Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique?

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique?"

Transcription

1 Objectifs Calcul scientifique Alexandre Ern (CERMICS, Ecole des Ponts ParisTech) Le Calcul scientifique permet par la simulation numérique de prédire, optimiser, contrôler... le comportement de systèmes physiques... issus des sciences de l ingénieur À l issue de ce cours, vous connaitrez quelques méthodes numériques employées quotidiennement par les ingénieurs (de manière explicite ou non) apprécierez leurs succès et leurs limitations Il y aura de nombreux exemples informatiques pratiques : le calcul scientifique n est pas un sport de spectateur! Alexandre Ern (ENPC) 1 / 30 Alexandre Ern (ENPC) 2 / 30 Champ d applications Le champ d applications est extrêmement vaste aéronautique chimie médecine Pourquoi la simulation numérique? Situations où on ne peut pas réaliser une expérience accidents (centrale nucléaire), explosions stockages géologiques à long terme (10 6 ans) trajectoires de fusées, satellites Situations où il est moins cher de réaliser des simulations simulation moléculaire (industrie pharmaceutique) tests de résistance (crash tests en industrie automobile) synthèse de nouveaux matériaux (alliages, polymères) Situations où on cherche à anticiper des événements finance/trading météorologie pollution : exemple de calcul réalisé au CEREA et également : météorologie, finance, biologie... Alexandre Ern (ENPC) 3 / 30 Alexandre Ern (ENPC) 4 / 30

2 Trois mots-cle s E quations Simulations Algorithmes Alexandre Ern (ENPC) 5 / 30 Alexandre Ern (ENPC) 6 / 30 Alexandre Ern (ENPC) 7 / 30 Alexandre Ern (ENPC) 8 / 30

3 Une démarche interdisciplinaire Les Formules 1 de l informatique Modélisation mathématique formulation du modèle en collaboration avec des spécialistes existence/unicité des solutions, problème bien posé propriété qualitatives des solutions (régularité,...) Conception et analyse d une méthode numérique conception s appuyant sur les bases physiques du modèle convergence estimation d erreur Mise en œuvre informatique algorithme : suite de taches élémentaires s enchainant selon des règles précises exécution automatique par une machine efficacité (coût de calcul aussi petit que possible) accélérations (parallélisation,...) Il s agit d une démarche globale toutes les étapes sont nécessaires des aller-retours entre les étapes sont nécessaires Alexandre Ern (ENPC) 9 / 30 Alexandre Ern (ENPC) 10 / 30 Un mot sur les erreurs numériques Plan du cours : 3 blocs thématiques Un résultat de simulation sans estimation de l erreur ne sert à rien! Plusieurs sources d erreur mise en équation des phénomènes données du problème (paramètres, conditions initiales, forçages extérieurs) approximation par une méthode numérique erreurs d arrondi, erreurs humaines,... Objectifs d une simulation convergence (erreur arbitrairement petite en y mettant les moyens) fiabilité (garantir que l erreur soit en dessous d une certaine tolérance) efficacité (coût de calcul aussi petit que possible) Intégration numérique (3 séances) résolution d équations différentielles ordinaires résolution d équations aux dérivées partielles : méthode des différences finies Optimisation (3 séances) conditions d optimalité avec et sans contraintes algorithmes d optimisation numérique liens avec les cours d Analyse et d Économie Éléments finis (3 séances) principe et analyse de la méthode des éléments finis liens avec les cours de Mécanique et d Analyse Alexandre Ern (ENPC) 11 / 30 Alexandre Ern (ENPC) 12 / 30

4 Modalités 9 demi-journées de 3h amphi (8) suivi de {TD en PC (7)} ou {TP informatique (3)} décalage d une semaine entre le contenu de l amphi et TD/TP = travail personnel d une semaine sur l autre aujourd hui : amphi (1h15) + TD (1h45) Un cours polycopié avec exercices corrigés site du cours cermics.enpc.fr/cours/cs Validation : examen final (3h) + bonus TD et TP 0,5 point par rendu de TP 1 point de présence en TD (-0,5 point par absence non justifiée) Equations différentielles ordinaires (poly 2.1) Équipe enseignante groupe 1 : A. Ern (CERMICS) groupe 2 : L. Goudenège (Ecole Centrale Paris) groupe 3 : L. Monasse (CERMICS) groupe 4 : M. Fernandez (INRIA), cours en espagnol groupe 5 : G. Stoltz (CERMICS) groupe 6 : R. Chakir (IFSSTAR) Alexandre Ern (ENPC) 13 / 30 Alexandre Ern (ENPC) 14 / 30 Un exemple : la dynamique céleste Problème de Cauchy Système solaire réduit : soleil et petites planètes (q 0 ), Jupiter, Saturne, Uranus, Neptune, Pluton (q 1 à q 5 ) Energie H(q, p) = V (q) + 5 i=0 Dynamique Hamiltonienne p 2 i 2m i avec V (q) = 5 m i m j G q i q j l 2 i=0 i<j q i (t) = H = p i(t) p i m i ṗ i (t) = H = qi V (q(t)) q i Préservation de l énergie H(q(t), p(t)) = H(q 0, p 0 ) à tout temps Première notion de stabilité : conservation de l énergie en temps long Champ de vecteurs f : R + R d R d, donnée initiale y 0 R d, temps t 0 Problème de Cauchy ẏ(t) = f (t, y(t)), y(0) = y 0 Applications intégration de trajectoires (satellites, missiles,...) : précision cinétique chimique : systèmes raides dynamique Hamiltonienne : comportement en temps long dynamique des populations : Lotka-Volterra (systèmes intégro-différentiels) Extension au cas des EDPs (météorologie, mécanique quantique,...) équations différentielles stochastiques (finance, phys. stat. num.) Alexandre Ern (ENPC) 15 / 30 Alexandre Ern (ENPC) 16 / 30

5 Existence et unicité des solutions du problème de Cauchy Existence locale et unicité si f loc. Lipschitz (thm. Cauchy Lipschitz) : t 0, y 0, L, τ, r t.q. (t, y 1, y 2 ) ]t 0 τ, t 0 + τ[ B(y 0, r) 2 f (t, y 1 ) f (t, y 2 ) L y 1 y 2 est une norme sur R d (toutes les normes sont équivalentes) condition vérifiée si f Lipschitzienne en y On dit que le problème de Cauchy est bien posé Si on n a pas de solution globale, alors y(t) + lorsque t T max Approximation numérique méthodes à un pas exemples analyse d erreur cas particulier : systèmes linéaires dissipatifs Existence et unicité de la solution globale si... f uniformément Lipschitzienne en y (unif. en t) croissance au plus affine : f (t, y) c(t) + C(t) y on a une fonction de Lyapounov : exemple de ẏ(t) = y(t) 3 pour laquelle W (t) = y(t) 4 y 4 0 (car dw /dt = 4y(t)6 0) Alexandre Ern (ENPC) 17 / 30 Alexandre Ern (ENPC) 18 / 30 Méthodes à un pas Méthodes d Euler Approximation y n de la solution exacte y(t n ), avec un pas de temps fixe t > 0, auquel cas t n = n t variable t n = t n+1 t n, on pose t := max 0 n N 1 t n Méthodes à un pas : discrétisation de la formulation intégrale entre t n et t n+1 par une règle de quadrature tn+1 y(t n+1 ) = y(t n ) + f (s, y(s)) ds t n Méthode à un pas y n+1 = y n + t n Φ tn (t n, y n ), y 0 = y 0 Méthode d Euler explicite y n+1 = y n + t n f (t n, y n ) l application Φ tn est définie de manière explicite : Φ tn (t n, y n ) = f (t n, y n ) Méthode d Euler implicite y n+1 = y n + t n f (t n+1, y n+1 ) l application Φ tn est définie de manière implicite : Pour tout (t n, y n ), Φ := Φ tn (t n, y n ) = f (t n+1, y n+1 ) est solution de Φ = f (t n+1, y n + t n Φ) Méthodes multi-pas (évaluer y n+1 en utilisant y n, y n 1,... ) : plus précises à coût de calcul fixé, mais attention à la stabilité Alexandre Ern (ENPC) 19 / 30 Alexandre Ern (ENPC) 20 / 30

6 Autres exemples Un mot sur l implémentation des schémas implicites Beaucoup de bonnes méthodes sont implicites (stabilité accrue) Méthodes explicites Heun : y n+1 = y n + t n 2 (f (t n, y n ) + f ( t n+1, y n + t n f (y n ) )) Méthodes implicites Trapèzes : y n+1 = y n + t ( ) n f (t n, y n ) + f (t n+1, y n+1 ) 2 ( Point milieu : y n+1 = y n tn + t n+1 + t n f, y n + y n+1 ) 2 2 Il faut déjà garantir que la méthode est bien définie! Exemple du schéma d Euler implicite y n+1 = y n + t n f (t n+1, y n+1 ) existence/unicité de y n+1 lorsque t n Λ f (t n+1 ) < 1 où y 1, y 2 R d, f (t n+1, y 1 ) f (t n+1, y 2 ) Λ f (t n+1 ) y 1 y 2 construction numérique de la solution par itérations de point fixe condition initiale : schéma explicite z n+1,0 = y n + t nf (t n, y n ) itérations selon On a z n+1,k k + z n+1,k+1 = y n + t n f (t n+1, z n+1,k ) y n+1. En pratique, nombre fini d itérations Alexandre Ern (ENPC) 21 / 30 Alexandre Ern (ENPC) 22 / 30 Analyse d erreur : consistance Erreur de troncature locale = erreur résiduelle si l on glisse la solution exacte dans le schéma : Pour 0 n N 1 (nombre de pas de temps effectués) Unité de η n+1 = unité de y / temps η n+1 := y(t n+1) y(t n ) t n Φ tn (t n, y(t n )) Consistance si max 0 n N 1 η n+1 0 lorsque t 0 où est une norme sur R d (toutes les normes sont équivalentes) Consistance d ordre p si max 0 n N 1 η n+1 C y t p Preuves : développements de Taylor (régularité de la sol. exacte y) Exemple : le schéma d Euler ( explicite est d ordre ) 1 (t = t n, t = t n ) y(t + t) y(t) + t f (t, y(t) ) = 1 } {{ } 2 t2 y (t + θ t) =y (t) ( ) D où max 0 n N 1 η n sup t [0,T ] y (t) t Alexandre Ern (ENPC) 23 / 30 Analyse d erreur : stabilité Stabilité : il existe une constante S(T ) > 0 telle que, pour toute suite z = {z n } 1 n N partant de la même valeur z 0 = y 0 et vérifiant { y n+1 = y n + tφ t (t n, y n ) on a la majoration pas de temps t fixé pour simplifier z n+1 = z n + tφ t (t n, z n ) + t δ n+1 max y n z n S(T ) t 1 n N N δ n S(T ) ne dépend que du temps de simulation T = N t (pas de t ou N seuls) Forme condensée : suites y = {y n } 1 n N et δ = {δ n } 1 n N et normes y z l t = max 1 n N y n z n, δ l 1 t = t On peut reformuler la stabilité selon y z l t S(T ) δ l 1 t n=1 N δ n. Alexandre Ern (ENPC) 24 / 30 n=1

7 Condition suffisante de stabilité Analyse d erreur : convergence Supposons Φ t Lipschitzienne en y Φ t (t, y 1 ) Φ t (t, y 2 ) Λ Φ y 1 y 2 Dans ce cas, y n+1 z n+1 (1 + Λ Φ t) y n z n + t δ n+1 Lemme de Gronwall discret : suite 0 a n+1 (1 + λ)a n + b n+1 avec λ > 0, b n 0 et a 0 = 0; par récurrence n 1 n a n (1 + λ) k b n k (1 + λ) n 1 k=0 Ici, (1 + λ) n 1 = (1 + Λ Φ t) n 1 (1 + Λ Φ t) N e NΛ Φ t = e Λ ΦT Conclusion : stabilité avec S(T ) = e Λ ΦT l=1 Λ Φ inverse de la plus petite échelle de temps physique T = temps de simulation b l Une méthode est convergente si l erreur globale vérifie max y n y(t n ) 0 lorsque t 0 0 n N Principe général de l étude de convergence erreur locale à chaque pas de temps : consistance accumulation des erreurs : stabilité Théorème fondamental (Lax) Une méthode stable et consistante est convergente Si la méthode est consistante d ordre p, max 0 n N y n y(t n ) C t p Alexandre Ern (ENPC) 25 / 30 Alexandre Ern (ENPC) 26 / 30 Preuve du théorème de Lax Stabilité des schémas linéaires Prendre pour z n la solution exacte y(t n ), auquel cas z n+1 = y(t n+1 ) = y(t n ) + t n Φ tn (t n, y(t n )) + t n η n+1 Par stabilité avec δ n+1 = η n+1, e := max 1 n N y n y(t n ) S(T ) t Conclusions : = z n + t n Φ tn (t n, z n ) + t n η n+1 N ( ) η n S(T )T max 1 n N ηn n=1 méthode consistante : e S(T )T (max 1 n N η n ) 0 méthode consistante d ordre p : e S(T ) t N n=1 C tp = S(T )TC t p Etude de stabilité pour le schéma linéaire y n+1 = By n avec B R d d On considère les suites { y n+1 = By n z n+1 = Bz n + t δ n+1 n 1 Par récurrence et linéarité, il vient y n z n = t B k δ n k Une condition suffisante de stabilité est B 1 k=0 où désigne une norme sur R d et la norme matricielle induite On obtient S = 1 (à comparer au cas général où S croît exponentiellement avec le temps T ) Alexandre Ern (ENPC) 27 / 30 Alexandre Ern (ENPC) 28 / 30

8 Systèmes linéaires dissipatifs Conclusion Systèmes linéaires dissipatifs ẏ(t) = Ay(t) avec A R d d positive il est pratique d utiliser la norme euclidienne l 2 pour l étude de stabilité Schéma d Euler implicite y n+1 = y n tay n+1, soit y n+1 = B I y n avec B I := (Id + ta) 1 la matrice Id + ta est bien inversible car définie positive t stabilité inconditionnelle ( t) Schéma d Euler explicite y n+1 = y n tay n, soit y n+1 = B E y n avec B E := Id ta stabilité conditionnelle : t 2γ où, pour A symétrique, γ est l inverse du rayon spectral de A Etude du problème de Cauchy (problème bien posé ) Approximation numérique par des méthodes à un pas Exemples et mise en œuvre Analyse d erreur (a priori) consistance + stabilité = convergence Compléments (dans le poly) influence des erreurs d arrondi : étude en TD ce matin analyse d erreur rétrograde pas de temps adaptatif Preuves en TD ce matin Alexandre Ern (ENPC) 29 / 30 Alexandre Ern (ENPC) 30 / 30

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option (Public2014-B1) Résumé : On présente un exemple de système de deux espèces en compétition dans un environnement périodique.

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Table des matières. Listings. 1 Tests Algorithmique et Matlab. Travaux pratiques - E.D.O. Travail individuel et personnel. Sup'Galilée Année 2014-2015

Table des matières. Listings. 1 Tests Algorithmique et Matlab. Travaux pratiques - E.D.O. Travail individuel et personnel. Sup'Galilée Année 2014-2015 Energétique I Méthodes Numériques II Sup'Galilée Année -5 Travaux pratiques - E.D.O. Groupes B à B6 Travail individuel et personnel Table des matières Tests Algorithmique et Matlab Résolution numérique

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Méthodes numériques pour le pricing d options

Méthodes numériques pour le pricing d options Méthodes numériques pour le pricing d options Mohamed Ben Alaya 6 février 013 Nous allons tester les différentes méthodes de différence finies vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

TP Méthodes Numériques

TP Méthodes Numériques ENSIMAG 1ère année, 2007-2008 TP Méthodes Numériques Objectifs Les objectifs de ce TP sont : de revenir sur les méthodes de résolution des équations différentielles vues en cours de MN ; d utiliser un

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis Notion de modèle - Processus d analyse Application à la méthode des Eléments finis La présentation est animée, avancez à votre vitesse par un simple clic Chapitres 1 et 6 du polycopié de cours. Bonne lecture

Plus en détail

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA Université Paris-Dauphine Méthodes numériques Département MIDO année 03/04 Master MMDMA Travaux dirigés Résolution numérique des équations diérentielles ordinaires Exercice. Pour α > 0, on considère le

Plus en détail

Licence à distance Chapitre V : Equations différentielles. Méthodes numériques à un pas.

Licence à distance Chapitre V : Equations différentielles. Méthodes numériques à un pas. Licence à distance Chapitre V : Equations différentielles. Méthodes numériques à un pas. M. Granger Table des matières 1 Rappels sur le cours d équations différentielles 2 1.1 Généralités..........................................

Plus en détail

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique J. Bodin 12, T. Clopeau 2, A. Mikelić 2 1 Agence Nationale pour la gestion

Plus en détail

Introduction à l analyse numérique : exemple du cloud computing

Introduction à l analyse numérique : exemple du cloud computing Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui! Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation

Plus en détail

Rappels (1) Objectif et plan. Rappels (2) On considère le problème modèle, supposé bien posé, Chercher uh V h tel que (1) a(u, v) = b(v)

Rappels (1) Objectif et plan. Rappels (2) On considère le problème modèle, supposé bien posé, Chercher uh V h tel que (1) a(u, v) = b(v) Rappels (1) On considère le problème modèle, supposé bien posé, { Chercher u V tel que a(u, v) = b(v) v V (1) Éléments finis en 2D Alexandre Ern ern@cermics.enpc.fr http://cermics.enpc.fr/cours/cs (V Hilbert,

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

«Pièges», «erreurs» et pathologie des calculs numériques

«Pièges», «erreurs» et pathologie des calculs numériques Session de formation continue ENPC «Pièges», «erreurs» et pathologie des calculs numériques 6-8 octobre 2010 Philippe Mestat (LCPC) «Pièges» pour débutant?. Conditions limites en déplacements : il faut

Plus en détail

FICHE UNITE D ENSEIGNEMENT. Mathématiques. Analyse appliquée. Boris Andreianov. PRESENTIEL EN LIGNE x PRESENTIEL ET EN LIGNE 73 20 35,5 4,5 133

FICHE UNITE D ENSEIGNEMENT. Mathématiques. Analyse appliquée. Boris Andreianov. PRESENTIEL EN LIGNE x PRESENTIEL ET EN LIGNE 73 20 35,5 4,5 133 FICHE UNITE D ENSEIGNEMENT Responsable de l UE Section CNU de l UE Crédits Européens Mode d enseignement Analyse appliquée Boris Andreianov 26 6 PRESENTIEL EN LIGNE x PRESENTIEL ET EN LIGNE Nombre d heures

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Systèmes différentiels. 1 Généralités, existence et unicité des solutions

Systèmes différentiels. 1 Généralités, existence et unicité des solutions Systèmes différentiels Cours de YV, L3 Maths, Dauphine, 2012-2013 Plan du cours. Le cours a pour but de répondre aux questions suivantes : - quand une équation différentielle a-t-elle une unique solution

Plus en détail

ENSTA - COURS MS 204 DYNAMIQUE DES SYSTÈMES MÉCANIQUES : ONDES ET VIBRATIONS

ENSTA - COURS MS 204 DYNAMIQUE DES SYSTÈMES MÉCANIQUES : ONDES ET VIBRATIONS ENSTA - COURS MS 204 DYNAMIQUE DES SYSTÈMES MÉCANIQUES : ONDES ET VIBRATIONS Amphi 5 INFORMATION A l URL suivante: http://www.ensta-paristech.fr/ touze/ms204/ vous trouverez: les supports des cours 1 à

Plus en détail

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013»

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» I Objectifs Niveau fondamental : «on se fixe pour objectif la

Plus en détail

CALCUL ELMENTS FINIS ET OPTIMISATION DE FORME DANS LES STRUCTURES AEROSPATIALES. Pr. BOUDI El Mostapha Ecole Mohammadia d Ingénieurs Rabat

CALCUL ELMENTS FINIS ET OPTIMISATION DE FORME DANS LES STRUCTURES AEROSPATIALES. Pr. BOUDI El Mostapha Ecole Mohammadia d Ingénieurs Rabat CALCUL ELMENTS FINIS ET OPTIMISATION DE FORME DANS LES STRUCTURES AEROSPATIALES Pr. BOUDI El Mostapha Ecole Mohammadia d Ingénieurs Rabat En quelques mots Objectif : Contrôle des calculs par la Méthode

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Résume du cours de Mécanique Analytique

Résume du cours de Mécanique Analytique Résume du cours de Mécanique Analytique jean-eloi.lombard@epfl.ch 22 janvier 2009 Table des matières 1 Équations de Lagrange 1 1.1 Calcul des variations....................... 3 1.2 Principe de moindre

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Placement optimal de capteurs sur des modèles EDP

Placement optimal de capteurs sur des modèles EDP Placement optimal de capteurs sur des modèles EDP E. Trélat Univ. Paris 6 (Labo. J.-L. Lions) et Institut Universitaire de France Lancement du DIM RDM-IdF, 8 décembre Motivations Problème Placer des capteurs

Plus en détail

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés ENSEIRB-MATMECA PG-113 014 TP6: Optimisation au sens des moindres carrés Le but de ce TP est d implémenter une technique de recalage d images qui utilise une méthode vue en cours d analyse numérique :

Plus en détail

Méthodes numériques de résolution d équations différentielles

Méthodes numériques de résolution d équations différentielles Méthodes numériques de résolution d équations différentielles Motivation. Quelques exemples de problèmes différentiels Modèle malthusien de croissance de population Modélisation de l évolution d une population

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES. Semestre d accueil, le 30 mars 2006

ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES. Semestre d accueil, le 30 mars 2006 ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES. Semestre d accueil, le 30 mars 2006 MODÈLES DE DYNAMIQUE DES POPULATIONS N désigne l effectif d une population isolée. dn(t) dt MODÈLE DE MALTHUS (1766-1834) dn(t)

Plus en détail

Simulation numérique, contexte

Simulation numérique, contexte Introduction à la Simulation Numérique Jérémie Gressier Septembre 21 1 / 41 Plan 1 Présentation 2 Différences Finies 3 Intégration d un problème de Cauchy 4 Conclusion 2 / 41 Simulation numérique, contexte

Plus en détail

INTRODUCTION : EDP ET FINANCE.

INTRODUCTION : EDP ET FINANCE. INTRODUCTION : EDP ET FINANCE. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP et finance. 1 / 16 PLAN DU COURS 1 MODÈLE ET ÉQUATION DE BLACK SCHOLES 2 QUELQUES EXTENSIONS A. Popier

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Calcul garanti des contraintes pour la planification sécurisée de trajectoire

Calcul garanti des contraintes pour la planification sécurisée de trajectoire Calcul garanti des contraintes pour la planification sécurisée de trajectoire Application à la génération de trajectoire articulaire pour un patient paraplégique sous Stimulation Électrique Fonctionnelle

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

ANNEXE 1 BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques

ANNEXE 1 BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques ANNEXE BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques L'enseignement des mathématiques dans les sections de techniciens supérieurs Agencement de l'environnement architectural

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Algorithmes pour la planification de mouvements en robotique non-holonome

Algorithmes pour la planification de mouvements en robotique non-holonome Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Evaluation et couverture de produits dérivés» Etudiants : Colonna Andrea Pricing d'un Call Lookback par Monte Carlo et Ponts Browniens Rapport de Projet

Plus en détail

NOTICE DOUBLE DIPLÔME

NOTICE DOUBLE DIPLÔME NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des

Plus en détail

STAGES INTENSIFS DE REVISION

STAGES INTENSIFS DE REVISION CENTRE SCOLAIRE OZANAM Internat et externat pour lycéens et étudiants Etudes encadrées et soutien scolaire Stages intensifs de révision 60 rue Vauban 69006 LYON 04 78 52 27 99 / Fax : 04 78 52 11 15 www.ozanamlyon.fr

Plus en détail

1 ère année de Licence de Mathématiques et Informatique

1 ère année de Licence de Mathématiques et Informatique 1 ère année de Licence de Mathématiques et Informatique Mesures transitoires : tableau des correspondances Semestre 1 Ancienne Nouvelle habilitation habilitation Analyse S1 Analyse S1 Algèbre S1 Algèbre

Plus en détail

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Points abordés Méthodes numériques employées en finance Approximations de prix

Plus en détail

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3 MTH1504 2011-2012 CALCUL SCIENTIFIQUE Table des matières 1 Erreur absolue et erreur relative 2 2 Représentation des nombres sur ordinateur 3 3 Arithmétique flottante 4 3.1 Absorption........................................

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens.

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. . Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. Benoîte de Saporta Université de Nantes Université de Nantes - 9 juin 2005 p. 1/37 Plan de l exposé 1.

Plus en détail

Distributions, analyse de Fourier, EDP Amphi no. 1. Distributions, Fourier, EDP

Distributions, analyse de Fourier, EDP Amphi no. 1. Distributions, Fourier, EDP Distributions, analyse de Fourier, EDP Amphi no. 1 Organisation du cours/ressources Un problème à rendre en petite classe avant les vacances de Noël Contrôle classant le lundi 20 janvier 2014 Documents

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Chapitre 0-2 Introduction générale au cours de BCPST1

Chapitre 0-2 Introduction générale au cours de BCPST1 Chapitre 0-2 Introduction générale au cours de BCPST Extrait du programme I. Les grandeurs en sciences physiques Définition : une grandeur est une observable du système On peut la mettre en évidence a.

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Analyse Numérique Equations différentielles ordinaires

Analyse Numérique Equations différentielles ordinaires 1 Master Mathématiques et Applications 1ère année Aix-Marseille Université Année 2010-2011 Analyse Numérique Equations différentielles ordinaires Exercice 1 Résoudre les équations différentielles suivantes

Plus en détail

Résolution générique à la volée de systèmes d équations booléennes et applications

Résolution générique à la volée de systèmes d équations booléennes et applications Résolution générique à la volée de systèmes d équations booléennes et applications Radu Mateescu INRIA Rhône-Alpes / VASY Plan Introduction Systèmes d équations booléennes d alternance 1 Algorithmes de

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2 Table des matières Optimisation 1 Petite taxinomie des problèmes d optimisation 2 2 Optimisation sans contraintes 3 2.1 Optimisation sans contrainte unidimensionnelle........ 3 2.1.1 Une approche sans

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h A. P. M. E. P. Le problème se compose de 4 parties. La dernière page sera à rendre avec

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz 1 - INTERPOLATION J-P. Croisille Université Paul Verlaine-Metz Semestre S7, master de mathématiques M1, année 2008/2009 1- INTRODUCTION Théorie de l interpolation: approximation de f(x) par une fonction

Plus en détail

Evaluation de performance en Sûreté de Fonctionnement

Evaluation de performance en Sûreté de Fonctionnement Groupe SdF Midi-Pyrénées Toulouse 5 juin 2015 Evaluation de performance en Sûreté de Fonctionnement - Andre.cabarbaye Plan Introduction Types de performances Finalité des analyses Attentes du donneur d

Plus en détail

Niveaux 1 2 3 4 Option spécifique - 2 2 3 Option complémentaire - - 2 2

Niveaux 1 2 3 4 Option spécifique - 2 2 3 Option complémentaire - - 2 2 Direction de l'instruction publique, de la culture et du sport Direktion für Erziehung, Kultur und Sport Service de l enseignement secondaire du deuxième degré Amt für Unterricht der Sekundarstufe 2 CANTON

Plus en détail

Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres

Plus en détail

MAP-AUT1 Principes fondamentaux de l Automatique

MAP-AUT1 Principes fondamentaux de l Automatique MAP-AUT1 Principes fondamentaux de l Automatique Dynamique et Contrôle des Systèmes NICOLAS PETIT Centre Automatique et Systèmes MINES ParisTech nicolas.petit@mines-paristech.fr 27 novembre 2015 Amphi

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

TD 3 : Problème géométrique dual et méthode des moindres carrés

TD 3 : Problème géométrique dual et méthode des moindres carrés Semestre, ENSIIE Optimisation mathématique 4 mars 04 TD 3 : Problème géométrique dual et méthode des moindres carrés lionel.rieg@ensiie.fr Exercice On considère le programme géométrique suivant : min x>0,y>0

Plus en détail

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières FONDEMENTS MATHÉMATIQUES 12 E ANNÉE Mathématiques financières A1. Résoudre des problèmes comportant des intérêts composés dans la prise de décisions financières. [C, L, RP, T, V] Résultat d apprentissage

Plus en détail

Equations différentielles

Equations différentielles Maths PCSI Cours Table des matières Equations différentielles 1 Généralités 2 1.1 Solution d une équation différentielle................................ 2 1.2 Problème de Cauchy.........................................

Plus en détail

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B :

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B : SEMESTRE S Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Discipline B : 0 0 Biologie Biologie Chimie Chimie Géologie Géologie Informatique Informatique Physique

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique et chimie (PC) Discipline : Mathématiques Seconde année Classe préparatoire PC Programme de mathématiques

Plus en détail

Filtrage et EDP. Philippe Montesinos. EMA/LGI2P - Site EERIE. Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema.

Filtrage et EDP. Philippe Montesinos. EMA/LGI2P - Site EERIE. Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema. Filtrage et EDP Philippe Montesinos EMA/LGI2P - Site EERIE Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema.fr 1 Plan 1. Rappels: - Les analyses multi-échelles. - Méthodes

Plus en détail

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Informatique Première et seconde années

Plus en détail

Analyse abstraite de missions sous PILOT

Analyse abstraite de missions sous PILOT Analyse abstraite de missions sous PILOT Damien Massé EA 3883, Université de Bretagne Occidentale, Brest damien.masse@univ-brest.fr Résumé Nous étudions la possibilité de réaliser un analyseur par interprétation

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Frédéric Messine Introduction Dans ce chapitre, nous allons étudier une application de la dérivation des fonctions de plusieurs variables

Plus en détail

Processus Markoviens Déterministes par Morceaux et Fiabilité Dynamique

Processus Markoviens Déterministes par Morceaux et Fiabilité Dynamique Processus Markoviens Déterministes par Morceaux et Fiabilité Dynamique Karen Gonzalez Benoîte de Saporta et François Dufour IMB, Université Bordeaux Neuvième Colloque Jeunes Probabilistes et Statisticiens

Plus en détail

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme Cahier de vacances Exercices PCSI - PC, Lycée Dupuy de Lôme Votre année de PCSI a été bien remplie et il est peu probable que l année de PC qui arrive vous paraisse plus facile. C est pourquoi, je vous

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

PROBLÉMATIQUE «Comment améliorer la motricité du modèle réduit de la voiture 4 roues motrices en phase d accélération?»

PROBLÉMATIQUE «Comment améliorer la motricité du modèle réduit de la voiture 4 roues motrices en phase d accélération?» D après les productions de l équipe du lycée Clément Ader de Dourdan Mme Fabre-Dollé, Mr Dollé et Mr Berthod THÈME SOCIÉTAL Mobilité PROBLÉMATIQUE «Comment améliorer la motricité du modèle réduit de la

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

Équations de Navier-Stokes dans des domaines quelconques

Équations de Navier-Stokes dans des domaines quelconques Équations de Navier-Stokes dans des domaines quelconques Sylvie Monniaux Univ. Paul Cézanne Aix-Marseille 3, France Séminaire EDP, Rennes 2008 Sylvie Monniaux (Univ. P. Cézanne) NS dans Ω qcq Rennes, mars

Plus en détail

Domaines d application, exemples La démarche de l Automatique Un premier exemple. Automatique. Dynamique et Contrôle des Systèmes

Domaines d application, exemples La démarche de l Automatique Un premier exemple. Automatique. Dynamique et Contrôle des Systèmes Automatique Dynamique et Contrôle des Systèmes NICOLAS PETIT Centre Automatique et Systèmes Unité Mathématiques et Systèmes Mines ParisTech nicolas.petit@mines-paristech.fr 28 novembre 2008 Informations

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

STAGES INTENSIFS DE REVISION

STAGES INTENSIFS DE REVISION CENTRE SCOLAIRE OZANAM Internat et externat pour lycéens et étudiants Etudes encadrées et soutien scolaire Stages intensifs de révision 60 rue Vauban 69006 LYON 04 78 52 27 99 / Fax : 04 78 52 11 15 www.etudes-ozanam.com

Plus en détail

Modèle de Heston. Pricing d options européennes et calibration. G. BLANCHET, M. ELACHECHE, E. JEANGIRARD, K. SALEH Tuteur : Adel Ben Haj Yedder

Modèle de Heston. Pricing d options européennes et calibration. G. BLANCHET, M. ELACHECHE, E. JEANGIRARD, K. SALEH Tuteur : Adel Ben Haj Yedder Modèle de Heston Pricing d options européennes et calibration G. BLANCHET, M. ELACHECHE, E. JEANGIRARD, K. SALEH Tuteur : Adel Ben Haj Yedder Projet de département IMI En partenariat avec Natexis 21 juin

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Le théorème du point xe. Applications

Le théorème du point xe. Applications 49 Le théorème du point xe. Applications 1 Comme dans le titre de cette leçon, le mot théorème est au singulier, on va s'occuper du théorème du point xe de Picard qui a de nombreuses applications. Le cas

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Méthodes numériques d optimisation

Méthodes numériques d optimisation Méthodes numériques d optimisation Marie Postel 1 Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie, Paris 6 Version septembre 015 1. marie.postel@upmc.fr, http ://www.ljll.math.upmc.fr/postel

Plus en détail