I. Limites d une fonction à l infini

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "I. Limites d une fonction à l infini"

Transcription

1 T STI SIN Limites de fonctions 6//202 Lycée Don Bosco I. Limites d une fonction à l infini Activité a. Limites infinies On considère la fonction f définie sur ]0 ; + [ par : f(x) = x 2 x +, et dont la courbe représentative C dans le repère (O ; ı ; ȷ ) est donnée ci-contre.. Calculer f(0 2 ), f(0 6 ), f(0 8 ) et f(0 0 ). 2. En observant la représentation graphique, et les résultats de la première question, compléter la phrase : «f(x) est aussi proche que l on veut de, dès que x est assez grand (voisin de + ).» Définition : Soit f une fonction définie sur un intervalle de la forme [a ; + [ avec a un réel. On dit que la ites de f en + est égale à +, et l on écrit : f(x) = +, lorsque f(x) est aussi grand que l on veut (voisin de + ), dès que x est assez grand (voisin de + ). Définition : Soit f une fonction définie sur un intervalle de la forme [a ; + [ avec a un réel. On dit que la ites de f en + est égale à, et l on écrit : f(x) =, lorsque f(x) est aussi petit que l on veut (voisin de ), dès que x est assez grand (voisin de + ). Exemples : Limites de la fonction carrée en et en +. Soit f la fonction définie sur R par f(x) = x 2. x x2 = + x2 = + Soit f la fonction définiesur R par f(x) = x 4. x x4 = x4 =

2 T STI SIN Limites de fonctions 6//202 Lycée Don Bosco Activité 2 b. Limites finies On considère la fonction f définie sur [0 ; + [ par : f(x) = 2x x + 0, et dont la courbe représentative C dans le repère (O ; ı ; ȷ ) est donnée ci-contre.. Calculer f(0 2 ), f(0 6 ), f(0 8 ) et f(0 0 ). 2. En observant la représentation graphique, et les résultats de la première question, compléter la phrase : «f(x) est aussi proche que l on veut de, dès que x est assez grand (voisin de + ).» Définition : Soit f une fonction définie sur un intervalle I et l un nombre réel. ) Si I =]a ; + [, et si, la distance entre f(x) et l est aussi proche de zéro que l on veut, dès que x est assez grand (voisin de + ) alors on dit que la ite de f en + est égale à l et l on note : f(x) = l. 2) Si I =] ; a[, et si, la distance entre f(x) et l est aussi proche de zéro que l on veut, dès que x est assez petit (voisin de ) alors on que la ite de f en est égale à l et l on note : Exemple : Limite en et + de la fonction inverse : f(x) = l. x x x = 0 x = 0 2 c. Limite finie et Asymptotes horizontales Définition (interprétation graphique) : Soient une fonction f définie sur un intervalle de la forme [a ; + [ (respectivement ] ; a]) avec a un réel et C f sa courbe représentative. Lorsque la fonction f admet pour ite en + (r. en ) un réel k ; c est-à-dire: f(x) = k, r. f(x) = k x On dit que la droite d équation y = k est asymptote horizontale à C f au voisinage de + (r. ). Exemple : La droite d équation y = 0 est asymptote horizontale à la courbe représentative de la fonction inverse en + et. Et la droite y = 2 est asymptote horizontale à la courbe représentative de la fonction f de l activité 2 en.

3 T STI SIN Limites de fonctions 6//202 Lycée Don Bosco II. Activité 3 Limite d une fonction en a a. Limites infinies On considère la fonction f définie sur [ ; + [ par : f(x) = 2x x, et dont la courbe représentative C dans le repère (O ; ı ; ȷ ) est donnée ci-contre.. Calculer f(,), f(,00), f( ) et f( ). 2. En observant la représentation graphique, et les résultats de la première question, compléter la phrase : «f(x) est aussi proche que l on veut de, dès que x approche par la droite.» 3. Calculer f(0,9), f(0,999), f( 0 6 ) et f( 0 0 ). 4. En observant la représentation graphique, et les résultats de la première question, compléter la phrase : «f(x) est aussi proche que l on veut de, dès que x approche par la gauche.» Définition : Soit f une fonction définie sur un intervalle de la forme ]a ; + [ (ou [ ; a[) avec a un réel. On dit que la ites de f en a est égale à ±, et l on écrit : f(x) = ±, x a lorsque f(x) est aussi grand ou petit que l on veut (voisin de ± ), dès que x est suffisamment près de a (voisin de a). Exemple : Limites de le fonction inverse en 0 : Remarque : On distingueras la ite à droite de 0 c est-à-dire lorsque x > 0 (noté 0 + ) avec la ite à gauche de 0 : x < 0 (noté 0 ). x = + x = + x>0 3 x = x = x<0 b. Limites infinies et asymptotes verticales Définition (interprétation graphique): Soient f une fonction définie sur un intervalle de la forme ]a ; + [ (ou [ ; a[) avec a un réel et C f la courbe représentative de la fonction f. Lorsque la ites de f en a est égale à ± : f(x) = ± x a on dit que la droite d équation x = a est asymptote verticale à C f. Exemple : La droite d équation x = 0 est asymptote verticale à la courbe représentative de la fonction inverse en + et. Et la droite x = est asymptote verticale à la courbe représentative de la fonction f de l activité 3 en.

4 T STI SIN Limites de fonctions 6//202 Lycée Don Bosco c. Limites en un point du domaine de définition Théorème : Soit f une fonction polynôme, rationnelle, sinus, cosinus ou racine carrée définie sur un intervalle I et a un réel appartenant à I. On a alors f(x) = f(a). x a Remarque : Ce théorème nous permet de dire qu en tout point de l intervalle I la fonction f est continue. III. Calcul de ites a. Limites de références i. Fonction x x n, avec n entier naturel Théorème : Pour tout entier naturel n non nul on a : xn = +. Si n est pair : x xn = +. Si n est impair : x xn =. ii. Fonction x x Théorème : x = +. iii. Limite de la fonction inverse Théorème : x x = 0 x = + x = + x = 0. b. Opérations sur les ites i. Produit d une fonction par une constante Théorème : Soit f une fonction définie sur un intervalle I de R et k un réel non nul. - Si f(x) tend vers a, alors k f(x) tend vers ka. - Si f(x) tend vers +, alors k f(x) tend vers + si k est positif et si k est négatif. - Si f(x) tend ves, alors k f(x) tend vers si k est positif et si k est négatif. Ces résultats sont valables, pour un ite quand x tend vers x 0 appartenant à l intervalle I, ou une borne de I, ou quand x tend vers ±. 4

5 T STI SIN Limites de fonctions 6//202 Lycée Don Bosco ii. Somme de deux fonctions Théorème : Soit f et g deux fonctions définies sur un intervalle I de R, et a et b deux réels. - Si f(x) tend vers a et g(x) vers b alors f(x) + g(x) tend vers a + b. - Si f(x) tend vers a et g(x)tend vers +, alors f(x) + g(x) tend vers +. - Si f(x) tend vers a et g(x)tend vers, alors f(x) + g(x) tend vers. - Si f(x) tend vers + et g(x)tend vers +, alors f(x) + g(x) tend vers +. - Si f(x) tend vers et g(x)tend vers, alors f(x) + g(x) tend vers. Remarque : Si f(x) tend vers et g(x)tend vers +, alors on ne peut conclure sur la ite de f(x) + g(x) c est une forme indéterminée. iii. Produit de deux fonctions Théorème : Soit f et g deux fonctions définies sur un inervalle I de R, et a et b deux réels. - Si f(x) tend vers a et g(x)tend vers b, alors f(x) g(x) tend vers ab. - Si f(x) tend vers a (avec a 0) et g(x)tend vers +, alors f(x) g(x) tend vers ± selon le signe de a. - Si f(x) tend vers ± et g(x)tend vers±, alors f(x) g(x) tend vers ± selon la règle du produit. Remarque : Si f(x) tend vers 0 et g(x) tend vers ±, alors on ne peut conclure sur la ite de f(x) g(x) c est une forme indéterminée. iv. Puissance d une fonction Théorème : Soit u une fonction définie sur un intervalle I de R, n un entier naturel non nul et a un réel. - Si u(x) tend vers a, alors u n (x) tend vers a n. - Si u(x) tend vers +, alros u n (x) tend vers +. - Si u(x) tend vers et n est pair, alors u n (x) tend vers + - Si u(x) tend vers et n est impair, alors u n (x) tend vers v. Inverse d une fonction Théorème : Soit u une fonction définie sur un intervalle I de R telle que u ne s annule pas sur I. - Si u(x) tend vers ±, alors u(x) tend vers 0. - Si u(x) tend vers un réel a non nul, alors u(x) tend vers a. - Si u(x) tend vers 0 et est strictement positif sur I, alors - Si u(x) tend vers 0 et strictement négatif sur I, alors Exemple : Limite en 0 de la fonction x x : u(x) La fonction x x est définie est positive sur [0 ; + [, sa ite en 0 est 0. On déduit du théorème précédent : x = + u(x) vi. Limites des fonctions x xn, avec n entier naturel tend vers +. tend vers

6 T STI SIN Limites de fonctions 6//202 Lycée Don Bosco Théorème : Limites en + et en : xn = 0 et x L axe des abscisses est asymptote à la courbe en + et en. Limites en 0 : - Si n est pair : - Si n est impair : x>0 x>0 L axe des ordonnées est asymptote à la courbe en 0. xn = + et x<0 xn = + et x<0 Exemples : Représentation des fonctions x x 2 et x x 3 : x n = 0 xn = + xn = vii. Quotient de deux fonctions Théorème : Soient f et g deux fonctions définies sur un intervalle I de R telles que g ne s annule pas sur I. - Si f(x) tend vers un réel a et g(x) vers un réel b non nul, alors f(x) tend vers a. g(x) b - Si f(x) tend vers un réel a et g(x) vers l infini (+ ou ), alors f(x) tend vers 0. g(x) - Si f(x) tend vers un réel a non nul est g(x) tend vers 0, alors f(x) tend vers + ou. g(x) Selon le signe de a et de g(x) Exemple : Soit la fonction u définie sur I =] ; 3[ par u(x) = x+. x 3 On cherche la ite de u(x) quand x tend vers 3. On a : x 3 (x + ) = 4 et (x 3) = 0. Donc la fonction x x + tend vers 4 qui est strictement positif et la fonction x x 3 est négative sur I, donc d après le théorème précédents : u(x) =. x 3 x 3 Donc la droite d équation x = 3 est asymptote verticale à la courbe représentative de u. 6

FONCTIONS : Limites Continuité Dérivée Trigonométrie

FONCTIONS : Limites Continuité Dérivée Trigonométrie FONCTIONS : Limites Continuité Dérivée Trigonométrie I) PRELIMINAIRES Voir activité II) LIMITE D UNE FONCTION EN + et ) Limite infinie en + et Soit f une fonction définie sur un intervalle de la forme

Plus en détail

x f(x)

x f(x) Limites de fonctions I) Limite d une fonction en plus l infini Etudier la ite d une fonction f en + c est étudier le comportement des nombres f(x) lorsque x tend vers +. ) Exemples Exemple : x 0 20 30

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

Limites Comportement asymptotique

Limites Comportement asymptotique Limites Comportement asymptotique Christophe ROSSIGNOL Année scolaire 2009/200 Table des matières Limite d une fonction en, en 3. Limite infinie en, en...................................... 3.2 Limite

Plus en détail

TERMINALE S Chapitre 2 : LIMITES DE FONCTIONS

TERMINALE S Chapitre 2 : LIMITES DE FONCTIONS SOMMAIRE LIMITES DE FONCTIONS *. 1. LIMITES D UNE FONCTION... 2 LIMITES A L INFINI... 2 LIMITE REELLE ( OU FINIE) EN + ET -... 2 LIMITE INFINIE EN + ET -... 2 LIMITES EN UN REEL A... 3 LIMITE INFINIE EN

Plus en détail

LIMITES ET CONTINUITÉ

LIMITES ET CONTINUITÉ LIMITES ET CONTINUITÉ Ph DEPRESLE septembre 05 Table des matières Limites à l infini. Limites infinies............................................ Limites finies-asymptotes horizontales.............................

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation ) Définition et interprétation géométrique : Soient f une fonction définie sur un intervalle I de R et a I. La fonction est dérivable

Plus en détail

LIMITES ET CONTINUITE

LIMITES ET CONTINUITE LIMITES ET CONTINUITE I) LIMITES A L'INFINI ) Limite infinie à l'infini Si tout intervalle ]A;+ [ contient tous les f(x) pour x assez grand, on dit que f a pour ite + en +. on écrit f x = f x = A > 0,

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation Ce que dit le programme : Nouveautés par rapport à la première : Dérivée de la composée et écriture différentielle (pour la physique)

Plus en détail

Terminale SSI 1 Chapitre 1 : limites et continuité 1

Terminale SSI 1 Chapitre 1 : limites et continuité 1 Terminale SSI 1 Chapitre 1 : limites et continuité 1 1 Introduction 1.1 Limites de suites En classe de première, on a déjà rencontré les limites de suites. Définition On dit qu'une suite u, définie sur

Plus en détail

LIMITES et CONTINUITE

LIMITES et CONTINUITE LIMITES et CONTINUITE I. LIMITES EN L INFINI a) Limite infinie Par exemple, considérons la fonction f dont la courbe représentative est : Lorsque x s'en va vers +, f(x) devient de plus en plus grand. il

Plus en détail

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité Chapitre. Compléments sur les fonctions : ites, continuité, dérivabilité I. Rappels de cours. Limites d une fonction Soit l R. (i) Limites en + et en On dit que f() tend vers l lorsque tend vers + quand

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie Finance et Gestion L1-S1 : MATH101 : Pratique des Fonctions numériques Notes de cours : Chapitre II : Limites Notations

Plus en détail

Cours de terminale S - Généralités sur les fonctions

Cours de terminale S - Généralités sur les fonctions les fonctions LPO de Chirongui - Exercices : Savoir Faire (livre)- Déterminer une ite Interprétation graphique Livre Indice BORDAS - Page 45 Exercice 34, 35, 36 et 37 page 56 - Limite finie à l infini

Plus en détail

Chapitre 3. Continuité, dérivation et limite d une fonction

Chapitre 3. Continuité, dérivation et limite d une fonction Chapitre 3. Continuité, dérivation et limite d une fonction I. Continuité Définition : Continuité d une fonction Dire que f est continue en a signifie que f a une limite finie en a ; cette limite est alors

Plus en détail

TS Limites de fonctions Cours

TS Limites de fonctions Cours TS Limites de fonctions Cours I. Limites à l infini. Limite infinie en + ( 3 ) Définition Une fonction f a pour limite + en + si pour toute valeur réelle A, on a f() > A pour assez grand c est à dire pour

Plus en détail

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en Chaudronnerie Industrielle Chapitre Fonctions de référence...3 I Fonctions affines...3 a) Signe d'une fonction affine...3 II

Plus en détail

Limites et continuité

Limites et continuité 1 Limites et continuité Table des matières 1 Limites - Rappels de première 2 1.1 Définition................................. 2 1.2 Asymptotes parallèles aux axes..................... 3 1.3 Limites des

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions Limites de suites et de fonctions Le chapitre précédent traitait des suites numériques. On avait, en particulier, dit qu elles avaient des variations tout comme les fonctions. Il est rare de devoir calculer

Plus en détail

Chapitre 2 : Limites et asymptotes

Chapitre 2 : Limites et asymptotes I Eercices 1 Limites sans indétermination Calculer les ites des fonctions suivantes, et préciser lorsque la courbe représentative de f (notée (C f )) admet une asymptote horizontale ou verticale. 1. f()

Plus en détail

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique

Plus en détail

Un problème sans solution est un problème mal posé. Albert Einstein. Physicien allemand.

Un problème sans solution est un problème mal posé. Albert Einstein. Physicien allemand. Chapitre 1 Étude de fonctions Un problème sans solution est un problème mal posé. Albert Einstein. Physicien allemand. 1 Fonctions usuelles 1.1 Fonction en escalier Définition 1.1 Une fonction en escalier

Plus en détail

Partie A : Limites de fonctions

Partie A : Limites de fonctions Chapitre 2 I Limite d une fonction en ou en A) Limite finie en ou en 1) Activité 1 Partie A : Limites de fonctions On considère la fonction définie pour tout par de courbe représentative a) A l aide d

Plus en détail

Étude de fonctions Limites et continuité

Étude de fonctions Limites et continuité Chapitre 3 Term.S Étude de fonctions Limites et continuité Ce que dit le programme : CONTENUS Limites de fonctions Limite finie ou infinie d une fonction à l infini. Limite infinie d une fonction en un

Plus en détail

Limites de fonctions

Limites de fonctions DERNIÈRE IMPRESSIN LE 9 octobre 204 à 9:32 Limites de fonctions Table des matières Limite finie ou infinie à l infini 2. Limite finie à l infini........................... 2.2 Limite infinie à l infini..........................

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Dérivation et fonctions trigonométriques

Dérivation et fonctions trigonométriques Dérivation et fonctions trigonométriques 1. Compléments sur la dérivation Théorème. Soit une fonction à valeurs positives dérivable sur un intervalle. Alors est dérivable sur et. Soit. La fonction est

Plus en détail

Limites de fonctions, cours, terminale STI

Limites de fonctions, cours, terminale STI Limites de fonctions, cours, terminale STI F.Gaudon 7 octobre 2 Table des matières Limites nies à l'inni 2 2 Limites innies à l'inni 3 3 Opérations sur les limites à l'inni 5 3. Addition.............................................

Plus en détail

Limites et comportement asymptotique Exercices corrigés

Limites et comportement asymptotique Exercices corrigés Limites et comportement asymptotique Eercices corrigés Sont abordés dans cette fiche : Eercice 1 : détermination graphique d une limite et d une équation d asymptote à une courbe (asymptote verticale et

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES

ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES I. La continuité : Définition : ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES 1 ) Définition : Soit f une fonction définie sur un intervalle I. Graphiquement, on reconnaît qu'une fonction est continue sur un

Plus en détail

Fonctions de référence 1

Fonctions de référence 1 Fonctions de référence Les fonctions sinus et cosinus. Définitions Le plan étant muni d un repère orthonormé (O; I, J), on peut associer à tout réel x un unique point M sur le cercle trigonométrique. (voir

Plus en détail

5 Limites de fonctions

5 Limites de fonctions 5 Limites de fonctions Manuel Repères p.54. Objectifs : Comprendre les notions de ite finie ou infinie d une fonction, en un point ou à l infini Savoir déterminer la ite d une somme, d un produit, d un

Plus en détail

Fonctions usuelles réelles

Fonctions usuelles réelles Fonctions usuelles réelles fonctions polynômes et rationnelles 0. les fonctions polynômes Les polynômes seront étudiés en le détail au chapitre 7. définition 4. : n dit que p est une fonction polynôme

Plus en détail

Analyse 1 re année IUT GEA Notes de cours

Analyse 1 re année IUT GEA Notes de cours Analyse re année IUT GEA Notes de cours Jean-Marie Favreau Année 200 20 Remarque : l introduction de ce cours, présentée en quelques minutes, de manière interactive, permet de placer quelques rappels simples,

Plus en détail

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ A. Limites d'une fonction I. Limite en et en. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ où a R. DÉFINITIONS Soit l un réel.

Plus en détail

Formulaire des fonctions usuelles

Formulaire des fonctions usuelles Université d Orléans Formulaire des fonctions usuelles Licence 1 de Mathématiques Groupe 2 Baptiste Morelle 29/09/2008 Page 1 sur 28 Page 2 sur 28 Table des matières Fonctions particulières... 4 Fonction

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

APPLICATIONS DE LA DERIVATION

APPLICATIONS DE LA DERIVATION APPLICATIONS DE LA DERIVATION 1 I. Sens de variation d une fonction ; extréma : 1) Cas d une fonction constante : On a vu que si f est une fonction constante définie sur un intervalle I de IR alors f (x)

Plus en détail

PRATIQUE DES FONCTIONS NUMÉRIQUES

PRATIQUE DES FONCTIONS NUMÉRIQUES UNIVERSITÉ DE CERGY U.F.R. Economie et Gestion Licence d Économie et Gestion L1 - S1 PRATIQUE DES FONCTIONS NUMÉRIQUES EXAMEN PREMIÈRE SESSION - Janvier 01 - heures Les exercices sont indépendants et peuvent

Plus en détail

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction On dit qu une fonction est dérivable sur un intervalle I si elle est définie sur I et admet en chaque point de I un nombre dérivé.

Plus en détail

Sommaire. Prérequis. Généralités sur les fonctions

Sommaire. Prérequis. Généralités sur les fonctions Généralités sur les fonctions Stépane PASQUET, 4 octobre 06 C Sommaire Limites aux infinis....................................... Limite en un nombre fini, ite à droite, ite à gauce d un nombre fini........

Plus en détail

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M "pour x assez grand"

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M pour x assez grand Terminale S Capitre «Fonctions : ites, continuité et dérivabilité» Page I) Limites ) Limites à l infini a) Limite finie Définition : Etant donnée une fonction f et un réel α, on dira quelle tend vers α

Plus en détail

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail

Continuité et limites

Continuité et limites Continuité et ites Nous entamons à présent le programme de Terminale Economique et Sociale. Cette année c est le bac! Alors Concentrezvous bien sur chacun des chapitre et tacher de tout retenir. Nous avions

Plus en détail

La fonction exponentielle

La fonction exponentielle 1 et définition La fonction exponentielle Il existe une unique fonction f dérivable sur R telle que :.................. Définition Cette fonction est appelée............................ On note : Ainsi

Plus en détail

1.2 Plan d étude et exemples types.

1.2 Plan d étude et exemples types. Université de Rennes Licence Biologie Mathématiques Année 2008-2009.2 Plan d étude et exemples types..2. But Le but de ce chapitre est d étudier les fonctions comme celles données dans les exemples précédents.

Plus en détail

Limites et continuité

Limites et continuité ANALYSE Limites et continuité Connaissances nécessaires à ce chapitre Déterminer la ite éventuelle d une suite géométrique Étudier la ite d une somme, d un produit ou d un quotient de deu suites Auto-évaluation

Plus en détail

Cours de mathématique en TS d Eric ZERBIB, professeur au lycée Pardailhan à Auch,

Cours de mathématique en TS d Eric ZERBIB, professeur au lycée Pardailhan à Auch, Un peu d histoire La notion de dérivée a vu le jour au XVII e siècle dans les écrits de Leibniz et de Newton qui la nomme fluxion et qui la définit comme «le quotient ultime de deux accroissements évanescents».

Plus en détail

Continuité Compléments de dérivation

Continuité Compléments de dérivation Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a......................................... 1. Définitions

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier.......................................... Fonctions affines............................................

Plus en détail

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2.

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2. Chapitre III : Dérivées de fonctions composées et primitives I. Dérivées de fonctions composées a) Formule Propriété : g est une fonction dérivable sur un intervalle J. u est une fonction dérivable sur

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 04 05 L Économie Cours de M. Desgraupes Corrigé des exercices de mise à niveau en Mathématiques Séance 0 : Fonctions usuelles

Plus en détail

Introduction aux limites de fonctions

Introduction aux limites de fonctions Introduction aux ites de fonctions 1. Définition de la ite d'une fonction Une fonction est le lien entre 2 quantités qui évoluent ensemble. L'intérêt est qu'à partir de l'une on peut connaître l'autre.

Plus en détail

LEÇON N 59 : 59.1 Limite à l infini Limite finie et infinie

LEÇON N 59 : 59.1 Limite à l infini Limite finie et infinie LEÇON N 59 : Limite à l infini d une fonction à valeurs réelles. Branches infinies de la courbe représentative d une fonction. Eemples. L eposé pourra être illustré par un ou des eemples faisant appel

Plus en détail

soit confondu avec son cercle circonscrit C (par définition un polygone est un polygone et non pas un cercle). Or, si l on trace P

soit confondu avec son cercle circonscrit C (par définition un polygone est un polygone et non pas un cercle). Or, si l on trace P Limite d une fonction Approche intuitive de la notion de limite Dans ce chapitre, nous avons besoin d un outil mathématique appelé «Limite» qui est une notion fort nécessaire pour la compréhension et la

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES LIMITES EXERIES ORRIGES Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) 4 ) Déterminer la ite éventuelle en de chacune des onctions suivantes : 4) 5) 5 6) Déterminez les

Plus en détail

Chapitre 6 : La fonction exponentielle

Chapitre 6 : La fonction exponentielle I Définition Chapitre 6 : La fonction exponentielle Propriété (admise) I J Soient u : une fonction affine, et v une fonction dérivable sur l intervalle x ax+b J. Alors la fonction f définie sur I par f(x)

Plus en détail

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y.

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. LES FONCTIONS I - RAPPELS I-1 - Définition Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. L ensemble des point tel f(x)=y est représenté

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

T.S L 2. Limite d une fonction. Limites de fonctions, continuité et dérivabilité. I.1 Activités. I.2 Définitions

T.S L 2. Limite d une fonction. Limites de fonctions, continuité et dérivabilité. I.1 Activités. I.2 Définitions T.S Limites de fonctions, continuité et dérivabilité. L 2 Le second degré, vu en classe de ère S, est à connaître IMPÉRATIVEMENT : solutions événtuelles d une équation du second degré, signe d une epression

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal Cours de Terminale S / Fonctions : ites et continuité E. Dostal Août 204 Table des matières 2 Fonctions : ites et continuité 2 2. Limites.............................................. 2 2.2 Théorèmes.............................................

Plus en détail

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités Chapitre 5 Généralités sur les fonctions numériques 5.1 Généralités Définition 5.1 Une fonction numérique permet d associer à chaque nombre x d un ensemble D un autre nombre que l on note f(x). On note

Plus en détail

Cours de Terminale S / Compléments sur les fonctions. E. Dostal

Cours de Terminale S / Compléments sur les fonctions. E. Dostal Cours de Terminale S / Compléments sur les fonctions E. Dostal septembre 013 Table des matières 3 Compléments sur les fonctions 3.1 Fonctions trigonométriques................................... 3.1.1 Définitions

Plus en détail

Table des matières. 1- Limites en l'infini- Asymptotes LIMITES- CONTINUITÉ

Table des matières. 1- Limites en l'infini- Asymptotes LIMITES- CONTINUITÉ Table des matières - Limites en l'infini- Asmptotes... -- Limite finie en l'infini... --- Définition... --2- Interprétation graphique:... 2 --3- Eemple:... 2-2- Limite infinie en l'infini... 2-2-- Définition...

Plus en détail

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES)

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES) DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

Généralités sur les fonctions numériques à variables réelles

Généralités sur les fonctions numériques à variables réelles «I» : Définitions 1/ Fonction Généralités sur les fonctions numériques à variables réelles Une fonction numérique à variable réelle f est une «machine mathématique» qui associe à chaque réel, soit un unique

Plus en détail

Limites de fonctions.

Limites de fonctions. . Définitions... p2 2. Règes opératoires sur es imites... p4 3. Théorème de comparaison des imites, théorème des gendarmes... p6 Copyright meieurenmaths.com. Tous droits réservés . Définitions.. Limite

Plus en détail

Plan d'étude d'une fonction. , f x = f x alors f est impaire.

Plan d'étude d'une fonction. , f x = f x alors f est impaire. 1 Recherche de l'ensemble de définition Plan d'étude d'une fonction. Fonctions rationnelles. f x existe si le dénominateur n'est pas nul. 2n Fonctions avec radical du type. f x existe si la quantité sous

Plus en détail

Etude de la fonction logarithme

Etude de la fonction logarithme Etude de la fonction logarithme Après un bref rappel des résultats vus dans le module de définition des fonctions logarithmes, nous menons l étude approfondie de la fonction logarithme népérien. 1/ Rappels

Plus en détail

maîtriser le cours (page 48)

maîtriser le cours (page 48) e) > donc la première inégalité équivaut à - sin N cos et sont strictement positis donc la seconde inégalité équivaut à cos N - sin et donc pour tout de sin cos N - N b) Le téorème d encadrement et le

Plus en détail

Chapitre 3 Compléments sur les fonctions

Chapitre 3 Compléments sur les fonctions Chapitre 3 Compléments sur les fonctions A) Fonction valeur absolue f(x) = x 1) Définition La valeur absolue d un nombre réel est obtenue en retirant le signe s il est négatif. Autrement dit, x = x si

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE Ph DEPRESLE 29 juin 205 Table des matières Propriétés algébriques 2 2 Nouvelle notation 2 3 Étude de la fonction exponentielle 2 3. Variations et ites........................................

Plus en détail

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID I TNGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et C f sa courbe

Plus en détail

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ;

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ; Sujets de bac : Ln Sujet n 1 : extrait de Liban juin 2004 Partie A Soit la fonction définie sur 0; par 2 ln. 1) Etudier les variations de sur 0; et préciser ses ites en 0 et en. a. Montrer que l équation

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Limite d une fonction à l infini. Limite finie à l infini Définition : Dire qu une fonction f a pour ite le nombre réel l en + signifie que tout intervalle ouvert contenant

Plus en détail

2 Généralités sur les fonctions

2 Généralités sur les fonctions Chapitre Généralités sur les fonctions. Fonctions usuelles.. Fonction racine carrée Définition. On appelle fonction racine carrée la fonction définie sur R + par x x. Théorème. La fonction racine carrée

Plus en détail

FONCTION LOGARITHME. ln = a.

FONCTION LOGARITHME. ln = a. FONCTION LOGARITHME I. DEFINITION DU LOGARITHME a) Définition Problème : Soit a un réel strictement positif. Démontrer que l équation e x = a admet une solution unique α dans IR. (théorème des valeurs

Plus en détail

Continuité d une fonction et équation

Continuité d une fonction et équation Continuité d une fonction et équation I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative sur l intervalle I se fait

Plus en détail

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée I- DÉRIVÉE ET SENS DE VARIATION 1) Du sens de variation au signe de la dérivée Théorème (admis) : soit f une fonction définie et dérivable sur un intervalle I. o Si f est une fonction croissante sur I,

Plus en détail

CONTINUITÉ - LIMITES

CONTINUITÉ - LIMITES CONTINUITÉ - LIMITES I Continuité - Théorème des valeurs intermédiaires Notion de continuité On peut déinir mathématiquement la notion de continuité d'une onction mais cette déinition relativement compliquée

Plus en détail

Exemple :La fonction définie par f (x) 2 1 x

Exemple :La fonction définie par f (x) 2 1 x LIMITES de FONCTIONS I. Limite d'une fonction à l'infini 1) Limite finie à l'infini Définition : Soit f une fonction définie sur un intervalle de la forme [ ; + [. On dit que la fonction f admet pr ite

Plus en détail

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui Chapitre 6 : CONTINUITE - DERIVATION 1. CONTINUITE 1. 1 Continuité en un point Définition Soit f une fonction numérique définie sur un intervalle I de R, et a un élément de I (distinct des bornes de I)

Plus en détail

TERMINALE ES Fonctions 2/2 La convexité

TERMINALE ES Fonctions 2/2 La convexité * 1. Rappels sur la dérivation 1. Définition Soit f une fonction définie sur un intervalle I de R et a un réel de I. Soit h un nombre très petit et non nul. Alors Dire que f est dérivable en a de I signifie

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

Limite d une fonction en un point

Limite d une fonction en un point Limite d une fonction en un point Définiton Soit f une fct déf. sur un intervalle I de R, sauf p-ê en a I. l R est la limite de f en a si, quand x I se rapproche de a, f (x) se rapproche de l. Dans ce

Plus en détail

Synthèse de cours PanaMaths Fonctions dérivables convexes

Synthèse de cours PanaMaths Fonctions dérivables convexes Synthèse de cours PanaMaths Définitions et eemples fondamentau Définitions à un point Soit C sa courbe représentative dans un repère tel que l ae des ordonnées est orienté du bas vers le haut La fonction

Plus en détail

DERIVATION. ou f'(x 0 ) = lim. h 0

DERIVATION. ou f'(x 0 ) = lim. h 0 DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Fonctions Remise à Niveau Mathématiques Deuième partie : Fonctions Corrigés des eercices Page sur 0 RAN Fonctions Eercices corrigés - Rev 03 Mathématiques RAN - Fonctions DÉFINITIONS

Plus en détail

Fonctions : Dérivation-Composition

Fonctions : Dérivation-Composition Fonctions : Dérivation-Composition Terminale S 2011/2012 15 septembre 2011 Terminale S (2011/2012) Lycée Français de Valence 15 septembre 2011 1 / 21 Nombre dérivé Plan 1 Compléments sur la dérivation

Plus en détail

I. Variations. Études de fonctions. A. Sens de variation. B. Extremums. Préparer son entrée en Terminale S. Définition

I. Variations. Études de fonctions. A. Sens de variation. B. Extremums. Préparer son entrée en Terminale S. Définition I. Variations A. Sens de variation On dit que f est croissante sur I lorsque, pour tout réels a et b de I si a < b alors f(a) f(b). Ainsi la croissance conserve l ordre. On dit que f est décroissante sur

Plus en détail

Dérivation Continuité

Dérivation Continuité Dérivation Continuité Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Nombre dérivé Fonction dérivé 2 1.1 Nombre dérivé.......................................... 2 1.2 Fonction dérivée.........................................

Plus en détail

Portail des étudiants d'économie Mathématiques Ch. 3 : Limites et Dérivées. On appellera voisinage d un réel a tout intervalle ouvert contenant a.

Portail des étudiants d'économie Mathématiques Ch. 3 : Limites et Dérivées. On appellera voisinage d un réel a tout intervalle ouvert contenant a. (*) WWW.SEGBM.NET 1 Portail des étudiants d'économie Mathématiques Ch. 3 : Limites et Dérivées 1 Notion de limites 1.1 Voisinages On appellera voisinage d un réel a tout intervalle ouvert contenant a.

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

DEVOIRS ET CORRIGÉS 2B MATH II Guy Greisen

DEVOIRS ET CORRIGÉS 2B MATH II Guy Greisen DEVOIRS ET CORRIGÉS B MATH II 006-007 Guy Greisen 3 juillet 007 B MATHÉMATIQUES II 1.1 18.10.006 1. Enoncer la définition de : f(x) = + x a. Démontrer à l aide de la définition que : x 3 (3 x) = + f :

Plus en détail

Terminale ES. Les fonctions exponentielles

Terminale ES. Les fonctions exponentielles Terminale ES 1 x q x avec q > 0 I Fonction exponentielle de base q Propriété - Définition q désigne un nombre réel strictement positif. On considère le nuage de points représentatif de la suite (q n ).

Plus en détail