Justifier. 2) Comment déceler des transformations dans une figure? 7-8

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Justifier. 2) Comment déceler des transformations dans une figure? 7-8"

Transcription

1 Justifier 1) Comment justifier que page a) un quadrilatère est un parallélogramme, 2 b) un quadrilatère est un rectangle, 3 c) un quadrilatère est un losange, 4 d) un quadrilatère est un carré, 4 e) un quadrilatère est un cerf-volant, 5 f) un triangle est isocèle, 6 g) un triangle est équilatéral? 6 2) Comment déceler des transformations dans une figure? 7-8 3) Comment justifier que a) deux droites sont perpendiculaires, 9 b) deux droites sont parallèles, 10 c) trois droites sont concourantes, 11 d) trois points sont alignés? 12 4) Comment comparer a) des longueurs, 13 b) des aires, 14 c) des amplitudes? 15 5) Comment calculer a) des longueurs, 16 b) des aires, 17 c) des amplitudes? 18 6) Comment justifier que des triangles sont isométriques? 19 7) Comment justifier que des triangles sont semblables? 20 1

2 Quadrilatères Le quadrilatère ABCD ce quadrilatère 1) a deux paires de côtés parallèles est un parallélogramme 2) a ses diagonales qui ont le même milieu est un parallélogramme 3) a deux côtés parallèles de même longueur et est convexe est un parallélogramme 4) a ses côtés opposés de même longueur et est convexe est un parallélogramme 5) a un centre de symétrie (est invariant par rotation de 180 ) et est convexe est un parallélogramme 2

3 Quadrilatères Le quadrilatère ABCD ce quadrilatère 1) a quatre angles droits est un rectangle 2) est un parallélogramme et a un angle droit est un rectangle 3) est un parallélogramme et a ses diagonales de même longueur est un rectangle 4) a ses médianes comme axes de symétrie (invariant par retournement autour de ses médianes) est un rectangle 3

4 Quadrilatères Le quadrilatère ABCD ce quadrilatère 1) a quatre côtés de même longueur est un losange 2) est un parallélogramme et a deux côtés consécutifs de même longueur est un losange 3) est un parallélogramme et a ses diagonales perpendiculaires est un losange 4) a ses diagonales comme axes de symétrie (invariant par retournement autour de ses diagonales) est un losange 5) est rectangle et losange est un carré 6) est invariant par rotation de 90 est un carré 4

5 ACB= DCA Quadrilatères Le quadrilatère ABCD ce quadrilatère 1) a une diagonale comme axe de symétrie est un cerf-volant 2) AB = AD BC = DC est un cerf-volant 3) AB = AD et est un cerf-volant 4) est un cerf-volant 5

6 Triangles Le triangle ABC ce triangle 1) a deux côtés de même longueur est isocèle 2) a deux angles de même amplitude est isocèle 3) a un axe de symétrie est isocèle 4) A est sur la médiatrice de [BC] est isocèle 5) a trois côtés de même longueur est équilatéral 6) a trois angles de même amplitude est équilatéral 7) a trois axes de symétries est équilatéral 8) est isocèle et a un angle de 60 est équilatéral 9) est invariant par rotation de 120 est équilatéral 6

7 Déceler des transformations la figure est Je peux m'orienter vers la symétrie de centre M 1) un parallélogramme des translations de couples (A,B) et (D,C) (A,D) et (B,C) et les réciproques 2) un rectangle voir parallélogramme + les symétries orthogonales d'axes m 1 et m 2 3) un losange voir parallélogramme + des symétries orthogonales d'axes d 1 et d 2 4) un carré voir rectangle et losange + des rotations de 90 de centre M de centre S 5) un trapèze isocèle la symétrie orthogonale d'axe m 6) un cerf-volant la symétrie orthogonale d'axe d 7

8 Déceler des transformations la figure est Je peux m'orienter vers 7) un triangle isocèle la symétrie orthogonale d'axe m la rotation de centre A qui applique B sur C et sa réciproque trois symétries orthogonales 8) un triangle équilatéral des rotations de centre G et d'angle 120 des rotations de centre S et d'angle 60 8

9 Droites perpendiculaires 1. une droite a est image de b par une rotation de 90 a b 2. a et b forment un angle de 90 a b 3. [AB] est diamètre d un cercle et C un point de ce cercle AC CB 4. A est image de B par la symétrie d axe x AB x 5. Dans un triangle ABC, AC ² = AB ² + BC ² AB BC ABC est un triangle rectangle en B 9

10 Droites parallèles 1. une droite a est image de b par une rotation de 180 (un demi-tour, une symétrie centrale) a // b 2. a b et c b a // c 3. une droite a est image de b par une translation a // b 4. les droites a et b forment avec c des alternes-internes de même amplitude a // b 5. les droites a et b forment avec c des correspondants de même amplitude a // b 6. ABC est un triangle M est le milieu de [AB] N est le milieu de [AC] MN // BC 10

11 Droites concourantes 1. le point O est commun à deux médiatrices d un triangle ABC O est sur la troisième médiatrice du triangle 2. le point I est commun à deux bissectrices d un triangle ABC I est sur la troisième bissectrice du triangle 3. les droites sécantes a et b sont images par une symétrie d axe x a, b et x sont concourantes 11

12 Points alignés 1. AB // BC A, B et C sont alignés 2. CÂB = 180 ( angle plat ) A, C et B sont alignés 3. les angles adjacents CÂB et BÂD sont supplémentaires C, A et D sont alignés 4. AX + XB = AB A, X et B sont alignés X est un point du segment AB 12

13 XY v= YZ = v XZ = Comparer des longueurs 1. [AB] est l image de [CD] par une translation 2. [AB] est l image de [CD] par une rotation AB = CD 3. [AB] est l image de [CD] par une symétrie orthogonale 4. [AB] est l image de [CD] par une symétrie centrale 5. le triangle ABC est isocèle en A AB = AC 6. ABCD est un parallélogramme AB = CD AC = BD 7. X est sur la médiatrice de [BC] XB = XC 8. X est sur la bissectrice de CÂB d( X, AC) = d(x, AB) 9. ABC est un triangle AB < AC + CB AC < AB + BC BC < AB + AC 10. a // b // c // d 11. ABC et XYZ sont semblables 13

14 Comparer des aires 1. F et G sont images par une translation une rotation une symétrie orthogonale une symétrie centrale (F et G sont isométriques) F et G ont la même aire 2. F est à l échelle n par rapport à G (F et G sont semblables) aire de F = n². aire de G 3. F et G sont deux parallélogrammes et ont même base et même hauteur F et G ont la même aire 4. F et G sont deux triangles et ont même base et même hauteur F et G ont la même aire 5. F et G sont deux parallélogrammes de même base et de hauteurs h 1 et h 2 de même hauteur et de bases b 1 et b 2 6. F et G sont deux triangles de même base et de hauteurs h 1 et h 2 de même hauteur et de bases b 1 et b 2 14

15 43 3B AB 2B A= 31= = Bet = CY B= 1C 42 DZ Comparer des amplitudes 1.  et Ô sont images par une translation une rotation une symétrie orthogonale une symétrie centrale  et Ô ont même amplitude les correspondants sont égaux 2. a et b sont parallèles les alternes-internes sont égaux 3. a et b sont parallèles 4. le triangle ABC est isocèle en A 5. ABCD est un parallélogramme 6. a et b sont deux droites sécantes les angles opposés par le sommet sont égaux 7. A,B,C,D sont des points d un cercle 8. ABC et XYZ sont semblables 15

16 CB n Calculer des longueurs 1. aire du carré ABCD est n AB = 2. ABC est un triangle M est le milieu de [BC] N est le milieu de [AB] MN = ½ AC 3. ABCD est un trapèze (AB//CD) M est le milieu de [AD] N est le milieu de [BC] MN = ½ ( AB + CD ) 4. ABC est un triangle rectangle en A BC ² = AB ² + AC ² 5. ABC est un triangle rectangle en A et M est le milieu de l hypoténuse [BC] AM = BM = MC = ½ BC 6. ABC est un triangle rectangle en A et H est le pied de la hauteur sur [BC] 7. a // b // c // d BC AH = BA AC AH ² = BH HC AB ² = BC BH AC ² = BC CH u = k u v = k v k est le coefficient de projection 8. ABC et XYZ sont semblables 9. ABC est un triangle rectangle en A AB = k XY AC = k XZ BC = k YZ AB = BC cos AB = BC sin AC = BC cos AC = BC sin 16

17 Calculer des aires 1. ABCD est un rectangle aire ABCD = x y 2. ABCD est un parallélogramme aire ABCD = x y 3. ABC est un triangle aire ABC = ½ r s = ½ u t = ½ x y 4. ABC est un triangle rectangle aire ABC = ½ r s = ½ x h 5. ABCD est un trapèze aire ABCD = ½ (r + s) t 6. ABCD est un losange aire ABCD = ½ r s 17

18 180 C+ B,ACet (-360 D+ = 90 C Btg AB Ctg )BA(- )CBA B- 90 Calculer des amplitudes 1. Dans un triangle ABC, les angles sont connus 2. Dans un quadrilatère ABCD, les angles sont connus 3. Dans un triangle rectangle en A, l angle est connu 4. Dans un triangle rectangle en A, les côtés sont connus 5. Dans un triangle ABC, AC ² = AB ² + BC ² ABC est un triangle rectangle 18

19 A= C= XZ Triangles isométriques 1. AB = XY AC = XZ BC = YZ 2. AB = XY AC = XZ ABC et XYZ sont isométriques 3. AC = XZ 19

20 B= A= YX Triangles semblables 1. AB = k XY AC = k XZ BC = k YZ 2. ABC et XYZ sont semblables 3. AB = k XY AC = k XZ 20

Index. M médiatrice...24

Index. M médiatrice...24 Index A alternes-externes... 23 alternes-internes... 23 angle au centre... 35 angle inscrit... 35 angle tangentiel... 35 axe de symétrie... 4 B bissectrice... 25 C centre de symétrie... 6 centre de symétrie...

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

Propriétés de géométrie plane vues au collège

Propriétés de géométrie plane vues au collège Propriétés de géométrie plane vues au collège Théorème de Pythagore Théorème de Pythagore : Dans un triangle rectangle, le carré de la longueur de l hypoténuse est égal à la somme des carrés des longueurs

Plus en détail

Les triangles : droites et points remarquables

Les triangles : droites et points remarquables Fiche de cours : Configurations du plan. Les triangles : droites et points remarquables Médianes et centre de gravité : Soit un triangle ABC, on appelle médiane issue de A la droite qui passe par A et

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

Chapitre 7. Géométrie plane

Chapitre 7. Géométrie plane Chapitre 7 Géométrie plane Hauteurs Ce sont les perpendiculaires aux côtés, issues du sommet opposé. Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle. Médianes

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

(AH) est une hauteur de ABC. H est orthocentre d'un triangle si et seulement si H est le point d'intersection de 2 hauteurs du triangle

(AH) est une hauteur de ABC. H est orthocentre d'un triangle si et seulement si H est le point d'intersection de 2 hauteurs du triangle FICHE G - CONFIGURATIONS du PLAN (théorèmes importants) A savoir : On peut remplacer une définition par une équivalence : «A B». Le triangle: droites et points remarquables.. Hauteurs et orthocentre. Définition:

Plus en détail

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle.

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle. 1 / 6 I. Polygones : Un polygone est une figure fermée dont les côtés sont des segments. II. Triangles : 1) Un triangle est un polygone à trois côtés. Les segments [AC], [AB] et [BC] sont les trois côtés

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Proprié té s dé gé omé trié plané

Proprié té s dé gé omé trié plané Proprié té s dé gé omé trié plané Droites Si deux droites sont parallèles à une même troisième alors elles sont parallèles entre elles (fig.1). Si deux droites sont perpendiculaires à une même troisième

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

BOITE A OUTILS. 3ème

BOITE A OUTILS. 3ème BOITE A OUTILS 3ème 2014/2015 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles

Plus en détail

Rappels de collège sur la géométrie dans le plan

Rappels de collège sur la géométrie dans le plan Rappels de collège sur la géométrie dans le plan I Rappels sur les symétries : I 1 Symétrie axiale : On note I le milieu de On appelle médiatrice du segment la droite perpendiculaire en I à Propriétés

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE DROITES REMARQUABLES D'UN TRIANGLE Hauteurs : On appelle hauteur d'un triangle une droite qui passe par un sommet du triangle et qui est perpendiculaire au coté opposé à ce sommet.

Plus en détail

Fiche de cours : Configurations du plan.

Fiche de cours : Configurations du plan. Fiche de cours : Configurations du plan. Les triangles. Médianes et centre de gravité : Soit un triangle ABC, on appelle médiane issue de A la droite qui passe par A et coupe le côté [BC] en son milieu.

Plus en détail

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés.

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. Th Trois longueurs étant données, Si la plus grande est

Plus en détail

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle.

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle. 6 e Décrire des figures usuelles Objectif 04 Livre 12 Mots clefs. Cercle Rayon, diamètre, corde et arc d un cercle Équidistance Triangle, triangle isocèle, triangle rectangle, triangle équilatéral Base

Plus en détail

Géométrie synthétique plane Rappel de quelques propriétés et théorèmes

Géométrie synthétique plane Rappel de quelques propriétés et théorèmes Géométrie synthétique plane Rappel de quelques propriétés et théorèmes Notes : REC indique que la réciproque est vraie. La plupart des théorèmes ont leur équivalent en géométrie dans l espace. Généralités

Plus en détail

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD]

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD] COMMENT DEMONTRER Pour démontrer qu'un point est le milieu d'un segment On sait que I appartient au segment [AB] et IA = IB Propriété :Si un point appartient à un segment et est équidistant des extrémités

Plus en détail

Chapitre 10 - Notions de géométrie

Chapitre 10 - Notions de géométrie Chapitre 10 - Notions de géométrie Activité 1 Exercice 1 Exercice 2 x y a b c x // // S y // // S a // // S b // // S c S S S S // Exercice 3 MATHE 1 re année - Solutionnaire, http://maths.deboeck.com

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

VOCABULAIRE DE GEOMETRIE PLANE

VOCABULAIRE DE GEOMETRIE PLANE Fiche de vocabulaire VOCABULAIRE DE GEOMETRIE PLANE Généralités... 2 1) Nom des polygones courants... 2 2) Qu est-ce qu un polygone?... 2 La médiatrice d un segment... 3 Cercle et disque... 3 1) Le disque?

Plus en détail

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD].

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD]. GÉOMÉTRIE PLANE Langage géométrique : notations et vocabulaire. [ ] = segment [AB] = segment d extrémités A et B. AB = longueur du segment AB (ou parfois la distance de A à B). ( ) = droite (AB) = droite

Plus en détail

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer...

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer... 3 Pr démontrer... Fiches de géométrie Niveau 3ème...que deux droites sont parallèles... Fiche...que deux droites sont perpendiculaires... Fiche 2...que deux longueurs sont égales... Fiche 3...que deux

Plus en détail

Repérage dans le plan Cours

Repérage dans le plan Cours Repérage dans le plan Cours Objectifs du chapitre Savoir repérer la position d un point à l aide de ses coordonnées dans un repère. Savoir calculer les coordonnées du milieu d un segment. Savoir calculer

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

Symétrie axiale cours 6e

Symétrie axiale cours 6e Symétrie axiale cours 6e F.Gaudon 24 février 2004 Table des matières 1 Axes de symétrie 2 1.1 Approche expérimentale..................... 2 1.2 Axes de symétrie particuliers................... 2 1.2.1

Plus en détail

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités Angles : Définitions utiles Angles : Propriétés utiles D1: Deux angles qui ont un sommet commun et un côté commun sont dits adjacents. Sur la figure ci contre, l angle en rouge et l angle en vert ont en

Plus en détail

Aide mémoire pour la géométrie plane. 1. Notations

Aide mémoire pour la géométrie plane. 1. Notations Aide mémoire pour la géométrie plane 1. Notations Soit A et B deux points distincts. On note : (AB) la droite qui passe par ces deux points ; [AB] le segment d extrémités A et B ; AB la distance entre

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN 1 sur 5 REPERAGE DANS LE PLAN I. Coordonnées de points du plan a) Repère du plan Définition : un repère orthonormé d origine O est un triplet (O ;I,J) de points tels que le triangle OIJ est rectangle isocèle

Plus en détail

Aider l élève à faire le point sur les différents outils à sa disposition pour répondre à un problème donné.

Aider l élève à faire le point sur les différents outils à sa disposition pour répondre à un problème donné. http://joho.monsite.orange.fr/ Aider l élève à rédiger rigoureusement un raisonnement. Aider l élève à faire le point sur les différents outils à sa disposition pour répondre à un problème donné. Objectifs

Plus en détail

A retenir : Chapitre 1

A retenir : Chapitre 1 A retenir : Chapitre 1 C1 * 1 et * 2 Définition de division euclidienne et vocabulaire Effectuer la DIVISION EUCLIDIENNE de D par d non nul, c est trouver le quotient q et le reste r tel que : D = d. q

Plus en détail

Ch 3 : Triangles et Quadrilatères

Ch 3 : Triangles et Quadrilatères Ch 3 : Triangles et Quadrilatères I Vocabulaire des angles 1) Angles complémentaires, angles supplémentaires Deux angles sont complémentaires lorsque la somme de leurs mesures est égale à 90. Deux angles

Plus en détail

CONFIGURATIONS DU PLAN

CONFIGURATIONS DU PLAN onfiguations du plan - Théorème de Pythagore ONFGURTONS DU PLN Théorème de Pythagore Si un triangle est rectangle, alors le carré de son hypoténuse est égal à la somme des carrés des deux autres côtés

Plus en détail

PARALLELES ET PERPENDICULAIRES

PARALLELES ET PERPENDICULAIRES GEOMETRIE : RAPPELS PARALLELES ET PERPENDICULAIRES Théorème 1: Si deux droites sont parallèles à une même troisième. Alors elles sont parallèles entre elles. Théorème 2: Si deux droites sont perpendiculaires

Plus en détail

Cercles et polygones

Cercles et polygones Cercles et polygones I) Le cercle : a) Soit O un point donné et R un nombre décimal positif. On appelle cercle C de centre O et de rayon R, l ensemble des points M situés à la distance R du point O. On

Plus en détail

ANNEXE. PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT (N os 1 à 55)

ANNEXE. PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT (N os 1 à 55) ANNEXE PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT - 4111-2 (N os 1 à 55) ANGLES 1. Des angles adjacents qui ont leurs côtés extérieurs en ligne droite sont supplémentaires. 2. Les angles opposés par

Plus en détail

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale Géométrie plane I - Symétries 1 - Symétrie axiale Définition : Deux figures géométriques sont symétriques par rapport à une droite (d) si, en pliant la feuille suivant la droite (d), les deux figures se

Plus en détail

I. Les figures élémentaires :

I. Les figures élémentaires : I. Les figures élémentaires : A. Les triangles : Triangle isocèle Un triangle isocèle est un triangle qui a deux de ses côtés de. un triangle est isocèle les deux côtés issus du sommet principal ont. un

Plus en détail

I. Parallélogrammes :

I. Parallélogrammes : 1 / 5 I. Parallélogrammes : Un parallélogramme est un quadrilatère dont les côtés opposés sont parallèles. Si un quadrilatère est un parallélogramme, alors : Ses côtés opposés sont parallèles et de même

Plus en détail

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST...

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... THEME : LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... SOMMAIRE : PARALLELOGRAMME? RECTANGLE? LOSANGE? CARRE? PARALLELOGRAMME? Vous disposez principalement de deux méthodes, une concernant

Plus en détail

Devoir maison n 2 Géométrie plane à préparer pour le : 05 / 11 / 18

Devoir maison n 2 Géométrie plane à préparer pour le : 05 / 11 / 18 Nom : Classe : nde / nde 5 Devoir maison n Géométrie plane à préparer pour le : 05 / 11 / 18 Note : / 10 Avis de l élève Avis du professeur Je sais : Oui Non Oui Non Placer des points dans un repère. Justifier

Plus en détail

L orthocentre d un triangle est le point d intersection des trois hauteurs du triangle.

L orthocentre d un triangle est le point d intersection des trois hauteurs du triangle. Les figures planes. 1. Les triangles : a. Classement des triangles : D après la longueur des côtés : - Le triangle scalène : triangle dont tous les côtés sont de longueurs différentes. - Le triangle isocèle

Plus en détail

Fiche -Géométrie. 1 Triangle. 1.1 Triangle isocèle

Fiche -Géométrie. 1 Triangle. 1.1 Triangle isocèle Fiche -Géométrie 1 Triangle Définition 1. Un triangle est une figure plane, formée par trois points appelés sommets. Les côtés sont les segments qui joignent les sommets deux à deux. Remarque 1. Un triangle,

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

: translations, rotations, symétries centrales, symétries

: translations, rotations, symétries centrales, symétries Rappels de géométrie plane Le but de cette fiche n est pas de développer une théorie rigoureuse de la géométrie euclidienne, mais plutôt de survoler la «géométrie euclidienne plane de collège» (pas de

Plus en détail

Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers. Objectif 20 Livre e

Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers. Objectif 20 Livre e 5 e Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers Objectif 20 Livre 23.4 Mots clefs. Parallélogramme Rectangle Losange Carré Côté Diagonale Axe de symétrie Centre de

Plus en détail

Classeur de géométrie 3 ème

Classeur de géométrie 3 ème - 1 - lasseur de géométrie 3 ème Pour démontrer que. Un point est le milieu d un segment Un point est sur un cercle Un point est l image d un autre par es distances sont égales eux angles ont la même mesure

Plus en détail

Chapitre III : Configurations planes et repérage

Chapitre III : Configurations planes et repérage Chapitre III : Configurations planes et repérage Extrait du programme : I. Configurations planes Dans cette partie, aucune nouveauté! La rédaction devra être apprise, comme indiquée dans les exercices

Plus en détail

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite 6 ème Géométrie de base Notation : On note un point à l aide d une croix pour indiquer le lieu et d une lettre MAJUSCULE à côté pour indiquer son nom Attention : Une MÊME lettre ne peut désigner qu un

Plus en détail

Cours de GEOMETRIE PLANE

Cours de GEOMETRIE PLANE Institut municipal : JM Labatte Géométrie plane. 1/8 Cours de GEOMETRIE PLANE I Droites Notations : Un point du plan est représenté par une lettre majuscule : A, B Une droite est notée (d), d, (D) ou (AB)

Plus en détail

Soutien 5.1. Soutien 5.1 (suite)

Soutien 5.1. Soutien 5.1 (suite) Soutien 5.1 Page 1 1. a) La somme des mesures des angles intérieurs du triangle est 180. b) L angle ACB mesure 80, soit 180 40 60. c) Les angles ABC et ACB sont isométriques car, dans tout triangle isocèle,

Plus en détail

Chapitre 11 : Symétrie axiale.

Chapitre 11 : Symétrie axiale. Chapitre 11 : Symétrie axiale. I Approche expérimentale. Définition : Deux figures sont symétriques par rapport à une droite si, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

ISEFC Juin 2007 Département de Mathématiques MA115. Série d exercices: Géométrie élémentaire du Plan

ISEFC Juin 2007 Département de Mathématiques MA115. Série d exercices: Géométrie élémentaire du Plan ISEFC Juin 2007 Département de Mathématiques MA115 Série d exercices: Géométrie élémentaire du Plan Exercice 1: Soient (ABC) et (ABD) deux triangles tels que C et D soient de part et d autre de la droite

Plus en détail

Chapitre 4. Deux angles sont complémentaires lorsque la somme de leurs mesures est 90, c est-à-dire lorsqu ils forment un angle droit.

Chapitre 4. Deux angles sont complémentaires lorsque la somme de leurs mesures est 90, c est-à-dire lorsqu ils forment un angle droit. Nom : Chapitre 4 Groupe : SAVOIRS 4.1 Les différents types d angles Les angles complémentaires Deux angles sont complémentaires lorsque la somme de leurs mesures est 90, c est-à-dire lorsqu ils forment

Plus en détail

Boîte à outils (collège)

Boîte à outils (collège) Boîte à outils (collège) Fiche 0 Notations et symboles Notations : Symboles : Fiche 1 Démontrer que deux droites sont parallèles Deux droites qui ne sont pas sécantes sont parallèles. Si deux droites sont

Plus en détail

Corrigé géométrie collège

Corrigé géométrie collège Exercices sur les particularités des triangles Exercice 1 Puisque J est sur la médiatrice de [AC] et que O est le point de rencontre des médiatrices du triangle ABC, alors (OJ) est la médiatrice de [AC]

Plus en détail

ÉLÉMENTS DE GÉOMÉTRIE PLANE

ÉLÉMENTS DE GÉOMÉTRIE PLANE ÉLÉMENTS DE GÉOMÉTRIE PLANE I. DROITE ET SEGMENT 1. Généralités Il existe une droite et une seule passant par deux points A et B distincts donnés, on la note (AB). On peut dire que la droite passe par

Plus en détail

Chapitre 2 : Transformations du plan.

Chapitre 2 : Transformations du plan. Chapitre : Transformations du plan. 1. Les symétries orthogonales : Par une symétrie orthogonale, une figure se déplace en se retournant. Une symétrie orthogonale est caractérisée par une droite appelée

Plus en détail

Repérage et configurations du plan

Repérage et configurations du plan I Repères et coordonnées a) Repères Définition : (O ;I,J) est un repère du plan. Il est constitué d un triplet de points non alignés. O est appelé origine du repère La droite graduée (O ;I) est l axe des

Plus en détail

CONFIGURATIONS PLANES. Médiatrice d un segment. Vous savez donc construire : Le milieu d'un segment Une droite perpendiculaire à une droite donnée.

CONFIGURATIONS PLANES. Médiatrice d un segment. Vous savez donc construire : Le milieu d'un segment Une droite perpendiculaire à une droite donnée. Médiatrice d un segment Définition : La médiatrice d'un segment [] est la droite perpendiculaire à [] et passant par son milieu. Un point est sur la médiatrice de [] si et seulement si il est équidistant

Plus en détail

Figures usuelles et axes de symétrie

Figures usuelles et axes de symétrie Chapitre 4 Figures usuelles et axes de symétrie I. Figures usuelles 1) Triangles un triangle est un polygone ayant 3 côtés. Vocabulaire : ABC est un triangle. A A, B et C sont ses 3 sommets. [AB], [AC]

Plus en détail

Classeur de géométrie 4 ème

Classeur de géométrie 4 ème - 1 - lasseur de géométrie 4 ème Pour démontrer que. Un point est le milieu d un segment Un point est sur un cercle Un point est l image d un autre par es distances sont égales eux angles ont la même mesure

Plus en détail

Chapitre 1 - Repérage et configurations du plan

Chapitre 1 - Repérage et configurations du plan nde hapitre 1 - Repérage et configurations du plan 01-013 hapitre 1 - Repérage et configurations du plan ctivités d approche 1. (a) Deux points et ont pour abscisses 7 3 et. alculer la distance. et sur

Plus en détail

LA GEOMETRIE DU COLLEGE

LA GEOMETRIE DU COLLEGE L GEETRIE DU LLEGE I. Le triangle : 1 ) Triangles particuliers Un triangle isocèle a deux côtés égaux Un triangle équilatéral a tous ses côtés égaux Un triangle rectangle a un angle droit ) Droites remarquables

Plus en détail

Fiche(1) Trigonométrie. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5

Fiche(1) Trigonométrie. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5 Trigonométrie Fiche(1) La droite (PP ) est le support de la bissectrice de l angle. (RR ) est perpendiculaire à (PP ). 1) Par quels réels sont repérés chacun des points P, P, R, R sur le cercle trigonométrique?

Plus en détail

Exercices : Les éléments de géométrie

Exercices : Les éléments de géométrie Exercices : Les éléments de géométrie Montrer la construction avec cabri géomètre 1. Construire un triangle ABC et son centre de gravité G sachant que AC = 8 cm, I milieu de [AC] et IG = 3 cm 2. Sur la

Plus en détail

L'essentiel des propriétés et des définitions utiles aux démonstrations

L'essentiel des propriétés et des définitions utiles aux démonstrations L'essentiel des propriétés et des définitions utiles aux démonstrations émontrer qu'un point est le milieu d'un segment P 1 Si un point est sur un segment et à égale distance de ses extrémités, alors ce

Plus en détail

Seconde 4 IE4 configurations du plan sujet 1 Exercice 1 Exercice 2

Seconde 4 IE4 configurations du plan sujet 1 Exercice 1 Exercice 2 Seconde 4 IE4 configurations du plan sujet 1 Exercice 1 : (5 points) On considère un triangle ABC. On considère les points : D, intersection de la bissectrice de d B et de sa perpendiculaire issue de A

Plus en détail

I) Droites du triangle

I) Droites du triangle SEMAINE 2 I) Droites du triangle 1) Les médiatrices ; cercle circonscrit a) Rappels de vocabulaire Deux droites sont parallèles ou sécantes. Elles sont sécantes si elles se coupent. Le point où elles se

Plus en détail

Seconde 2 IE2 repérage et configurations du plan S1. IE2 repérage et configurations du plan S2

Seconde 2 IE2 repérage et configurations du plan S1. IE2 repérage et configurations du plan S2 On donne les points A(;3), B(1;-1) et C(6;). 3) Calculer les coordonnées du point D tel que ABDC soit un carré. ABCD est un parallélogramme de centre O. Les hauteurs des triangles ADO et BOC issues respectivement

Plus en détail

Géométrie des Transformations

Géométrie des Transformations Géométrie des Transformations Plan des activités de DEUXIÈME ANNÉE SECONDAIRE Thème 1 Figures géométriques planes Classement des figures géométriques planes Définition de "polygone" Définition de "non

Plus en détail

Seconde 4 Repérage dans le plan Vecteurs

Seconde 4 Repérage dans le plan Vecteurs Exercice 1 : repères du plan coordonnées de points et de vecteurs Quadrillage à maille carrée Lire les coordonnées dans le repère (O ; i ; j ) : a) des points A, B, C, D, E b) des vecteurs u et v Exercice

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

PUZZLE À 3 PIÈCES 1. DESCRIPTION 2. UTILISATIONS

PUZZLE À 3 PIÈCES 1. DESCRIPTION 2. UTILISATIONS 1 PUZZLE À 3 PIÈCES 1. DESCRIPTION Ce jeu est construit à partir du découpage d un carré en 3 pièces à l aide de deux segment (l un joignant le milieu d un côté à l un des deux sommets opposés, l autre

Plus en détail

Symétrie axiale et figures usuelles

Symétrie axiale et figures usuelles Symétrie axiale et figures usuelles Chapitre 10 du livre I. Axe de symétrie d un segment La médiatrice d'un segment est l'axe de symétrie de ce segment. Construction à l équerre: On utilise une règle graduée

Plus en détail

Chapitre 23 : Triangles et quadrilatères particuliers

Chapitre 23 : Triangles et quadrilatères particuliers I- Triangles particuliers 1) Ce qu il faut savoir Chapitre 23 : Triangles et quadrilatères particuliers Triangle isocèle Définition : Un triangle isocèle est un triangle qui a deux côtés de même longueur

Plus en détail

Seconde 1 Exercices sur le chapitre 18 : E1. page n

Seconde 1 Exercices sur le chapitre 18 : E1. page n Seconde 1 Exercices sur le chapitre 18 : E1. page n 1 E1 Savoir travailler avec une réflexion. P 229 n 18. ABC est un triangle isocèle en A. d est son axe de symétrie. E est le point d'intersection de

Plus en détail

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE.

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE. Seconde chap Géométrie plane /6 GEOMETRIE PLNE. I. Repère et coordonnées. oordonnées. Si O, I et J sont trois points non alignés du plan, alors (O I J) est un repère du plan d origine O. Si (OI) et (OJ)

Plus en détail

Triangle isocèle et équilatéral

Triangle isocèle et équilatéral Collège Ferdinand Sarrien Bourbon-Lancy Classe de 6 ème Classe de 5 ème Classe de 4 ème Classe de ème Droites Si deux droites sont parallèles à une même droite alors ces deux droites sont parallèles entre

Plus en détail

GÉOMÉTRIE PLANE : GÉNÉRALITÉS

GÉOMÉTRIE PLANE : GÉNÉRALITÉS GÉOMÉTRIE PLANE : GÉNÉRALITÉS 1 Un peu d histoire 3000 à 500 La géométrie est purement utilitaire (calculs d aires, de distances, architecture..), on ne s intéresse pas du tout à l aspect démonstration.

Plus en détail

CONFIGURATIONS DU PLAN (quelques rappels)

CONFIGURATIONS DU PLAN (quelques rappels) CONFIGURATIONS DU PLAN (quelques rappels).1polygones.1.1.parallélogramme Un parallélogramme est un quadrilatère dont les côtés opposés sont parallèles deux à deux. S Un parallélogramme admet un centre

Plus en détail

Seconde : Géométrie plane page 1. Géométrie plane. Pour reprendre contact n o p 239

Seconde : Géométrie plane page 1. Géométrie plane. Pour reprendre contact n o p 239 Seconde : Géométrie plane page 1 Géométrie plane Pour reprendre contact n o 1-2 - 3 p 239 I. Droites et points remarquables du triangle (A) Hauteurs Définition 1 Une hauteur est une droite passant par

Plus en détail

Géométrie EUCLIDIENNE

Géométrie EUCLIDIENNE MPM1D - Module 4 Géométrie EUCLIDIENNE Fiches d observation de l élève Géométrie euclidienne - Activité d exploration avec le Cybergéomètre Nom : Date : Diagramme Mes observations et mes conclusions Leçon

Plus en détail

Configuration du plan

Configuration du plan onfiguration du plan I - Les triangles 1 - Rappels La somme des angles d un triangle est égale à 180 Si le triangle est rectangle en, alors d après le théorème de Pythagore 2 = 2 + 2. Réciproquement, si

Plus en détail

Utiliser les connaissances géométriques pour démontrer Corrigé des exercices

Utiliser les connaissances géométriques pour démontrer Corrigé des exercices Utiliser les connaissances géométriques pour démontrer Corrigé des exercices Exercice 1 1. Construction de l'isocervolant Construire deux droites (d) et (d') perpendiculaires en A. (AC) est un axe de symétrie

Plus en détail

Géométrie transformation du plan.

Géométrie transformation du plan. Géométrie transformation du plan. I. Cercle 2 A. Définitions 2 B. Positions relatives d une droite et d un cercle 2 C. Positions relatives de deux cercles 2 II. 2 A. Construction à la règle et au compas

Plus en détail

Seconde 2 IE2 repérage et configurations du plan Sujet 1. 1) Démontrer que les segments [AC] et [BD] ont le même milieu.

Seconde 2 IE2 repérage et configurations du plan Sujet 1. 1) Démontrer que les segments [AC] et [BD] ont le même milieu. Exercice 1 (5 points) On considère les points A(-3 ;0), B(5 ;-1), C(9 ;6) et D(1 ;7). 1) Démontrer que les segments [AC] et [BD] ont le même milieu. 2) Calculer les longueurs AB et BC. 3) Quelle est la

Plus en détail

Exercices proposés : semaine n o 7

Exercices proposés : semaine n o 7 Prépa ATS Exercices proposés : semaine n o 7 I. Géométrie dans le plan 1 Soit ABC un triangle rectangle en A et H le pied de la hauteur issue de A. Montrer que : 1. BA 2 = BH BC 2. CA 2 = CH CB 3. AH 2

Plus en détail

Cours de mathématiques Classe de Quatrième

Cours de mathématiques Classe de Quatrième CHAPITRE 5 PROJECTION ET COSINUS Le calcul d'erathostène 76 Cosinus d'un angle aigu 77 Projection ; Cosinus d'un angle aigu 78 Projection et milieu 83 Exercices de démonstration 83 Utilisation du Cos 85

Plus en détail

PARALLELES ET PERPENDICULAIRES

PARALLELES ET PERPENDICULAIRES PARALLELES ET PERPENDICULAIRES Je sais définir et construire deux droites perpendiculaires Je sais définir et construire deux droites parallèles Je comprends les propriétés permettant de démontrer que

Plus en détail

Quadrilatères remarquables

Quadrilatères remarquables Les quadrilatères au collège avec GéoPlan Quadrilatère orthodiagonal, cerf-volant, pseudo-carré, quadrilatère inscriptible, antiparallélogramme. Sommaire 1. Définitions 2. Quadrilatère orthodiagonal 3.

Plus en détail

ESPACE ET GÉOMÉTRIE Programmes cycle 2

ESPACE ET GÉOMÉTRIE Programmes cycle 2 Connaissances ESPACE ET GÉOMÉTRIE Programmes cycle 2 Capacités Repérage, orientation - Situer un objet, une personne par rapport à soi ou par rapport à une - Connaître et savoir utiliser le vocabulaire

Plus en détail

points alignés points alignés

points alignés points alignés angle angle points alignés points alignés bissectrice bissectrice centre centre consécutifs consécutifs côté côté demi-droite demi-droite diagonale diagonale distance distance angle droit angle droit droite

Plus en détail

Le vocabulaire de géométrie

Le vocabulaire de géométrie Géom1 Le vocabulaire de géométrie En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire : Un point A A X Un segment [AB] (d) Une droite (d)

Plus en détail