la fonction f elle même. On dit que f est de classe C p si elle est p fois dérivable et si f (p) est continue. On dit que f est de classe C sur l intervalle I si, pour tout p N, la dérivée d ordre p existe en tout point de I. Lorsque l intervalle I est fermé, soit I = [a, b], les définitions sont les mêmes mais on utilise uniquement la dérivation à droite en a et à gauche en b. De même si l intervalle est semi-fermé. Remarque : Si f est de classe C p, elle est de classe C k pour tout entier k p. Proposition (admis) : Les fonctions sin et cos sont dérivables sur R et elles ont pour dérivée respectivement cos et sin. 6.6 Opérations et dérivation Proposition : Soient f une fonction numérique et I D f un intervalle ouvert. Si f est dérivable en c I alors pour tout réel λ, λf est dérivable en c et (λf) (c) = λf (c). Si f est de classe C p, alors λf est de classe C p. Proposition : Soient f et g sont deux fonctions numériques et I D f D g un intervalle ouvert. Si f et g sont dérivables en c I. Alors f + g est dérivable en c et (f + g) (c) = f (c) + g (c) fg est dérivable en c et (fg) (c) = f (c)g(c) + f(c)g (c). Si de plus f(c) 0, alors 1/f est définie dans un intervalle ouvert contenant c, 1/f est dérivable en c et (1/f) (c) = f (c)/f 2 (c). Soit J un intervalle quelconque, si f et g sont de classe C p sur J, alors f + g et fg sont de classe C p sur J. Si de plus f(c) 0, alors 1/f est de classe C p en c. ( ) f Remarque : On en déduit la dérivée en c de f/g si g(c) 0 : (c) = f (c)g(c) f(c)g (c) g g 2. (c) Corollaire : Toute fonction polynôme à variable réelle est dde classe C sur R. Si P(x) = n k=0 a kx k, alors P (x) = n k=1 ka kx k 1 Toute fonction rationnelle d une variable réelle est C + sur son ensemble de définition. Les fonctions sin, cos, tan et cotan sont de classe C sur leurs domaines de définition.

4 6.7. FORMULE DE LEIBNIZ Formule de Leibniz Proposition (formule de Leibniz) : Soit p N. Si f et g sont de classe C p sur I, alors pour tout x I, (fg) (p) (x) = p ( p k k=0 ) f (k) (x)g (p k) (x) Exemple : Calculer la dérivée n-ième de h(x) = x 2 (1 + x) n. 6.8 Dérivée d une composée Proposition : Soient f et g deux fonctions numériques continues respectivement sur deux intervalles ouverts I D f et J D g. Supposons que g soit dérivable en c J, que g(c) appartienne à I, et que f soit dérivable en g(c). Alors f g est dérivable en c et (f g) (c) = f (g(c))g (c). Soit J un intervalle quelconque, si g est de classe C p sur J et f est de classe C p sur g(j), alors f g est de classe C p sur J. Remarque : La dérivée d une fonction n est pas forcément continue, par exemple f(x) = x 2 sin(1/x) si x 0 et f(0) = 0. Alors f (x) = 2xsin(1/x) cos(1/x) et f (0) = 0. Or cos(1/x) n a pas de limite quand x tend vers Dérivée d une réciproque Proposition : Si f est une fonction numérique bijective et continue d un intervalle ouvert I sur un intervalle ouvert J. Supposons que f soit dérivable en c I et que f (c) 0. Alors sa réciproque f 1 est dérivable en d = f(c) et (f 1 ) (d) = 1 f (c) ou encore (f 1 ) (d) = 1 f (f 1 (d)) Maxima et minima locaux Rappels : a est un maximum local de f s il existe ε tel que ]a ε, a + ε[ D f et x ]a ε, a + ε[, f(x) f(a). a est un minimum local de f s il existe ε tel que ]a ε, a + ε[ D f et x ]a ε, a + ε[, f(x) f(a). a est un maximum global de f si x D f, f(x) f(a). a est un minimum global de f si x D f, f(x) f(a). Proposition : Soit f une fonction numérique dérivable sur un intervalle ouvert I. Si f admet un maximum local (resp. minumum local) en a I, alors f (a) = 0. Remarque : Attention, si I est un intervalle fermé, le résultat n est plus vrai. En effet la fonction f(x) = x 2 est maximale en a = 1 sur I = [0, 1], elle est minimale en 0. D autre part, la condition n est pas suffisante, par exemple f(x) = x 3 a une dérivée nulle en 0, mais il ne s agit ni d un maximum local ni d un minimum local sur I = R Théorème de Rolle Théorème (de Rolle) : Soit f une fonction numérique continue sur [a, b] et dérivable sur ]a, b[ telle que f(a) = f(b). Alors, il existe un point c de ]a, b[ tel que f (c) = 0.

5 38 CHAPITRE 6. DÉRIVABILITÉ D UNE FONCTION NUMÉRIQUE Théorème des accroissements finis Théorème (Accroissements finis) : Soient a et b deux réels tels que a < b. Soit f est une fonction numérique continue sur [a, b] et dérivable sur ]a, b[. Alors, il existe un point c de ]a, b[ tel que f(b) f(a) = (b a)f (c). Exercice : Montrer que pour tout x > 0, 1 x + 1 < ln(x + 1) ln(x) < 1 x. Soit f(x) = ln(x) sur R +, on a f (x) = 1 x et donc or 0 < x < c < x + 1 donc c ]x, x + 1[, f(x + 1) f(x) = (x + 1 x)f (c) = 1 c 1 x + 1 < 1 c < 1 x Inégalité et dérivée Théorème : Soient f et g deux fonctions numériques dérivables sur [a, b] et telles que Alors on a : 6.14 Monotonie et dérivée x [a, b], f (x) g (x). f(b) f(a) g(b) g(a). Proposition : Si f est une fonction numérique continue sur I = (a, b) et dérivable sur ]a, b[. La fonction f est positive sur I si et seulement si f est croissante sur I. Si f est strictement positive sur ]a, b[, alors f est strictement croissante sur I. La fonction f est négative sur I si et seulement si f est décroissante sur I. Si f est strictement négative sur ]a, b[, alors f est strictement décroissante sur I. La fonction f est nulle sur ]a, b[ si et seulement si f est constante sur I. Rappel : Une fonction f est croissante sur un intervalle I si (x, y) I 2, x y = f(x) f(y). Une fonction f est décroissante sur un intervalle I si (x, y) I 2, x y = f(x) f(y). Remarques : Une fonction peut être strictement croissante et avoir une dérivée qui s annule en certains points (isolés), par exemple f(x) = x 3 (la condition n est pas nécessaire) Caractérisation d une fonction lipschitzienne Définition : (Rappel) Soit f une fonction numérique définie sur un intervalle [a, b] et soit k R +. On dit que f est k-lipschitzienne si x, y [a, b], f(x) f(y) k x y. Proposition : Soit f est une fonction numérique dérivable sur [a, b] telle qu il existe un k R + pour lequel : Alors f est k-lipschitzienne Limite et dérivée x [a, b], f (x) k. Proposition : Soient a et b deux réels tels que a < b. Soit f une fonction numérique continue sur [a, b] et dérivable sur un intervalle ]a, b[. Si f (x) admet une limite finie l quand x tend vers a, alors la dérivée à droite de f en a existe et vaut l. De même, si f (x) admet une limite finie l quand x tend vers b, alors la dérivée à gauche de f en b existe et vaut l. Remarque : La condition n est pas nécessaire : la fontion f définie f(x) = x 2 sin(1/x) si x 0 et f(0) = 0 est dérivable en 0 (f (0) = 0) mais f (x) = 2xsin(1/x) cos(1/x) n a pas de limite quand x tend vers 0.

6 6.17. RÉCAPITULATIF DES DÉRIVÉES USUELLES Récapitulatif des dérivées usuelles. Soient n Z, p N et a R, f et g deux fonctions dérivables. f x n x a ln(x) exp(x) D f R ou R R + R + R f nx n 1 ax a 1 1/x exp(x) D f R ou R R + R + R f cos(x) sin(x) tan(x) D f R R ] π/2, π/2[ f sin(x) cos(x) 1+tan 2 (x) D f R R ] π/2, π/2[ f + g fg 1/f f/g f p f g f 1 f + g f g + fg f /f 2 (f g fg )/g 2 pf p 1 f g.(f g) 1/(f f 1 ) Remarque : La dérivée de f(x) = cos(x) peut s écrire f (x) = cos(x + π/2). De même, la dérivée de g(x) = sin(x) peut s écrire g (x) = sin(x + π/2). En itérant : f (n) (x) = cos(x + nπ/2) et g (n) (x) = cos(x + nπ/2) Les fonctions convexes. Définition : Soient f une fonction numérique et I D f un intervalle. On dit que f est convexe si quels que soient x, y I et t [0, 1], f(tx + (1 t)y) tf(x) + (1 t)f(y). f est concave si f est convexe, donc si quels que soient x, y I et t [0, 1], f(tx+(1 t)y) tf(x)+(1 t)f(y). Remarque : Interprétation géométrique : le graphe se trouve sous la corde pour les fonctions convexes et au dessus pour les fonctions concaves. Exemples : ax + b, x 2, x sont convexes sur R. Proposition : Soit f une fonction numérique de classe C 2 sur un intervalle I. Si f est positive sur I alors f est convexe sur I. Exemples : e x, x α (α > 1), ln(x) sont convexes, x α (0 < α < 1) est concave.

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S I Notion de continuité 1) Fonctions continues Définition 1 : Soit f une fonction définie sur un intervalle I contenant a. Remarques : On dit que f est continue en a si lim f(x) = f(a) On dit que f est

Plus en détail

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui Chapitre 6 : CONTINUITE - DERIVATION 1. CONTINUITE 1. 1 Continuité en un point Définition Soit f une fonction numérique définie sur un intervalle I de R, et a un élément de I (distinct des bornes de I)

Plus en détail

Cours de Mathématiques Continuité, dérivabilité, convexité

Cours de Mathématiques Continuité, dérivabilité, convexité Table des matières I Continuité....................................... 2 I.1 Continuité en un point............................ 2 I.2 Propriétés................................... 3 I.3 Continuité sur

Plus en détail

Fonction d une variable réelle

Fonction d une variable réelle Fonction d une variable réelle 1 Fonction d une variable réelle : généralités Définitions Fonctions et opérations Fonctions et ordre Propriétés particulières Monotonie Limites Limites et opérations Limites

Plus en détail

Limites, continuité, dérivabilité

Limites, continuité, dérivabilité Limites, continuité, dérivabilité (3) () Analyse 1 / 47 Plan 1 Un peu de vocabulaire 2 Limites 3 Opérations sur les limites 4 Relations de comparaison locale, notations de Landau 5 Continuité 6 Fonctions

Plus en détail

Limites de fonctions

Limites de fonctions Aix-Marseille Université 013-014 Analyse I PLANCHE : LIMITES, CONTINUITÉ Les exercices marqués du symbole sont les exercices qui seront traités prioritairement en TD. Le site internet EXO7 (http ://exo7.emath.fr)

Plus en détail

Parties majorées, minorées - borne supérieure, borne inférieure

Parties majorées, minorées - borne supérieure, borne inférieure Aix-Marseille Université 2012-2013 Analyse I PLANCHE 1 : LIMITES, CONTINUITÉ Parties majorées, minorées - borne supérieure, borne inférieure Exercice 1 Soit a, b R. Montrer les implications suivantes :

Plus en détail

Limite d une fonction en un point

Limite d une fonction en un point Limite d une fonction en un point Définiton Soit f une fct déf. sur un intervalle I de R, sauf p-ê en a I. l R est la limite de f en a si, quand x I se rapproche de a, f (x) se rapproche de l. Dans ce

Plus en détail

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée I- DÉRIVÉE ET SENS DE VARIATION 1) Du sens de variation au signe de la dérivée Théorème (admis) : soit f une fonction définie et dérivable sur un intervalle I. o Si f est une fonction croissante sur I,

Plus en détail

Fonctions Numériques :

Fonctions Numériques : Fonctions Numériques : Dérivabilité et Applications.. Notion de dérivées. Dénitions, Opérations et Exemples. 2. Dérivées successives. Dénitions, Opérations et Exemples. 3. Théorème des Acroissements nis

Plus en détail

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction On dit qu une fonction est dérivable sur un intervalle I si elle est définie sur I et admet en chaque point de I un nombre dérivé.

Plus en détail

Fonctions convexes. Table des matières

Fonctions convexes. Table des matières Maths PCSI Résumé de cours Table des matières Fonctions convexes 1 Propriétés des fonctions convexes 2 1.1 Définition des fonctions convexes............................ 2 1.2 Inégalités de pentes....................................

Plus en détail

Dérivabilité des fonctions réelles

Dérivabilité des fonctions réelles Chapitre 3 Dérivabilité des fonctions réelles La notion de dérivée est une notion fondamentale en analyse. Elle permet d étudier les variations d une fonction, de construire des tangentes à une courbe

Plus en détail

Formules de Taylor. Applications.

Formules de Taylor. Applications. CAPES 27 Décembre 27 Oral Analyse Formules de Taylor. Applications. Remarques Le niveau naturel de cette leçon est celui du Deug. Pré-requis. Continuité, dérivabilité, inégalité des accroissements finis,

Plus en détail

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles Mathématiques - ECS 6 Dérivation et accroissements finis. Lycée La Bruyère 30 avenue de Paris 78000 Versailles c 06, Polycopié du cours de mathématiques de première année. 6 Dérivation et accroissements

Plus en détail

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone.

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. LEÇON N 6 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. Pré-requis : I est un intervalle si a,b I a b, [a,b] I ; Toute partie non

Plus en détail

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie Finance et Gestion L1-S1 : MATH101 : Pratique des Fonctions numériques Notes de cours : Chapitre II : Limites Notations

Plus en détail

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Notations. K désigne R ou C. S (K désigne l'ensemble des suites d'éléments de K et u, v des éléments de S (K. I, J désignent des

Plus en détail

TERMINALE ES Fonctions 2/2 La convexité

TERMINALE ES Fonctions 2/2 La convexité * 1. Rappels sur la dérivation 1. Définition Soit f une fonction définie sur un intervalle I de R et a un réel de I. Soit h un nombre très petit et non nul. Alors Dire que f est dérivable en a de I signifie

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

1.2 Plan d étude et exemples types.

1.2 Plan d étude et exemples types. Université de Rennes Licence Biologie Mathématiques Année 2008-2009.2 Plan d étude et exemples types..2. But Le but de ce chapitre est d étudier les fonctions comme celles données dans les exemples précédents.

Plus en détail

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot DÉRIVABILITÉ 1 Dérivabilité en un point, fonction dérivée 1.1 Définitions et premières propriétés Définition 1.1 Dérivabilité en un point Soient f : I R une application et a I. On dit que f est dérivable

Plus en détail

Les dérivées. 4.1 Introduction. Vitesse et accélération. g lim. lim

Les dérivées. 4.1 Introduction. Vitesse et accélération. g lim. lim 4. Introduction Les dérivées Vitesse et accélération Lorsque l on considère le mouvement rectiligne d un point matériel M, la distance d parcourue par ce point à partir d une position initiale est liée

Plus en détail

GENERALITES SUR LES FONCTIONS NUMERIQUES D UNE VARIABLE REELLE

GENERALITES SUR LES FONCTIONS NUMERIQUES D UNE VARIABLE REELLE Chapitre 2 GENERALITES SUR LES FNCTINS NUMERIQUES D UNE VARIABLE REELLE L étude générale d une fonction numérique de la variable réelle a été abordée en Terminale. Nous nous contenterons ici de brefs rappels

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES

ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES I. La continuité : Définition : ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES 1 ) Définition : Soit f une fonction définie sur un intervalle I. Graphiquement, on reconnaît qu'une fonction est continue sur un

Plus en détail

Chapitre 3. Continuité, dérivation et limite d une fonction

Chapitre 3. Continuité, dérivation et limite d une fonction Chapitre 3. Continuité, dérivation et limite d une fonction I. Continuité Définition : Continuité d une fonction Dire que f est continue en a signifie que f a une limite finie en a ; cette limite est alors

Plus en détail

Dérivation des fonctions numériques d une variable réelle

Dérivation des fonctions numériques d une variable réelle Maths PCSI Exercices Dérivation des fonctions numériques d une variable réelle 1 Aspects locaux 1 + x 1 x si x 0 Exercice 1 Etudier la dérivabilité en 0 de x x 1 sinon Exercice 2 Dériver x 1 + 2 + x. Recommencer,

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

Analyse 1 re année IUT GEA Notes de cours

Analyse 1 re année IUT GEA Notes de cours Analyse re année IUT GEA Notes de cours Jean-Marie Favreau Année 200 20 Remarque : l introduction de ce cours, présentée en quelques minutes, de manière interactive, permet de placer quelques rappels simples,

Plus en détail

La fonction exponentielle

La fonction exponentielle 1 et définition La fonction exponentielle Il existe une unique fonction f dérivable sur R telle que :.................. Définition Cette fonction est appelée............................ On note : Ainsi

Plus en détail

Dérivabilité et convexité

Dérivabilité et convexité Université Joseph Fourier, Grenoble Maths en Ligne Dérivabilité et convexité Bernard Ycart D accord, vous n avez pas attendu ce chapitre pour dériver des fonctions Attention cependant à deux nouveautés

Plus en détail

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

Dérivation Continuité

Dérivation Continuité Dérivation Continuité Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Nombre dérivé Fonction dérivé 2 1.1 Nombre dérivé.......................................... 2 1.2 Fonction dérivée.........................................

Plus en détail

ENSEMBLES ET APPLICATIONS

ENSEMBLES ET APPLICATIONS ENSEMBLES ET APPLICATIONS 1 Applications : définitions ensemblistes Définition 1.1 Application Soient E et F deux ensembles. On appelle application de E dans F un objet { mathématique f qui à tout élément

Plus en détail

DERIVATION. ou f'(x 0 ) = lim. h 0

DERIVATION. ou f'(x 0 ) = lim. h 0 DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

Chapitre 4. Fonction exponentielle. Objectifs du chapitre : item références auto évaluation. propriétés numériques de la fonction exponentielle

Chapitre 4. Fonction exponentielle. Objectifs du chapitre : item références auto évaluation. propriétés numériques de la fonction exponentielle Chapitre 4 Fonction exponentielle Objectifs du chapitre : item références auto évaluation propriétés numériques de la fonction exponentielle propriétés de la fonction exponentielle calculs de ites avec

Plus en détail

Sommaire. Prérequis. Généralités sur les fonctions

Sommaire. Prérequis. Généralités sur les fonctions Généralités sur les fonctions Stépane PASQUET, 4 octobre 06 C Sommaire Limites aux infinis....................................... Limite en un nombre fini, ite à droite, ite à gauce d un nombre fini........

Plus en détail

Fonctions réelles : rappels de lycée et compléments. () Fonctions réelles : 1 / 54

Fonctions réelles : rappels de lycée et compléments. () Fonctions réelles : 1 / 54 Fonctions réelles : rappels de lycée et compléments () Fonctions réelles : 1 / 54 1 Fonctions logarithmes et exponentielles Le logarithme népérien L exponentielle Logarithmes et exponentielles de base

Plus en détail

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités Chapitre 5 Généralités sur les fonctions numériques 5.1 Généralités Définition 5.1 Une fonction numérique permet d associer à chaque nombre x d un ensemble D un autre nombre que l on note f(x). On note

Plus en détail

Fonctions de référence 1

Fonctions de référence 1 Fonctions de référence Les fonctions sinus et cosinus. Définitions Le plan étant muni d un repère orthonormé (O; I, J), on peut associer à tout réel x un unique point M sur le cercle trigonométrique. (voir

Plus en détail

Tom utilise Xcas, un logiciel de calcul formel, qui affiche les résultats suivants :

Tom utilise Xcas, un logiciel de calcul formel, qui affiche les résultats suivants : Cours DERIATION 0 ACTIITE DERIATION et CALCUL FORMEL - Odyssée Le professeur de mathématiques a donné le «devoir maison» suivant : Tom utilise Xcas, un logiciel de calcul formel, qui affiche les résultats

Plus en détail

Exercices corrigés Théorème de Rolle, accroissements finis

Exercices corrigés Théorème de Rolle, accroissements finis Eercices corrigés Théorème de Rolle, accroissements finis Enoncés Eercice Démonstration du théorème des accroissements finis Soit f : [a, b] R, continue sur [a, b], dérivable sur ]a, b[ En appliquant le

Plus en détail

Continuité et dérivabilité des fonctions d une variable réelle à valeurs réelles

Continuité et dérivabilité des fonctions d une variable réelle à valeurs réelles Continuité et dérivabilité des fonctions d une variable réelle à valeurs réelles Denis Vekemans 1 Condition de Lipschitz - Continuité Soient A une partie de R et f : A R. On dit que f est lipschitzienne

Plus en détail

Exercices : Fonctions Dérivables

Exercices : Fonctions Dérivables Exercices : Fonctions Dérivables Exercice Déterminez l ensemble de dérivabilité des fonctions suivantes et calculez leur dérivée. ) f : x x 2 + x 2 2) f : x x + cos( x ) 3) f : x arctan( xe x ) 4) f :

Plus en détail

Dérivation, cours, terminale S

Dérivation, cours, terminale S Dérivation, Dérivation, 27 septembre 2016 Définitions : Soit f une fonction définie sur un intervalle I contenant a. Dire que f est dérivable en a de nombre dérivé f (a), signifie que le taux d accroissement

Plus en détail

Fonctions usuelles. Chapitre Les fonctions trigonométriques inverses. 7.2 Les fonctions logarithme et exponentielle

Fonctions usuelles. Chapitre Les fonctions trigonométriques inverses. 7.2 Les fonctions logarithme et exponentielle 40 Chapitre 7 Fonctions usuelles. 7. Les fonctions trigonométriques inverses. tan :] π/, π/[ R est strictement croissante car sa dérivée + tan est strictement positive. La fonction tg est donc bijective

Plus en détail

FONCTIONS D UNE VARIABLE RÉELLE

FONCTIONS D UNE VARIABLE RÉELLE FONCTIONS D UNE VARIABLE RÉELLE Toutes les fonctions considérées dans ce chapitre seront des d une variable réelle (i.e. l ensemble de départ est R) à valeurs dans R ou C. 1 Généralités 1.1 Ensemble de

Plus en détail

Chapitre 11 DÉRIVÉES - DÉVELOPPEMENTS LIMITÉS

Chapitre 11 DÉRIVÉES - DÉVELOPPEMENTS LIMITÉS Chapitre DÉRIVÉES - DÉVELOPPEMENTS LIMITÉS Mohamed TARQI 2 mars 2006 Table des matières Dérivabilité - Différentiébilité 2. Dérivée,dérivée à droite,dérivée à gauche................. 2.2 Différentiabilité

Plus en détail

Université Hassan II Faculté des Sciences Juridiques et Économiques Aïn Sebaa

Université Hassan II Faculté des Sciences Juridiques et Économiques Aïn Sebaa 3//2 Université Hassan II Faculté des Sciences Juridiques et Économiques Aïn Sebaa Année Universitaire 2/2 MATHEMATIQUES (Semestre ) Professeur: M.REDOUABY 3//2 Partie 2 A. Fonctions à une variable réel

Plus en détail

Limites et continuité de fonctions

Limites et continuité de fonctions Chapitre 12 Limites et continuité de fonctions Mathématiques PTSI Lycée Déodat de Séverac Mathématiques PTSI (Lycée Déodat de Séverac) Limites et continuité de fonctions 1 / 53 Notations : On note, sauf

Plus en détail

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité Chapitre. Compléments sur les fonctions : ites, continuité, dérivabilité I. Rappels de cours. Limites d une fonction Soit l R. (i) Limites en + et en On dit que f() tend vers l lorsque tend vers + quand

Plus en détail

Limite et continuité de fonctions réelles

Limite et continuité de fonctions réelles Limite et continuité de fonctions réelles Denis Vekemans Introduction : on désigne par "fonction réelle" tout fonction d une variable réelle à valeurs réelles. 1 Limite finie 1.1 Définitions 1.1.1 Définition

Plus en détail

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Fonctions Numériques Site MathsTICE de Adama Traoré Lcée Technique Bamako A- / Ensemble de définition d une fonction : - / Définition : Soit f : A B une fonction. On appelle ensemble de définition D f

Plus en détail

Portail des étudiants d'économie Mathématiques Ch. 3 : Limites et Dérivées. On appellera voisinage d un réel a tout intervalle ouvert contenant a.

Portail des étudiants d'économie Mathématiques Ch. 3 : Limites et Dérivées. On appellera voisinage d un réel a tout intervalle ouvert contenant a. (*) WWW.SEGBM.NET 1 Portail des étudiants d'économie Mathématiques Ch. 3 : Limites et Dérivées 1 Notion de limites 1.1 Voisinages On appellera voisinage d un réel a tout intervalle ouvert contenant a.

Plus en détail

Fonctions continues et dérivables

Fonctions continues et dérivables Capitre 2 Fonctions continues et dérivables 2.1 La notion de fonction 2.1.1 Definition Une fonction est une relation particulière entre deux variables. De façon précise, on dit qu une variable y est fonction

Plus en détail

Fonctions numériques : dérivation

Fonctions numériques : dérivation Fonctions numériques : dérivation Table des matières I Notion de tangente à une courbe Soit f une fonction définie sur un intervalle I de courbe représentative C f et soit A un point fixe de C f. Soit

Plus en détail

Dérivées : Rappels et compléments

Dérivées : Rappels et compléments Dérivées : Rappels et compléments I) Rappels ) Dérivabilité en un point Soit f une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative dans un repère ( O;

Plus en détail

Institut Galilée. Mathématiques pour les sciences. Premier semestre. Département de Mathématiques. Sciences et technologies. Licence 1 re année

Institut Galilée. Mathématiques pour les sciences. Premier semestre. Département de Mathématiques. Sciences et technologies. Licence 1 re année Institut Galilée Sciences et technologies Licence 1 re année Mathématiques pour les sciences Premier semestre Département de Mathématiques www.math.univ-paris13.fr/depart c INSTITUT GALILEE, 99 avenue

Plus en détail

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan Pour démarrer la classe de terminale S Tout ce qu il faut savoir de la 1 re S Paul Milan 8 novembre 015 Table des matières 1 Second degré 7 1 Forme canonique............................. 7 Racines du

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 203-204 Analyse I PLANCHE 3 : DÉRIVATION Dérivabilité, dérivée, Eercice [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de ]a, b[ dans R. On suppose que

Plus en détail

Cours de Terminale S / Compléments sur les fonctions. E. Dostal

Cours de Terminale S / Compléments sur les fonctions. E. Dostal Cours de Terminale S / Compléments sur les fonctions E. Dostal septembre 013 Table des matières 3 Compléments sur les fonctions 3.1 Fonctions trigonométriques................................... 3.1.1 Définitions

Plus en détail

Etude de fonction : notion de continuité

Etude de fonction : notion de continuité Etude de fonction : notion de continuité Leur faire lire des rappels sur les fonctions pour le jour en question. Toutes les fonction considérées dans ce chapitre sont définies sur ou une partie de et sont

Plus en détail

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES)

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES) DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

FONCTIONS : Limites Continuité Dérivée Trigonométrie

FONCTIONS : Limites Continuité Dérivée Trigonométrie FONCTIONS : Limites Continuité Dérivée Trigonométrie I) PRELIMINAIRES Voir activité II) LIMITE D UNE FONCTION EN + et ) Limite infinie en + et Soit f une fonction définie sur un intervalle de la forme

Plus en détail

5. f(x) = x x en x = f(x) = (x 1) 1 x 2 en x = f(x) = (x 1) 1 x 2 en x = 1. (plus difficile) Aide

5. f(x) = x x en x = f(x) = (x 1) 1 x 2 en x = f(x) = (x 1) 1 x 2 en x = 1. (plus difficile) Aide de la ère S à la TS. I Exercices Dérivabilité Étudier la dérivabilité des fonctions suivantes au point demandé. f(x) = x 2 en x = 3 (Revenir à la définition du nombre dérivé) 2. f(x) = x en x =. 3. f(x)

Plus en détail

Fonctions : Dérivation-Composition

Fonctions : Dérivation-Composition Fonctions : Dérivation-Composition Terminale S 2011/2012 15 septembre 2011 Terminale S (2011/2012) Lycée Français de Valence 15 septembre 2011 1 / 21 Nombre dérivé Plan 1 Compléments sur la dérivation

Plus en détail

Devoir de Mathématiques 1 : corrigé

Devoir de Mathématiques 1 : corrigé PCSI 0-04 Mathématiques Lycée Bertran de Born Devoir de Mathématiques : corrigé Exercice. Résolutions d inéquations (a) Disjonction de cas selon le signe de x. Si x [, ] alors x = x. Dans ce cas : x x

Plus en détail

I. Variations. Études de fonctions. A. Sens de variation. B. Extremums. Préparer son entrée en Terminale S. Définition

I. Variations. Études de fonctions. A. Sens de variation. B. Extremums. Préparer son entrée en Terminale S. Définition I. Variations A. Sens de variation On dit que f est croissante sur I lorsque, pour tout réels a et b de I si a < b alors f(a) f(b). Ainsi la croissance conserve l ordre. On dit que f est décroissante sur

Plus en détail

Limites et continuité des fonctions

Limites et continuité des fonctions (*) WWW.SEGBM.NET Portail des étudiants d'économie Limites et continuité des fonctions numériques 1 Généralités sur les fonctions numériques 1.1 Quelques définitions 1.1.1 fonction numérique Une fonction

Plus en détail

Formulaire des fonctions usuelles

Formulaire des fonctions usuelles Université d Orléans Formulaire des fonctions usuelles Licence 1 de Mathématiques Groupe 2 Baptiste Morelle 29/09/2008 Page 1 sur 28 Page 2 sur 28 Table des matières Fonctions particulières... 4 Fonction

Plus en détail

Etude théorique d équation d ordre 2

Etude théorique d équation d ordre 2 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Etude théorique d équation d ordre 2 Eercice 1 [ 01555 ] [Correction] Soit q : R R + une fonction continue non nulle. On se propose de

Plus en détail

Continuité d une fonction et équation

Continuité d une fonction et équation Continuité d une fonction et équation I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative sur l intervalle I se fait

Plus en détail

Domaines de définition, variations

Domaines de définition, variations Licence MIASHS première année, UE Analyse S MI0A0X Cours : Marc Perret Feuille d exercices numéro du 04 octobre 202 Important : - les exercices sans astérisque doivent être maitrisés Ils sont du type de

Plus en détail

Chapitre 14 : Dérivation

Chapitre 14 : Dérivation Capitre : Dérivation ECE Lycée Carnot mars Définitions et formulaire. Aspect grapique L idée cacée derrière le calcul de dérivées, que vous utilisez déjà depuis plusieurs années pour étudier les variations

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL

FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL Chapitre 15 : FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL ECS2 Lycée La Bruyère, Versailles Année 2013/2014 1 Objets du calcul différentiel du premier ordre 2 1.1 Dérivées partielles et gradient..................................

Plus en détail

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal Cours de Terminale S / Fonctions : ites et continuité E. Dostal Août 204 Table des matières 2 Fonctions : ites et continuité 2 2. Limites.............................................. 2 2.2 Théorèmes.............................................

Plus en détail

x f(x)

x f(x) Limites de fonctions I) Limite d une fonction en plus l infini Etudier la ite d une fonction f en + c est étudier le comportement des nombres f(x) lorsque x tend vers +. ) Exemples Exemple : x 0 20 30

Plus en détail

Plan d'étude d'une fonction. , f x = f x alors f est impaire.

Plan d'étude d'une fonction. , f x = f x alors f est impaire. 1 Recherche de l'ensemble de définition Plan d'étude d'une fonction. Fonctions rationnelles. f x existe si le dénominateur n'est pas nul. 2n Fonctions avec radical du type. f x existe si la quantité sous

Plus en détail

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point a de R. Opérations algébriques sur les ites. Continuité d une fonction en un point. Exemples. Pré-requis : Limites d une suite réelle

Plus en détail

Terminale ES. Les fonctions exponentielles

Terminale ES. Les fonctions exponentielles Terminale ES 1 x q x avec q > 0 I Fonction exponentielle de base q Propriété - Définition q désigne un nombre réel strictement positif. On considère le nuage de points représentatif de la suite (q n ).

Plus en détail

Limites à l infini d une fonction

Limites à l infini d une fonction 9 Limites à l infini d une fonction On garde les notations du chapitre précédent en supposant ici que a = ou a = + est adhérent à l ensemble I, ce qui signifie que : ou : m R, ], m[ I M R, ]M, + [ I ce

Plus en détail

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2.

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2. Chapitre III : Dérivées de fonctions composées et primitives I. Dérivées de fonctions composées a) Formule Propriété : g est une fonction dérivable sur un intervalle J. u est une fonction dérivable sur

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

En particulier : x, y R, e x+y = e x e y et e x = 1 e x.

En particulier : x, y R, e x+y = e x e y et e x = 1 e x. I. Propriétés algébriques La fonction logarithme néperien est dérivable et strictement croissante de R + sur R. Le théorème de la bijection, qu on abordera au chapitre 7, permet de prouver l existence

Plus en détail

Continuité et Dérivabilité

Continuité et Dérivabilité Cours de Terminale S Giorgio Chuck VISCA 30 septembre 2015 Continuité et Dérivabilité 1 Table des matières I la continuité 3 I continuité en un point,sur un intervalle d une fonction 3 I.1 définition...................................................

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

Cours de terminale S - Généralités sur les fonctions

Cours de terminale S - Généralités sur les fonctions les fonctions LPO de Chirongui - Exercices : Savoir Faire (livre)- Déterminer une ite Interprétation graphique Livre Indice BORDAS - Page 45 Exercice 34, 35, 36 et 37 page 56 - Limite finie à l infini

Plus en détail

f : I R 2x + x2 x 1 x 2 w : R R x x h un réel non nul tel que a + h I. On considère les points A(a; f(a)) et M(a + h; f(a + h)).

f : I R 2x + x2 x 1 x 2 w : R R x x h un réel non nul tel que a + h I. On considère les points A(a; f(a)) et M(a + h; f(a + h)). 1S1: doc 5 Dérivation 2015-2016 I Pour bien commencer I.1 Limite en 0 d une fonction Soit I un intervalle contenant 0, I = I\ {0} et f : I R D é f i n i t i o n : On dit que f admet une limite finie L

Plus en détail

LIMITES ET CONTINUITE

LIMITES ET CONTINUITE LIMITES ET CONTINUITE I) LIMITES A L'INFINI ) Limite infinie à l'infini Si tout intervalle ]A;+ [ contient tous les f(x) pour x assez grand, on dit que f a pour ite + en +. on écrit f x = f x = A > 0,

Plus en détail

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ A. Limites d'une fonction I. Limite en et en. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ où a R. DÉFINITIONS Soit l un réel.

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

LEÇON N 66 : Théorème de Rolle. Applications.

LEÇON N 66 : Théorème de Rolle. Applications. LEÇON N 66 : Théorème de Rolle. Applications. Pré-requis : Notions de limite, continuité, dérivabilité ; Théorème des valeurs intermédiaires ; L image d un segment par une application continue est un segment.

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES ISE. Option Économie

AVRIL 2012 CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES ISE. Option Économie AVRIL 22 CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES ISE Option Économie CORRIGÉ DE LA ère COMPOSITION DE MATHÉMATIQUES Exercice Les symboles Ln et tan représentent respectivement le logarithme népérien

Plus en détail

Analyse (1) : fonctions d une variable réelle

Analyse (1) : fonctions d une variable réelle MP 1. Semestre 1. Cours. Chapitre 2 : Analyse Analyse (1) : fonctions d une variable réelle continuité, limites, asymptotes dérivées, variations Application : courbes paramétriques 1. GÉNÉRALITÉS SUR LES

Plus en détail

Continuité, dérivabilité des fonctions d une variable réelle

Continuité, dérivabilité des fonctions d une variable réelle 7 Continuité, dérivabilité des fonctions d une variable réelle Pour ce chapitre I désigne un intervalle réel et f une fonction définie sur I et à valeurs réelles ou complees. 7. Continuité en un point,

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

Une définition et des caractérisations des fonctions exponentielles à partir d une équation fonctionnelle

Une définition et des caractérisations des fonctions exponentielles à partir d une équation fonctionnelle DOCUMENT 36 Une définition et des caractérisations des fonctions exponentielles à partir d une équation fonctionnelle Une propriété importante des fonctions exponentielles est qu elles sont solutions de

Plus en détail

REVISIONS POUR LES VACANCES. Généralités sur les fonctions

REVISIONS POUR LES VACANCES. Généralités sur les fonctions Année 2016-2017 PCSI ( Baggio ) REVISIONS POUR LES VACANCES Vous devez connaître parfaitement tous les résultats donnés ici sur les généralités de fonctions, sur les fonctions exponentielles et logarithmes

Plus en détail