CH 1 Analyse : Continuité et limites

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CH 1 Analyse : Continuité et limites"

Transcription

1 CH Anlyse : Continuité et ites 4 ème Sciences Septembre 9 A. LAATAOUI I. Rppels Notion de continuité : Grphiquement, on peut reconnître une onction continue sur un intervlle I pr le it que le trcé de l courbe représenttive de pour I peut se ire sns lever le cryon de l euille. Eemple : ( ) = g ( ) = si et g ( ) = 3 si > h ( ) = si < et h ( ) = si est continue sur R g est continue sur R h est continue sur ], [ h est continue sur [, + [ Mis h n est ps continue en - Propriété : Les onctions polynômes, les onctions rtionnelles, l onction rcine crrée sont continues sur tout intervlle sur le quel sont déinies. Activité pge 6. Continuité et ite : Une onction déinie sur un intervlle ouvert I est continue en un réel de I, si et seulement si, ( ) = ( ) = ( ). + Activités 4, 5 et 6 pge 7. Continuité et ites. 4 ème Sciences. 9.

2 Opértions sur les ites : Limite d une somme Si pour ite l l l + + Si g pour ite l ' + + Alors + g pour ite l+ l ' + + Forme indéterminée Limite d un produit Si pour ite l l Si g pour ite l ' Alors g pour ite l l ' Suivnt les signes Suivnt les signes Forme indéterminée Limite d un inverse Si g pour ite l ' Alors g pour ite l ' Pr vleurs supérieures Pr vleurs inérieures + Limite d un quotient Si pour ite Si g pour ite Alors g pour ite l l l l ' l l ' + ou pr vleurs supérieures ou pr vleurs inérieures Suivnt les signes Forme indéterminée pr vleurs supérieures ou pr vleurs inérieures Suivnt les signes + ou l ' + ou Suivnt les signes Forme indéterminée Règles opértoires L ite en + ou en d une onction polynôme est égle à l ite de son terme de plus hut degré. L ite en + ou en d une onction rtionnelle est égle à l ite du quotient de ses termes de plus hut degré. Activités 7 pge 8. Eercice : Clculer les ites éventuelles suivntes : ; ; Eercices : 3, 4, 5, 7, 8 et pges 9 et. ; Continuité et ites. 4 ème Sciences. 9.

3 II. Continuité et ite d une onction composée Déinition Soit une onction déinie sur un ensemble I et g une onction déinie sur ensemble J tel que ( I) J. L onction notée g, déinie sur I pr g ( ) = g[ ( ) ], est ppelée onction composée de et g. Eemple : ( ) = 3+ 7 et g( y) = y. g ( ) = g= ( ). Remrque :. Soit une onction déinie sur un intervlle ouvert I contennt un réel et g une onction déinie sur un intervlle ouvert J contennt le réel ( ). Si est continue en et g est continue en ( ), lors g est continue en. Conséquence : L composée de deu onctions continue est continue. Activité 3 pge 9. Soit et g deu onctions. Soit bet, c inis ou ininis. Si ( ) = b et g ( ) = c lors g ( ) = c. b Activités 4 et 5 pge. Eercice : L onction pour tbleu de vrition : + ( ) + Donner en utilisnt ce tbleu les ites suivntes : ( ) ; + ; + ; ; + ; + ( ) ( ) + ; + ( ) 3 ; +. ( ) 3 ; + ; 3 Continuité et ites. 4 ème Sciences. 9.

4 III. Limites et ordre Soit, g et h trois onctions déinies sur un intervlle I su peut être en un réel de I. Soit deu réels l et l '. Si ( ) g ( ) pour tout I et si = l et g = l ', lors l l '. Si h ( ) ( ) g ( ) pour tout I I Si ( ) g ( ) pour tout et si Si ( ) g ( ) pour tout et si I et si h = g = l, lors = l. g =+, lors g =, lors =+. =. Ces résultts restent ussi vlbles lorsqu on remplce pr ± ou pr + ou. Activité 3 pge. IV. Brnches ininies Asymptote horizontle : Soit une onction déinie sur un intervlle de l orme [ ; + [ où est un réel et L un réel donné. L N Si () = L lors l droite d éqution y = L est symptote horizontle à l courbe C en +. ( ) j O i M C Asymptote verticle : Soit une onction. C Si «( ) est ussi grnd que l on veut dès que est ssez proche de», lors on dit que pour ite + en. On note : ( ) = + O C On déinit de l même çon ( ) = On dit que l droite d éqution = est symptote verticle à l courbe C. O 4 Continuité et ites. 4 ème Sciences. 9.

5 Asymptote oblique : Soit ( ) et b deu réels et C l courbe représentnt une onction dns un repère. Dire que l droite d éqution y = + b est symptote oblique à C en + ( respectivement en ) revient à dire que : ( ) y N M C + ( ( ) ( + b ) ) = ( respectivement ( ( ) ( + b ) ) = ) E : Montrer que l courbe représenttive de l onction : + dmet en ± une symptote.. Etudier les positions de C et. Brnches prboliques : Si ± () = ± et () + = ± lors C dmet une brnche prbolique de direction (Oy). (type ). Si ± () = ± et () + = lors C dmet une brnche prbolique de direction (O). (type ). Si ± () = ± et () + = : lors deu cs peuvent se présenter selon (). Si Si () = b lors l droite d éqution y = + b est symptote oblique à C en +. () = ± lors C dmet une brnche prbolique de direction l droite d éqution y = en +. Activités 3 et 4 pge 7. 5 Continuité et ites. 4 ème Sciences. 9.

6 V. Imge d un intervlle pr une onction continue Activité pge. L imge d un intervlle pr une onction continue est un intervlle. Théorème des vleurs intermédiires : Soit une onction déinie et continue sur un intervlle I. Soient I et b I. Pour tout réel k compris entre ( ) et ( b ), il eiste u moins un réel c compris entre et b tel que () c = k On peut ussi l eprimer sous l orme : L éqution ( ) = k u moins une solution c comprise entre et b. En prticulier, si ( ) ( b) < lors l éqution ( ) = dmet u moins une solution dns ] b, [. Si de plus est strictement monotone sur I, lors c est unique. Activités 4 et 5 pge 3. Conséquence : Soit une onction continue sur un intervlle I. Si ne s nnule en ucun point de I lors elle grde un signe constnt sur I. Eercice : Etudier le signe de ( ) 4 3 = + sur son domine de déinition. Imge d un intervlle ermé borné pr une onction continue : Activité 7 pge 5. Si est continue sur [ b, ] lors ([ b, ]) = [ mm, ] Où m est le minimum de sur [ b, ] et M est le mimum de sur [, ] Cs des onctions monotones : * Soit une onction déinie sur un intervlle de type [, [ b. b ( b ini ou inini ). Si est croissnte et mjorée lors possède une ite inie en b. Si est croissnte et non mjorée lors tend vers + en b. * Soit une onction déinie sur un intervlle de type ] ], b ( ini ou inini ). Si est décroissnte et minorée lors possède une ite inie en. Si est décroissnte et non minorée lors tend vers en. 6 Continuité et ites. 4 ème Sciences. 9.

7 L imge d un intervlle I pr une onction continue et monotone sur I est un intervlle de même nture. Eemples : Intervlle I est croissnte sur I est décroissnte sur I I = [ b, ] ( I) = [ ( ), ( b) ] ( I) = [ ( b), ( ) ] I [ b, [ = ( I) = ( ), b ( I) =, ( ) b I [, [ = + ( I) = ( ), + ( I) =, ( ) + I = ] b, [ ( I) =, + b ( I) =, + b Eercice : Déterminer l imge de l intervlle I pr l onction dns chcun des cs ci-dessous :. :. :, ],] I =., [, [ I = +. π 3. : sin, I =,. 7 Continuité et ites. 4 ème Sciences. 9.

LIMITES ET CONTINUITÉ

LIMITES ET CONTINUITÉ LIMITES ET CONTINUITÉ Cours Terminle S Limite d une onction à l inini ) Limite inie en l inini Déinition : Soit une onction déinie sur un intervlle de l orme ] A ; + [ On dit que l onction dmet pour limite

Plus en détail

Limite d une fonction à l infini

Limite d une fonction à l infini CHAPITRE 3 LIMITES DE FONCTIONS ET DE SUITES Limite d une fonction à l infini et s courbe repré-. Limite finie d une fonction à l infini Soit f une fonction définie sur un intervlle [ ; + [ senttive. L

Plus en détail

Calcul de limites. 3) Limite d'une somme de deux fonctions. = x. 1 lim =... =... lim x =... lim x. lim 2x = x 1. lim 2x + x = lim 3x. lim

Calcul de limites. 3) Limite d'une somme de deux fonctions. = x. 1 lim =... =... lim x =... lim x. lim 2x = x 1. lim 2x + x = lim 3x. lim Clcul de ites I) Clculs de ite en et - ) Limite en ou - des fonctions de référence : Compléter les ites suivntes ( on observer les représenttions grphiques) :........................ (voir ci-dessous )...............

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS I..

LIMITES DE SUITES ET DE FONCTIONS I.. TS-cours-chp2-1 - LIMITES DE SUITES ET DE FONCTIONS I.. Limite d une suite 1 / tend vers l infini Définition ( rppel ) Dire que l suite tend vers + signifie que, pour tout nombre A, l intervlle [A ; +

Plus en détail

ÉTUDES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako

ÉTUDES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako ÉUDES DE FONCIONS NUMÉRIQUES Site MthsICE de Adm roré Lycée echnique Bmko I Pln d étude d une fonction numérique : Pour étudier une fonction numérique nous dopterons le pln suivnt : Déterminer l ensemble

Plus en détail

Ch.4èFONCTIONS DE RÉFÉRENCE

Ch.4èFONCTIONS DE RÉFÉRENCE LFA / première S COURS - mthémtiques Mme MAINGUY Ch.4èFONCTIONS DE RÉFÉRENCE ere S Dns tout le chpitre, le pln est muni d'un repère orthonorml ( O ; i! ;! j ) I. Rppels de Seconde Soit f une fonction définie

Plus en détail

x est la variable et f(x) est l image de x. On note y = f(x). L ensemble des éléments de I ayant une image est appelé ensemble de définition, noté E.

x est la variable et f(x) est l image de x. On note y = f(x). L ensemble des éléments de I ayant une image est appelé ensemble de définition, noté E. http://mths-sciences.r LES FONCTIONS NUMÉRIQUES USUELLES I) Générlités ) Déinition Soit I un intervlle de, une onction est une reltion qui ssocie à tout élément x de I, un nombre réel (x) u plus. : I x

Plus en détail

Chapitre 2 Limites et asymptotes

Chapitre 2 Limites et asymptotes Chpitre 2 Limites et symptotes A) Introduction ) Le grenier Je veux monter un toit à une pente en lissnt l plce pour une pièce (grenier) de 3 mètres de long et 2 mètres de hut. OA = 3, OC = 2, OE = x.

Plus en détail

CHAPITRE 10 : LA FONCTION LOGARITHME NEPERIEN

CHAPITRE 10 : LA FONCTION LOGARITHME NEPERIEN L fonction logrithme népérien Cours CHAPITRE : LA FONCTION LOGARITHME NEPERIEN. Définition de l fonction logrithme népérien L fonction logrithme népérien, notée ln, est définie sur ],+ [, prend l vleur

Plus en détail

I. Fonctions

I. Fonctions FORMULAIRE MATHÉMATIQUES - RENTRÉE 205 - PRÉPA ECS PREMIÈRE ANNÉE Tble des mtières I. Fonctions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4. Générlités sur les fonctions...................

Plus en détail

La continuité. I Introduction 1. II Notion de continuité 1 1 Définitions Graphique Exemples et contre exemple... 2

La continuité. I Introduction 1. II Notion de continuité 1 1 Définitions Graphique Exemples et contre exemple... 2 L continuité Tle des mtières I Introduction 1 II Notion de continuité 1 1 Définitions.................................................. 1 Grphique.................................................. 1 3

Plus en détail

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6 Tble des mtières Intégrle d une fonction. Définition.................................................. Propriétés................................................. 4 Notion de primitive d une fonction 5.

Plus en détail

11 Fonctions numériques - continuité

11 Fonctions numériques - continuité 11 Fonctions numériques - continuité 11.1 Ensemble des fonctions à vleurs réelles 11.1.1 Fonctions numériques Soit E un ensemble non vide. On note E l ensemble des pplictions de E dns. On définit les opértions

Plus en détail

Primitives et Calcul d une intégrale

Primitives et Calcul d une intégrale Primitives et Clcul d une intégrle I) Primitive ) Définition : Soit f une fonction définie sur un intervlle I. On ppelle primitive de f sur I, toute fonction F dérivle sur I dont l dérivée F est égle à

Plus en détail

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions.

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions. Fiches de cours nlyse 4 ème Sciences epérimentles Limites et continuité Limites et comprison de fonctions. L et L ' sont des réels. désigne soit un réel, soit +, soit Premier théorème de comprison Soit

Plus en détail

LIMITES ET CONTINUITÉ DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako

LIMITES ET CONTINUITÉ DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako IMITES ET CONTINUITÉ DE FONCTIONS NUMÉRIQUES Site MthsTICE de Adm Troré ycée Technique Bmko I Notion de ite: Activité : Soit une onction de représenttion rphique ci-dessous : b C b Nous pouvons remrquer

Plus en détail

Chapitre 6 - Fonctions numériques - Généralités

Chapitre 6 - Fonctions numériques - Généralités PS hpitre 6 - Fonctions numériques - Générlités Fonctions d une vrile réelle à vleurs réelles. Définitions Une fonction à vleurs réelles est une ppliction de ou une prtie A de dns. On note f : A ; f ().

Plus en détail

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006.

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006. Résumé de cours : Terminle ES. Mths-Terminle ES. Mr Mmouni : myismil@ltern.org source disponile sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tle des mtières Eqution du second degré. 2. Ses solutions

Plus en détail

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes...

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes... Lycée Pul Doumer 203-204 TS Cours Limites de Fonction Contents Limites d une fonction et symptotes. Limite en l infini....................................2 Limite en un réel..................................

Plus en détail

Primitives Calcul intégral

Primitives Calcul intégral Primitives Clcul intégrl Christophe ROSSIGNOL Année scolire 2009/200 Tble des mtières Primitives 2. Définition, premières propriétés..................................... 2.2 Primitives des fonctions usuelles....................................

Plus en détail

Résumés de cours : Terminale S.

Résumés de cours : Terminale S. Résumés de cours : Terminle S. Mths-Terminle S. Mr Mmouni : myismil@ltern.org source disponible sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tble des mtières Nombres complexes. 3. Prtie réelle

Plus en détail

CHAPITRE 11 : FONCTION NEPERIEN. FONCTION LOGARITHME DECIMAL.

CHAPITRE 11 : FONCTION NEPERIEN. FONCTION LOGARITHME DECIMAL. CHAPITRE : FONCTION NEPERIEN. FONCTION LOGARITHME DECIMAL.. Fonction népérien (logrithme d une fonction composée). Théorème Si u est une fonction strictement positive et dérivble sur un intervlle I ouvert,

Plus en détail

Chapitre I : Fonctions, expressions algébriques et problèmes

Chapitre I : Fonctions, expressions algébriques et problèmes Chpitre I : Fonctions, expressions lgériques et prolèmes I Les ensemles de nomres : Déinition 1 : 0 ;1; 2;3;4 ;...;15;16;... est l ensemle des nomres entiers nturels.... ; -16; -15;...; -4; -3; -2; -1;

Plus en détail

MT91 P2010 Médian - f(x) = α + x + βx 2.

MT91 P2010 Médian - f(x) = α + x + βx 2. MT9 P Médin - Corrigé Eercice. α et β sont deu prmètres réels tels que α >. On définit f) = α + + β. Ecrire le développement limité de f, à l ordre, en.. Utiliser l question précédente pour étudier l brnche

Plus en détail

( ). Dans tout ce paragraphe, f et g sont des fonctions continues et positives sur un intervalle a;b. C f

( ). Dans tout ce paragraphe, f et g sont des fonctions continues et positives sur un intervalle a;b. C f Chpitre 6 : Clcul intégrl I Intégrle d une fonction continue positive 1 Unité d'ire Le pln est muni d un repère orthogonl O;i!,! j!!" "!!! " " En posnt OI = i et OJ = j, l ire du rectngle OIKJ définit

Plus en détail

1. Les fonctions affines.

1. Les fonctions affines. L E S F O N C T I O N S U S U E L L E S. Les fonctions ffines.. Définition. Une fonction ffine est une fonction f définie sur R pr : f ( x) = x+ b.2 Représenttion grphique. o o Si b =, l fonction est linéire.

Plus en détail

Intégration I Licence de mathématiques, 4 e semestre Université Aix-Marseille 1

Intégration I Licence de mathématiques, 4 e semestre Université Aix-Marseille 1 ntégrtion Licence de mthémtiques, 4 e semestre Université Ai-Mrseille J-Y. Briend Fscicule de résultts ntégrbilité, intégrle Définition.. Soit = [,b] un intervlle compct. Une subdivision pointée P de est

Plus en détail

Limites et continuité

Limites et continuité 1 Limite d une fonction 1.1 Limite d une fonction en + Définition 1. Soit f une fonction définie sur un interve de forme ]A;+ [. On dit que fonction f dmet pour imite e nombre en + si tout interve ouvert

Plus en détail

Cours en salle d'informatique muni d'un vidéo-projecteur ou d'un tableau interactif

Cours en salle d'informatique muni d'un vidéo-projecteur ou d'un tableau interactif CTIVITÉ TICE : DÉRIVATIOND ACTIVITÉ Niveu : Bc Professionnel Type d'utilistion : Cours en slle d'informtique muni d'un vidéo-projecteur ou d'un tbleu interctif Mtériel : 1 ordinteur pr binôme et/ou un

Plus en détail

LIMITE ET CONTINUITÉ DE FONCTIONS

LIMITE ET CONTINUITÉ DE FONCTIONS Lurent Grcin MPSI Lycée Jen-Bptiste Corot LIMITE ET CONTINUITÉ DE FONCTIONS Soit R. Dns tout ce chpitre, on dir qu une fonction f de domine de définition D f est définie u voisinge de s il existe un réel

Plus en détail

Fiche de cours 5 - Calcul intégral.

Fiche de cours 5 - Calcul intégral. Licence de Sciences et Technologies EM - Anlyse Primitives et intégrles Fiche de cours 5 - Clcul intégrl. Définition : soit deu fonctions f, F, définies sur un intervlle I non réduit à un point. L fonction

Plus en détail

Chapitre 6 : Fonctions Logarithme Népérien

Chapitre 6 : Fonctions Logarithme Népérien Lycée Pul Sbtier, Cstelnudry Clsse de T`le STG Chpitre 6 : Fonctions Logrithme Népérien D. Zncnro et C. Aupérin 008-009 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

Corrigé du TD 3 : Limites

Corrigé du TD 3 : Limites Corrigé du TD 3 : Limites Eercice : Fonction réciproque. Cs f() = + L fonction f est définie sur R et à vleurs dns I = [,+ [. Elle est pire donc en prticulier pour tout réel, on f( ) = f() et en prticulier

Plus en détail

Chapitre 1 Le Second Degré

Chapitre 1 Le Second Degré Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Chpitre 1 Le Second Degré A) Résolution de l'éqution du second degré 1) Définitions On ppelle polynôme de second degré l expression x² x c

Plus en détail

Chapitre 1 Équations et Inéquations du 2nd degré

Chapitre 1 Équations et Inéquations du 2nd degré Cours de Mthémtiques Première S Chpitre 1 : équtions et inéqutions du second degré Chpitre 1 Équtions et Inéqutions du nd degré A) Les Polynômes 1) Définitions On ppelle monôme une expression de l forme

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS LIMITES DE FONCTIONS I Limites à 'infini Définition Soit f une fonction dont 'ensembe de définition contient un interve ] + [ et soit un nombre rée. Si tout interve ] - r + r[ (vec r > ) contient toutes

Plus en détail

Lycée Stendhl (Grenole) Niveu : Titre Cours : Terminle S Année : Chpitre 09 : Les Intégrles 204-205 826-866 874-94 Cittion du moment : «Le seul enseignement qu un professeur peut donner, à mon vis, est

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

Clamaths.fr - Les Roc en Terminale S

Clamaths.fr - Les Roc en Terminale S Clmths.fr - Les Roc en Terminle S CONTENTS ROC - exigibles... 2 Roc 1 Théorème de comprison pour les suites... 2 Roc 2 Limite de qn lorsque q > 1... 2 Roc 3 Unicité de l fonction exponentielle... 3 Roc

Plus en détail

Cours de Terminale S Analyse. Éric ROUGIER

Cours de Terminale S Analyse. Éric ROUGIER Cours de Terminle S Anlyse Éric ROUGIER 13 vril 2015 2 Tble des mtières 1 Suites et récurrence 5 I - Le risonnement pr récurrence...................................... 6 1. Principe de récurrence.......................................

Plus en détail

Limites de fonctions

Limites de fonctions CHAPITRE 2 Limites de fonctions Sommire Prtie A (s4) 2 Asmptotes prllèles u es......................................... 2. Approche grphique 2.2 Limite finie d une fonction à l infini 3.3 Limite infinie

Plus en détail

! Remarque : La racine carrée d un nombre négatif n existe pas.

! Remarque : La racine carrée d un nombre négatif n existe pas. 3 ème Chpitre A 3 RACINE CARREE D UN NOMBRE POSITIF 1 I) Définition et conditions d existence de l rcine crrée d un nombre. 1) Définition. Il existe deux nombres tel que si on les multiplie pr eux même

Plus en détail

maîtriser le cours (page 48)

maîtriser le cours (page 48) e) > donc la première inégalité équivaut à - sin N cos et sont strictement positis donc la seconde inégalité équivaut à cos N - sin et donc pour tout de sin cos N - N b) Le téorème d encadrement et le

Plus en détail

ÉQUATIONS INÉQUATIONS SYSTÈMES Site MathsTICE de Adama Traoré Lycée Technique Bamako

ÉQUATIONS INÉQUATIONS SYSTÈMES Site MathsTICE de Adama Traoré Lycée Technique Bamako ÉQUATIONS INÉQUATIONS SYSTÈMES Site MthsTICE de Adm Troré Lycée Technique Bmko I Équtions du second degré : Résolution pr l méthode du discriminnt : Pour résoudre l éqution du second degré b c = ( d inconnu,

Plus en détail

Synthèse de cours PanaMaths Variables aléatoires à densité

Synthèse de cours PanaMaths Variables aléatoires à densité Synthèse de cours PnMths Vriles létoires à densité Vrile létoire à densité Vrile létoire réelle continue Soit X une vrile létoire réelle. On dit que «X est une vrile létoire réelle continue» si elle prend

Plus en détail

Développements limités. Généralités. Définitions usuelles

Développements limités. Généralités. Définitions usuelles Développements limités I Générlités I.A Définitions usuelles.......................... I.B Formules de Tylor.......................... I.C Développements limités usuels.................... 4 I.D Eemples

Plus en détail

COURS TERMINALE S LE CALCUL INTEGRAL

COURS TERMINALE S LE CALCUL INTEGRAL COURS TERMINALE S LE CALCUL INTEGRAL A. Notion d'intégrle. Aire sous l coure On définit le domine pln, qu'on ppeller ire sous l coure C représenttive d'une fonction positive f sur un intervlle [; ], l

Plus en détail

Chapitre 11 : Calcul intégral

Chapitre 11 : Calcul intégral Cpitre 11 : Clcul intégrl I Intégrle d une fonction positive I.1 Définition Définition ( 1. Dns un repère ortogonl O; i ; ) j, on ppelle unité d ire l ire du rectngle de côtés [OI] et [OJ]. 2. Soient f

Plus en détail

Généralités sur Les Fonctions Numériques 1 fonction numérique d'une variable réelle

Généralités sur Les Fonctions Numériques 1 fonction numérique d'une variable réelle Générlités sur Les Fontions Numériques ontion numérique d'une vrible réelle. Déinitions et nottions.. Déinition Soit E et F deux ensembles. ) On ppelle ontion de E dns F une reltion qui à x de E ssoie

Plus en détail

Polycopié pour le cours de MATH121b Analyse élémentaire. Chapitre 1 Étude pratique des fonctions d une variable réelle.

Polycopié pour le cours de MATH121b Analyse élémentaire. Chapitre 1 Étude pratique des fonctions d une variable réelle. Université de Svoie 0-03 L MASS-SFT-SV Polycopié pour le cours de MATHb Anlyse élémentire. Chpitre Étude prtique des fonctions d une vrible réelle. I Générlités Un peu de vocbulire On doit toujours présenter

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS)

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) Équtions différentielles du ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) TI-Nspire CAS 1. Objectifs Découvrir les équtions différentielles du premier ordre. Résoudre à l min et à l ide de l clcultrice

Plus en détail

( ) non vides et disjoints tels que D= A1 A2. Soit f la fonction définie par : 1. sont non vides.

( ) non vides et disjoints tels que D= A1 A2. Soit f la fonction définie par : 1. sont non vides. Prties connexes de R et fonctions continues PARTIES CONNEXES DE R ET FONCTIONS CONTINUES Prties connexes de R crctéristion Prtie connexe de R On dit qu'une prtie D de est connexe si D n'dmet ps de prtition

Plus en détail

Fonctions homographiques

Fonctions homographiques HAPITRE 6 Fonctions omorpiques. Fonctions omorpiques Définition. On ppelle fonction omorpique toute fonction du type f : b c où, b, c et d d sont des constntes réelles vérifint : b 0 (6.) c d Remrques.

Plus en détail

2 Taux de variation et dérivée

2 Taux de variation et dérivée Tu de vrition et dérivée.1 Tu de vrition et dérivée en un point Q..1 Clculer le tu de vrition moyen TVM [;] f) pour les fonctions suivntes. cm cm ) f) = 1 b) f) = c) f) = 5 d) f) = 1 e) f) = + 5 Q.. Soit

Plus en détail

CHAPITRE 4 : LIMITES

CHAPITRE 4 : LIMITES CHAPITRE 4 : LIMITES La lettre grecque α désigne soit +, soit, soit a un réel ini ( a R. LIMITES Le plan est muni d un repère ( O; i ; j, et on note C la courbe représentative de la onction dans ce repère..

Plus en détail

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1 Chpitre 7 Intégrle et primitive TABLE DES MATIÈRES pge - Chpitre 7 Intégrle et primitive Tble des mtières I Exercices I-................................................ I- Clcul pproché d une intégrle

Plus en détail

XI. Différentielles et intégrales définies : notions de base

XI. Différentielles et intégrales définies : notions de base . Différentielle XI. Différentielles et intégrles définies : notions de se soit f : R R y = f() et s dérivée : f '() = y ' Considérons un ccroissement de l vrile :. Définition - nottion On ppelle différentielle

Plus en détail

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI Intégrtion T le STI I - Intégrle d une fonction Définition Soit F une primitive de l fonction f sur [; ], lors, on note Exemple : Clcul de Clcul de 4 (3x ) dx = = [F(x)] = F() F() xdx : Une primitive de

Plus en détail

Exercices de révision

Exercices de révision Université de Cen Licence de Biologie Semestre 0 04 Mthémtiques TD Groupe 4 Exercices de révision Corrigé Nombres complexes Exercice. On pose A = + i et B = + i. Clculer A B, A + B, A B, B, A + B. Clculer

Plus en détail

Chapitre 0 : Mise au point sur les nombres et le calcul

Chapitre 0 : Mise au point sur les nombres et le calcul Lycée Jules Fil, Crcssonne Clsse de 2 nde Chpitre 0 : Mise u point sur les nombres et le clcul D. Zncnro C. Aupérin 2009-2010 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

Cours d harmonisation en mathématiques. Bérangère Delourme-Jose Gomez

Cours d harmonisation en mathématiques. Bérangère Delourme-Jose Gomez Cours d hrmonistion en mthémtiques Bérngère Delourme-Jose Gomez septembre 206 2 Tble des mtières Trigonométrie et nombres complexes 7. Trigonométrie élémentire...............................................

Plus en détail

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (2eme semestre)

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (2eme semestre) Université de Mrseille Licence de Mthémtiques, 1ere nnée, Anlyse (eme semestre) T. Gllouët pour les chpitres 1-5 et 7. A. Benbdllh pour le chpitre 6 My 3, 010 Tble des mtières 1 Limites 3 1.1 Définition

Plus en détail

si x 0 Math C Page 1

si x 0 Math C Page 1 Mth 30411 C Pré-Clcul 1, pges 44-445, nos 1, 3d, 4bd, 7, 8, 10, 13, 14, 15, 16, 18, 19 Pge 1 1. Emine l éqution et le grphique de qutre fonctions rtionnelles. Associe chque grphique à l éqution correspondnte.

Plus en détail

PARTIE II : Un exemple pour se familiariser avec la conjecture et cette drôle de fonction. . (On ne cherchera pas à exprimer F plus simplement.

PARTIE II : Un exemple pour se familiariser avec la conjecture et cette drôle de fonction. . (On ne cherchera pas à exprimer F plus simplement. Eercice. Découverte des fonctions définies pr une intégrle et premiers ps vers le téorème fondmentl du clcul intégrl. PARTE : Découverte de l fonction «ire sous l courbe» et conjecture sur s dérivée et

Plus en détail

Calculs de base (Rappels)

Calculs de base (Rappels) Chpitre I Clculs de bse (Rppels) I.1 Diviseurs et multiples I.1.1 Définitions On : 12=3 4. On dit que 3 et 4 sont des diviseurs de 12, ou que 12 est un multiple de 3 et de 4. DÉFINITION I.1.1 Soit et b

Plus en détail

Racines carrées 20 = 4,

Racines carrées 20 = 4, Clsse de 3ème 08/11/010 Chpitre Rcines crrées I. Activité n 1. ABCD est un crré de coté c et d ire. (1 ) Choisir des vleurs de c puis clculer. ( ) Choisir des vleurs de puis clculer c. c = 3 cm c = cm

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5 Tle des mtières Frctions 1 Propriété des quotients égux 1 Addition, soustrction de deux frctions Produit de deux frctions Comprison de deux frctions Produit en croix 10 6 Quotient de deux frctions. Inverse

Plus en détail

Chapitre 6 - Intégration

Chapitre 6 - Intégration TES Chpitre 6 - Intégrtion 1-13 Chpitre 6 - Intégrtion I Intégrle d une fonction positive TD1 : Des clculs d ire Définition 1 Dns un repère orthogonl (O, I, J), on ppelle unité d ire l ire du rectngle

Plus en détail

LE CALCUL ALGEBRIQUE

LE CALCUL ALGEBRIQUE I. Clculs vec des frctions : ce fcteur : ) Rppels : LE CALCUL ALGEBRIQUE b = b = b = b Exemple : 3 x = x 3 = 3x ( b ) c = ( bc ) = bc Exemple : ( 3x ) 5 = 3 ( 5x ) = 15x 1 = 1 = b) Signe moins dns une

Plus en détail

C f. 1 u.a. B x 1 A' E4 E2. 1 u.a. a. OJ = et K le point tel que OIKJ. OI = i, J le point tel que

C f. 1 u.a. B x 1 A' E4 E2. 1 u.a. a. OJ = et K le point tel que OIKJ. OI = i, J le point tel que CLCULS 'IRES. INTEGRLES. PRIMITIVES ) Intégrle d'une fonction. Soit f une fonction définie sur [ ; ] et C s coure représenttive dns un repère orthogonl ( ; j ). Si I est le point tel que I i, J le point

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

X. Equations paramétriques d'une courbe. Coordonnées polaires.

X. Equations paramétriques d'une courbe. Coordonnées polaires. . Equtions prmétriques X. Equtions prmétriques d'une courbe. Coordonnées polires. f ( ) Soient deu équtions où intervlle [, b] g( ) A chque vleur de correspondent une vleur de et une vleur de. Si l'on

Plus en détail

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1 Chpitre Intégrles TABLE DES MATIÈRES pge - Chpitre Intégrles Tble des mtières I Exercices I-................................................ I-................................................ I-................................................

Plus en détail

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie Sujet de Bc 20 Mths S Oligtoire & Spécilité Polynésie Exercice : 5 points Commun à tous les cndidts. Pour chcune des propositions suivntes, indiquer si elle est vrie ou fusse et donner une démonstrtion

Plus en détail

Terminales S. Liste «non exhaustive» des Restitutions Organisées des Connaissances:

Terminales S. Liste «non exhaustive» des Restitutions Organisées des Connaissances: Terminles S Liste «non exhustive» des Restitutions Orgnisées des Connissnces: Théorème 1 : Critère de divergence d'une suite Théorème 2 : Comprison pr rpport à une suite divergente Théorème 3 : Théorème

Plus en détail

TD n 6 : Fourier - Correction

TD n 6 : Fourier - Correction D n : Fourier- Correction - Pge sur D n : Fourier - Correction Séries de Fourier Coefficient de Fourier On considère une fonction f continue pr morceux et -périodique. c n f f t e in n Z n f [] f t cos

Plus en détail

8. Primitives d'une fonction et intégrales

8. Primitives d'une fonction et intégrales 8. Primitives d'une fonction et intégrles I- Usge du tleu des dérivées Compléter les tleu et en précisnt le numéro des lignes utilisées. Tleu N f () f ' () -... Fonction f f () + érivée f ' f ' ()......

Plus en détail

Mémo de cours n 4. Intégrales

Mémo de cours n 4. Intégrales Mémo de cours n 4 Intégrles v.0 4. Primitive 4.. Définition Si l fonction f (x) est l dérivée de l fonction F(x), c est à dire que f (x) = df(x) dx, lors nous ppelons l fonction F une primitive de f. On

Plus en détail

Chapitre 8 Le calcul intégral

Chapitre 8 Le calcul intégral Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl Chpitre 8 Le clcul intégrl A) Intégrle d une fonction dérivle sur un intervlle 1) Définition Soit f une fonction dérivle sur un intervlle

Plus en détail

Cours de mathématiques Classe de Troisième

Cours de mathématiques Classe de Troisième Clsse de Troisième CHAPITRE CALCULS ALGEBRIQUES FACTORISATION Clculs lgébriques Pge UTILISER DES LETTRES Eercice On veut connître le nombre de cubes nécessires à l construction d'escliers. Vérifier que

Plus en détail

Mathématiques. Analyse de Fourier D après des notes rédigées par B. Helffer et T. Ramond

Mathématiques. Analyse de Fourier D après des notes rédigées par B. Helffer et T. Ramond Mthémtiques Anlyse de Fourier D près des notes rédigées pr B. Helffer et T. Rmond Année 2007 2 Tble des mtières I Suites, Intégrles et Séries 1 1 Suites de nombres réels ou complexes 1 1.1 Générlités.........................................

Plus en détail

Nombres relatifs en écriture fractionnaire

Nombres relatifs en écriture fractionnaire Nomres reltifs en écriture frctionnire Introduction Déterminons les nomres suivnts insi que leur nture. 2 n 8 n et n est un nomre. 2 d 7,2 d et d est un nomre. r 5 r et r est un nomre.. Écriture frctionnire

Plus en détail

Lois de probabilité continues

Lois de probabilité continues Lois de probbilité continues Tble des mtières I Lois de probbilité continues I.1 Principe et définitions........................................... I. Exemples de lois continues.........................................

Plus en détail

+ =. LE CALCUL ALGÉBRIQUE EN CLASSE DE SECONDE. Poursuivre le travail sur le sens des égalités

+ =. LE CALCUL ALGÉBRIQUE EN CLASSE DE SECONDE. Poursuivre le travail sur le sens des égalités LE CALCUL ALGÉBRIQUE EN CLASSE DE SECONDE Poursuivre le trvil sur le sens des églités Continuer à développer les propriétés de symétrie et de trnsitivité de l églité : Pour chque proposition, indiquer

Plus en détail

CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION. Ch7 : Calcul intégral-ts

CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION. Ch7 : Calcul intégral-ts Ch7 : Clcul intégrl-ts CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION Activité n : Trcer dns un repère orthonorml l représenttion grphique de l fonction f définie pr : f(x) = 5. Hchurer l'ire du domine pln

Plus en détail

TS 2, Correction Bac Blanc n o 2

TS 2, Correction Bac Blanc n o 2 TS, Correction Bc Blnc n o Exercice Nouvelle-Clédonie, mrs extrit) points Restitution Orgnisée de Connissnces On utiliser le résultt suivnt : les solutions de l éqution différentielle E ) y = y où R sont

Plus en détail

Cours de Terminale ES /Probabilités : Lois à densité. E. Dostal

Cours de Terminale ES /Probabilités : Lois à densité. E. Dostal Cours de Terminle ES /Probbilités : Lois à densité E. Dostl février 2017 Tble des mtières 7 Probbilités : Lois à densité 2 7.1 Vrible létoires à densité................................... 2 7.1.1 Vrible

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

Synthèse de cours (Terminale S) Limite d une fonction

Synthèse de cours (Terminale S) Limite d une fonction Synthèse de cours (Terminale S) Limite d une onction Limite d une onction en ou Fonction déinie au voisinae de (resp ) Soit une onction d ensemble de déinition D On dira que «la onction est déinie au voisinae

Plus en détail

TS Limites de fonctions Cours

TS Limites de fonctions Cours TS Limites de fonctions Cours I. Limites à l infini. Limite infinie en + ( 3 ) Définition Une fonction f a pour limite + en + si pour toute valeur réelle A, on a f() > A pour assez grand c est à dire pour

Plus en détail

Convergence dominée et conséquences.

Convergence dominée et conséquences. Chpitre 3 Convergence dominée et conséquences.. nterversion ite-intégrle............................................................2 / Le cs d une CU sur un segment..................................................

Plus en détail

Cours de mathématiques 3e année niveau 2

Cours de mathématiques 3e année niveau 2 Cours de mthémtiques 3e nnée niveu 2 Anlyse 2012 2013 Bernrd Lenggenhger : bernrd.lenggenhger@edu.ge.ch Collège de Genève Version du 5 jnvier 2013 ii Tble des mtières Tble des mtières iii 1 Introduction

Plus en détail

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV LEGTHP Sint Nicols STAV Promotion 8 MODULE M4 MATHEMATIQUES TERMINALE STAV Fiches de cours S. FLOQUET Septemre 9 Lycée Sint Nicols Igny Promotion 8 SOMMAIRE STAV PARTIE : RESUMES DE COURS Équtions de droites

Plus en détail

Variables aléatoires à densité

Variables aléatoires à densité Vribles létoires à densité Rppels : Une vrible létoire réelle (VAR) est une ppliction X : Ω R où (Ω,A,P) est un espce probbilisé. Lorsque X(Ω) est un ensemble discret on dit que X est une VAR discrète.

Plus en détail

Dans ce cas de figure, on voit que f(x) prend des valeurs très proche de l quand x devient très grand.

Dans ce cas de figure, on voit que f(x) prend des valeurs très proche de l quand x devient très grand. Chpitre IV : Limites de foctios I. Limite d ue foctio et symptotes. Limite fiie e l ifii Eemple : C f est l courbe représettive de l foctio f. Ds ce cs de figure, o voit que f() pred des vleurs très proche

Plus en détail

Primitives et intégrales

Primitives et intégrales Primitives et intégrles 19 mrs 14 Introduction Chercher une primitive et clculer une intégrle n est ps tout à fit l même chose. Une primitive d une fonction f, c est une fonction F qui, lorsqu on l dérive,

Plus en détail

Corrigé du baccalauréat S Pondichéry 21 avril 2010

Corrigé du baccalauréat S Pondichéry 21 avril 2010 Corrigé du bcclurét S Pondichéry 2 vril 2 EXERCICE Commun à tous les cndidts Prtie A : Restitution orgnisée de connissnces 6 points f et g sont deux fonctions continues sur un intervlle [ ; b] donc g f

Plus en détail

LES CONIQUES. Qu est-ce qu une conique?

LES CONIQUES. Qu est-ce qu une conique? LES CONIQUES Qu est-ce qu une conique? Une conique est une courbe plne que l on peut trcer sur un cône de révolution à deux nppes. Suivnt l position qu il occupe pr rpport à un cône, un pln qui coupe ce

Plus en détail

Chapitre 12 : Lois de probabilité continues

Chapitre 12 : Lois de probabilité continues Chpitre 12 : Lois de probbilité continues I. Lois de probbilité à densité Dns les situtions précédentes, on rencontré des vribles létoires dites discrètes : elles ne prennent qu un nombre fini de vleurs.

Plus en détail