Configurations du plan et trigonométrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Configurations du plan et trigonométrie"

Transcription

1 Configurations du plan et trigonométrie A) Le triangle rectangle. 1. Le théorème de Pythagore et sa réciproque. Si ABC est un triangle rectangle en A, alors Théorème réciproque : Si ABC est un triangle tel que. Triangle rectangle et cercle. BC + BC + = AB AC. = AB AC alors le triangle ABC est rectangle en A. Propriétés : Si MAB est un triangle rectangle en M, alors : AMB = 9 M est sur le cercle de diamètre [AB]. Le milieu O de [AB] est le centre du cercle circonscrit au triangle MAB. O étant le milieu de [AB], OM = 1 AB. Propriétés «réciproque» : Si un triangle MAB possède l une quelconque des quatre propriétés ci-dessus alors ce triangle est rectangle en M.. Trigonométrie. Si ABC est un triangle rectangle en A, alors : BA CA AC cos ABC = sin ABC = tan ABC =. BC CB AB sin x Si x est la mesure d un angle aigu : cos x + sin x = 1et tan x =. cos x Valeurs remarquables : x en degrés cos x 1 1 sin x 1 1 tan x 1 Année 1 15 nde A

2 B) Droite des milieux et Thalès. 1. Théorème des milieux. Si I est le milieu de [AB] et J le milieu de [AC], alors : les droites (IJ) et (BC) sont parallèles et IJ = 1 BC. Si I est le milieu de [AB] et si la parallèle à (BC) menée par I coupe (AC) en J, alors : J est le milieu de [AC].. Le théorème de Thalès et sa réciproque. 1. Théorème de Thalès. Si ABC et AMN sont deux triangles tels que : le point M est sur la droite (AB). le point N est sur la droite (AC). les droites (MN) et (BC) sont parallèles. Alors AM AB = AN AC = MN BC = k. Si < k < 1 le triangle AMN est une réduction du triangle ABC. Si k > 1 le triangle AMN est un agrandissement du triangle ABC.. Réciproque. ABC un triangle, M un point de (AB) et N un point de (AC). A est à la fois à l extérieur de [BM] et de [CN], ou à la fois à l intérieur de [BM] et [CN]. Si AM AB = AN alors les droites (MN) et (BC) sont parallèles. AC Année 1 15 nde A

3 C) Les droites remarquables du triangle. Médianes et centre de gravité : Les trois médianes d un triangle sont concourantes. Leur point d intersection G est appelé centre de gravité du triangle ABC. G est situé aux deux tiers de chaque médiane à partir du sommet correspondant : AG = AA BG = BB CG = CC où A milieu de [BC], B milieu de [AC] et C milieu de [AB]. Hauteurs et orthocentre : Les trois hauteurs d un triangle sont concourantes. Leur point d intersection H est appelé orthocentre du triangle. Médiatrice et le cercle circonscrit : Les trois médiatrices d un triangle sont concourantes. Leur point d intersection O est équidistant de chacun des sommets du triangle. O est le centre du cercle circonscrit au triangle. Bissectrice et cercle inscrit : Les trois bissectrices d un triangle sont concourantes. Leur point d intersection I est équidistant de chacun des trois côtés du triangle. I est le centre du cercle inscrit dans le triangle. Année 1 15 nde A

4 D) Les angles. 1. La somme des angles d un triangle. Quelque soit le triangle ABC : A ˆ + Bˆ + C ˆ = 18.. Angles opposés par le sommet. d Si d et d sont deux droites sécantes en O alors : O les angles 1ˆ et ˆ sont égaux. 1ˆ ˆ On dit que 1ˆ et ˆ sont opposés par le sommet. d. Angles alternes-internes, angles correspondants. Si d et d sont deux droites parallèles alors : d ˆ ' les angles 1ˆ et ˆ sont égaux. 1ˆ ˆ les angles 1ˆ ' et ˆ sont égaux. De manière générale, on dit que : 1ˆ et ˆ (ou ˆ et ˆ ) sont alternes-internes. d ˆ ˆ 1ˆ ' et ˆ (ou ˆ et ˆ ' ) sont correspondants. ˆ ' ˆ ' 1ˆ ' Si deux angles alternes-internes sont égaux, alors d et d sont parallèles. Si deux angles correspondants sont égaux, alors d et d sont parallèles.. Angles inscrits, angles au centre. Définition : C est un cercle de centre O. On dit qu un angle AMB est inscrit dans C lorsque A, B et M sont trois points distincts de C. On dit que les angles AMB et ANB interceptent le même arc AB. L angle AOB est l angle au centre associé à l angle inscrit AMB et aussi à l angle ANB. Dans un cercle, un angle inscrit est égal à la moitié de l angle au centre associé : AMB = 1 AOB Dans un cercle, deux angles inscrits qui interceptent le même arc sont égaux : AMB = 1 AOB = ANB Année 1 15 nde A

5 Exercice n 1 : On considère la figure suivante. Calculer l aire du triangle ABC. Exercice n : ABC est un triangle équilatéral de côté 6cm et H est le projeté orthogonal de A sur [BC]. M est le point de [AC] tel que AM = cm et P est le projeté orthogonal de M sur [AH]. Calculer AP. Exercice n : A l intérieur de la maison, un menuisier étudie une plaque de bois dessinée ci-dessous : La figure n est pas aux bonnes dimensions. Le menuisier a tracé la perpendiculaire à [EC] passant par A, il a nommé D le point d intersection de cette perpendiculaire avec [EC]. Il a également tracé [AC]. Il a mesuré AB = 115cm, BC = 8cm, DC = 1cm, ED =cm, AC = 1cm et AF = 8cm. 1) Le triangle ABC est-il rectangle? Justifier. ) Déterminer la mesure de l angle ACD. ) Les droites (AD) et (FE) sont-elles parallèles? Exercice n : On considère un cercle C de diamètre [IJ]. A et B sont deux points du cercle. [AJ] et [BI] se coupent en un point H. Les droites (IA) et (JB) se coupent au point K. Démontrer que les droites (KH) et (IJ) sont perpendiculaires. Exercice n 5 : On considère la figure ci-contre : 1) Montrer que le triangle ABO est rectangle. ) Montrer que les droites (AB) et (CD) sont parallèles. ) Le triangle OCD est-il rectangle? Justifier. Année 1 15 nde A

6 Exercice n 6 : Dans la figure ci-contre, les droites (AB) et (CD) sont parallèles. O est le centre du cercle (C). Les points A, B, C, et D sont sur (C). Les droites (AD) et (BC) se coupent en E. 1) Démontrer que le triangle AEB est isocèle. ) En déduire que : BOD = BED. E) Cosinus et sinus d un nombre réel. 1. Enroulement de la droite des réels. Le plan est muni d un repère orthonormal (O ; OI ; OJ ). On considère le cercle trigonométrique de centre O et de rayon 1. A tout réel x, on peut associer un point M unique du cercle trigonométrique. Le nombre x est une mesure en radians de l arc d origine O et d extrémité M. On a alors x = IM = IOM exprimé en radians. Définition : Soit un nombre x réel et M le point du cercle trigonométrique associé par l enroulement de l axe des nombres réels autour du cercle trigonométrique. L abscisse du point M s appelle le cosinus du nombre réel x et se note cos x. L ordonnée du point M s appelle le sinus du nombre réel x et se note sin x. Année 1 15 nde A

7 . Propriétés et valeurs remarquables. Propriétés : Les égalités suivantes sont vraies pour tout réel x : 1 cos x 1 et 1 sin x 1 cos x + sin x = 1 Valeurs remarquables : Pour tous les exercices suivants, on pourra utiliser le cercle donné à la fin de ce fascicule. Exercice n 7 : On considère le cercle trigonométrique ci-dessous.. Les segments rouges partagent le cercle en huit angles de 5 et les bleus partagent le cercle en douze angles de. Année ) Associer chacun des nombres à un point du cercle a) b) π. c) π. d) 6 π. π. ) Déterminer le réel associé aux points suivants compris dans l intervalle [ ; π [ a) A. b) R. c) H. d) L. e) f) : ) Déterminer le réel associé aux points suivants compris dans l intervalle ] π ; π ] a) K. b) N. c) G. d) I. : π. π. 6 nde A

8 Exercice n 8 : 1) Associer chacun des nombres ci-dessous à un point du cercle de l exercice n 7. 17π 9π 1π 17π. 6 ; π qui ont M, N, T et F comme point associé? ) Quels sont les nombres de [ [ Exercice n 9 : En vous aidant d un cercle trigonométrique, donnez le signe de cas suivants : ; π π π x, x ; π et x π ;. cos x et sin x dans chacun des Exercice n 1 : Sur le cercle trigonométrique ci-dessous on a placé M associé au nombre x. 1) Placez les points N, P et Q associés respectivement à x + π, x et x π. ) Exprimer le cosinus et le sinus de ces trois angles en fonction de cos x et sin x. Exercice n 11 : Donner, sans utiliser la calculatrice, les valeurs exactes de : a) cos π. c) b) π sin. sin π. 6 Exercice n 1 : 1) Colorier sur un cercle trigonométrique l ensemble des points M associés aux nombres x de I = π ;. Année 1 15 l intervalle [ ] ) Placer le point M associé au nombre x de I tel que ) Quelle est la valeur exacte de x? cos x =. Exercice n 1 : 1) Colorier sur un cercle trigonométrique l ensemble des points M associés aux nombres x de l intervalle I = [ ; π ]. 1 ) Placer le point M associé au nombre x de I tel que sin x =. ) Quelle est la valeur exacte de x? nde A

9 Exercice n 1 : Dans chacun des cas suivants, trouvez la valeur exacte de x : 1) [ ; π [ x et cos x =. ) x [ π ; ] et sin x =. Exercice n 15 : Donner un réel associé à chaque point du cercle. 1 er Cas : ème Cas : ème Cas : Les droites de la même couleur sont parallèles. Exercice n 16 : (C) est le cercle trigonométrique d origine A et de centre O. 1) Nommer les points de (C) associés aux nombres : 1π 9π a) x 1 =. c) x =. 17π 15π b) x =. d) x =. 6 π ; π qui ont ces points comme points associés. ) Quels sont les nombres de [ [ Année 1 15 nde A

10 Exercice n 17 : Lignes trigonométriques La médiatrice de [OA] coupe le cercle trigonométrique C en M et N. Ainsi AOM et OMP sont équilatéraux et AOM = MOP = 6. π 5π π 1) Prouvez que M, N et P sont associés respectivement à ; et. π 5π ) Déterminer, en justifiant votre réponse, le sinus et le cosinus de et. ) En déduire les coordonnées des points M, N et P. Année 1 15 nde A

11 Année 1 15 nde A

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE DROITES REMARQUABLES D'UN TRIANGLE Hauteurs : On appelle hauteur d'un triangle une droite qui passe par un sommet du triangle et qui est perpendiculaire au coté opposé à ce sommet.

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

CHAPITRE 9 GÉOMÉTRIE

CHAPITRE 9 GÉOMÉTRIE CHAPITRE 9 GÉOMÉTRIE A) Le triangle (Rappels) 1) Droites et points remarquables a) Médianes et centre de gravité Les médianes sont les droites issues des sommets et passant par le milieu du côté opposé

Plus en détail

LA GEOMETRIE DU COLLEGE

LA GEOMETRIE DU COLLEGE L GEETRIE DU LLEGE I. Le triangle : 1 ) Triangles particuliers Un triangle isocèle a deux côtés égaux Un triangle équilatéral a tous ses côtés égaux Un triangle rectangle a un angle droit ) Droites remarquables

Plus en détail

Propriété Les 3 hauteurs d un triangle sont concourantes. Le point de concours s appelle l orthocentre du triangle.

Propriété Les 3 hauteurs d un triangle sont concourantes. Le point de concours s appelle l orthocentre du triangle. Géométrie Espace 2 nde 1 Géométrie dans l espace I. Rappels de collège A. Formumaire 1. Hauteurs Une hauteur est une droite passant par un sommet et perpendiculaire au côté opposé. Il y a donc 3 hauteurs

Plus en détail

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE.

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE. Seconde chap Géométrie plane /6 GEOMETRIE PLNE. I. Repère et coordonnées. oordonnées. Si O, I et J sont trois points non alignés du plan, alors (O I J) est un repère du plan d origine O. Si (OI) et (OJ)

Plus en détail

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD].

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD]. GÉOMÉTRIE PLANE Langage géométrique : notations et vocabulaire. [ ] = segment [AB] = segment d extrémités A et B. AB = longueur du segment AB (ou parfois la distance de A à B). ( ) = droite (AB) = droite

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer...

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer... 3 Pr démontrer... Fiches de géométrie Niveau 3ème...que deux droites sont parallèles... Fiche...que deux droites sont perpendiculaires... Fiche 2...que deux longueurs sont égales... Fiche 3...que deux

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD]

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD] COMMENT DEMONTRER Pour démontrer qu'un point est le milieu d'un segment On sait que I appartient au segment [AB] et IA = IB Propriété :Si un point appartient à un segment et est équidistant des extrémités

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

Chapitre 4 : Triangles.

Chapitre 4 : Triangles. Chapitre 4 : Triangles. I Somme des angles d un triangle. 1 Propriété. La somme des mesures des angles d un triangle est égale à 180. Dans le triangle JKL, on a + + = 180. 2 Triangles particuliers. Triangle

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Leçon 29. Droites remarquables du triangle

Leçon 29. Droites remarquables du triangle Tout ce qui est en bleu sera dit à l'oral ou nous sera éventuellement utile pour les questions venant du jury; le reste sera projeté. Leçon 29. Droites remarquables du triangle Introduction (à l'oral):

Plus en détail

Exercices Trigonométrie

Exercices Trigonométrie I Le cercle trigonométrique Savoir-faire 1 : Associer nombres réels et points du cercle trigonométrique Exercice 1 Tracer le cercle trigonométrique, puis placer les points A, B, C et D, images par enroulement

Plus en détail

Index. M médiatrice...24

Index. M médiatrice...24 Index A alternes-externes... 23 alternes-internes... 23 angle au centre... 35 angle inscrit... 35 angle tangentiel... 35 axe de symétrie... 4 B bissectrice... 25 C centre de symétrie... 6 centre de symétrie...

Plus en détail

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème.

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Mathématiques Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Il pourra aussi servir plus tard au lycée pour des révisions.. A1 p1 Les nombres A2 p2

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

S13. Autour des théorèmes de PYTHAGORE et THALES

S13. Autour des théorèmes de PYTHAGORE et THALES CRPE S1. Autour des théorèmes de PYTHAGORE et THALES Mise en route A. Dans chaque exercice, une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. ARC est un triangle

Plus en détail

Classeur de géométrie 3 ème

Classeur de géométrie 3 ème - 1 - lasseur de géométrie 3 ème Pour démontrer que. Un point est le milieu d un segment Un point est sur un cercle Un point est l image d un autre par es distances sont égales eux angles ont la même mesure

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle BCE rectangle et isocèle en C. Le point

Plus en détail

Seconde Sujet 1 DST1 configurations du plan généralités sur les fonctions

Seconde Sujet 1 DST1 configurations du plan généralités sur les fonctions Seconde 2 2-24 Sujet Exercice : ( points) DBG est un triangle équilatéral. C est le demi-cercle de centre A et de diamètre [BD]. ) Montrer que (DP) et (BG) sont perpendiculaires. M est le point d intersection

Plus en détail

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités Angles : Définitions utiles Angles : Propriétés utiles D1: Deux angles qui ont un sommet commun et un côté commun sont dits adjacents. Sur la figure ci contre, l angle en rouge et l angle en vert ont en

Plus en détail

EXERCICEE - "LONGUEURS" DES HAUTEURS, MEDIANES, BISSECTRICES ET MEDIATRICES DANS UN TRIANGLE RECTANGLE. BC = 10 ( cm )

EXERCICEE - LONGUEURS DES HAUTEURS, MEDIANES, BISSECTRICES ET MEDIATRICES DANS UN TRIANGLE RECTANGLE. BC = 10 ( cm ) THEMEE : Correction EXERCICEE - "LONGUEURS" DES HAUTEURS, MEDIANES, BISSECTRICES ET MEDIATRICES DANS UN TRIANGLE RECTANGLE La construction est laissée au soin du lecteur!!!! b) Calcul de BC : Dans le triangle

Plus en détail

S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base

S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base CRPE Mise en route S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base 1. A et B sont deux points du plan. que représentent (AB), [AB], [AB), AB? 2. A, B et C sont trois points distincts

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

CHAPITRE I GÉOMÉTRIE ANALYTIQUE DANS LE PLAN EXERCICES

CHAPITRE I GÉOMÉTRIE ANALYTIQUE DANS LE PLAN EXERCICES CHAPITRE I GÉOÉTRIE ANALYTIQUE DANS LE PLAN EXERCICES 1) Le plan étant muni d un repère ( O, i, j ) 4 u 6 et v Calculez les coordonnées de : 1 2,4 a) AB d) u + v b) 2 CA c) BC, on donne A( 5; 7,3), ( 9;0)

Plus en détail

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse.

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse. EC 4A : ELEMENTS DE MATHEMATIQUES THEOREMES DE PYTHAGORE ET DE THALES COURS Objectifs du chapitre : Déterminer des longueurs dans un triangle en utilisant le théorème de Pythagore ou de Thalès. Démontrer

Plus en détail

CONFIGURATIONS DU PLAN (quelques rappels)

CONFIGURATIONS DU PLAN (quelques rappels) CONFIGURATIONS DU PLAN (quelques rappels).1polygones.1.1.parallélogramme Un parallélogramme est un quadrilatère dont les côtés opposés sont parallèles deux à deux. S Un parallélogramme admet un centre

Plus en détail

Autour de LA TRIGONOMETRIE

Autour de LA TRIGONOMETRIE CRPE S.14 Autour de LA TRIGONOMETRIE La trigonométrie est l étude des relations liant les mesures des angles et des longueurs des côtés dans un triangle rectangle. Mise en route A. Dans le triangle MNP,

Plus en détail

1. Droites particulières a) Médiatrices. Déf :Une médiatrice coupe un segment perpendiculairement et en son milieu.

1. Droites particulières a) Médiatrices. Déf :Une médiatrice coupe un segment perpendiculairement et en son milieu. I. Les quadrilatères.. II. Les triangles. 1. Droites particulières a) Médiatrices Déf :Une médiatrice coupe un segment perpendiculairement et en son milieu. Th : Un point est sur la médiatrice de [] si

Plus en détail

S11C. Autour de la GEOMETRIE PLANE Corrigé Vocabulaire et constructions de base

S11C. Autour de la GEOMETRIE PLANE Corrigé Vocabulaire et constructions de base CRPE S11C. Autour de la GEOMETRIE PLANE Corrigé Vocabulaire et constructions de base Mise en route at hs.c om 1. (AB) représente la droite (en noir) qui passe par A et B, [AB] représente le segment (en

Plus en détail

PROPRIÉTÉS À CONNAÎTRE ABSOLUMENT :

PROPRIÉTÉS À CONNAÎTRE ABSOLUMENT : THÈMES ABORDÉS : L INÉGALITÉ TRIANGULAIRE LA SOMME DES ANGLES DANS UN TRIANGLE LES DROITES REMARQUABLES DU TRIANGLE PROPRIÉTÉS À CONNAÎTRE ABSOLUMENT : 1. La somme des angles d un triangle est égale à

Plus en détail

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net :

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : http://titaile.free.fr (sans le www) I. Calcul. Revoir impérativement «développer, factoriser, résoudre

Plus en détail

FICHE REVISION GEOMETRIE EN PREVISION DU DEVOIR COMMUN DE FEVRIER

FICHE REVISION GEOMETRIE EN PREVISION DU DEVOIR COMMUN DE FEVRIER Exercice n 1 : FICHE REVISION GEOMETRIE EN PREVISION DU DEVOIR COMMUN DE FEVRIER Sur la figure ci-contre : les points K, A, F, C sont alignés ; les points G, A, E, B sont alignés ; (EF) et (BC) sont parallèles

Plus en détail

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment Chapitre 6 Trigonométrie CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale. Utiliser le cercle trigonométrique, notamment

Plus en détail

ANNEXE. PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT (N os 1 à 55)

ANNEXE. PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT (N os 1 à 55) ANNEXE PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT - 4111-2 (N os 1 à 55) ANGLES 1. Des angles adjacents qui ont leurs côtés extérieurs en ligne droite sont supplémentaires. 2. Les angles opposés par

Plus en détail

Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées

Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées Contenu: Radian; Cercle trigonométrique; Mesure d un angle orienté; Mesure principale. Mevel

Plus en détail

3 ème BREVET : théorème de Thalès

3 ème BREVET : théorème de Thalès Exercice 1 1 Tracer en triangle ABC rectangle en A tel que : AB = 5 cm et AC = 3 cm. Placer le point D sur [AB] tel que BD = 4 cm. Tracer la perpendiculaire à (AB) passant par D, elle coupe [BC] en E.

Plus en détail

Géométrie et Problèmes

Géométrie et Problèmes 1. Figures planes 1.1. Triangles Géométrie et Problèmes Une figure du plan qui possède trois côtés est un triangle ; il a 3 sommets et la somme de ses trois angles internes vaut 180. Si un de ses angles

Plus en détail

EXERCICES DE GEOMETRIE BASES

EXERCICES DE GEOMETRIE BASES EXERES E GEETRE SES Exercice n 1 p. 222 Puisque et sont de même mesure, il en est de même pour les angles L et N. Notons x cet angle. Par suite, NL = N = 180 (90 + x) = 90 x. e même, NL = L = 180 (90 +

Plus en détail

I Exercices I I I I I I I I I I-3

I Exercices I I I I I I I I I I-3 Chapitre 1 Trigonométrie TABLE DES MATÈRES page -1 Chapitre 1 Trigonométrie Table des matières Exercices -1 1................................................ -1................................................

Plus en détail

LES DROITES DU TRIANGLE

LES DROITES DU TRIANGLE LES DROITES DU TRIANGLE DÉMONSTRATION DE LA PROPRIÉTÉ DES HAUTEURS D UN TRIANGLE... 2 DÉMONSTRATION DE LA PROPRIÉTÉ DES MÉDIANES D UN TRIANGLE... 3 DÉMONSTRATION DE LA PROPRIÉTÉ DES BISSECTRICES D UN TRIANGLE...

Plus en détail

Mercredi 28 janvier Collège La Charme

Mercredi 28 janvier Collège La Charme BREVET BLANC ÉPREUVE DE MATHÉMATIQUES Mercredi 28 janvier 2009 Collège La Charme Durée : 2 heures L emploi des calculatrices est autorisé En plus des point prévus pour chacune des trois parties de l épreuve,

Plus en détail

Chapitre 7 : Trigonométrie

Chapitre 7 : Trigonométrie Chapitre : Trigonométrie I. Longueur d arc de cercle Par cœur : Le périmètre d un cercle de rayon R : R L aire d un disque de rayon R : R Savoir-faire : calculer la longueur d un arc de cercle Le cercle

Plus en détail

I- Cercle trigonométrique, Radian

I- Cercle trigonométrique, Radian er S TRIGONOMETRIE Objectifs : Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale. Déterminer les cosinus et les sinus d angles associés. Résoudre dans les équations d inconnue

Plus en détail

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure.

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. SESSION 2006 Chapitre : VECTEURS 1 ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. D. Le FUR 1/ 21 2 ABCD est un parallélogramme de centre

Plus en détail

On dit que M est l origine du vecteur et N son extrémité.

On dit que M est l origine du vecteur et N son extrémité. ❶ - Vecteurs I-- Définition d un vecteur Définition : Lorsqu on choisit deux points distincts M et N dans cet ordre, on définit : - une direction : celle des droites parallèles à (MN) ; - un sens : de

Plus en détail

CORRECTION EXERCICES : DROITES ; CERCLES ; TRIANGLES

CORRECTION EXERCICES : DROITES ; CERCLES ; TRIANGLES I. CORRECTION EXERCICES : DROITES ; CERCLES ; TRIANGLES a) Un segment contient une infinité de points (tout comme une droite!) b) (AB) et (CD) se coupent car elles ne sont pas parallèles. c) On peut tracer

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

Triangle rectangle. 1 Rappels sur le triangle rectangle. 1.1 Vocabulaire. Définition 1 Un triangle rectangle c est un triangle qui a un angle droit.

Triangle rectangle. 1 Rappels sur le triangle rectangle. 1.1 Vocabulaire. Définition 1 Un triangle rectangle c est un triangle qui a un angle droit. Triangle rectangle 1 Rappels sur le triangle rectangle 1.1 Vocabulaire Définition 1 Un triangle rectangle c est un triangle qui a un angle droit. Définition 2 Le coté qui est situé en face de l angle droit

Plus en détail

Dans un triangle non aplati, la longueur de chaque côté est inférieure à la somme des deux autres côtés.

Dans un triangle non aplati, la longueur de chaque côté est inférieure à la somme des deux autres côtés. DROITES REMARQUABLES I Construction de triangles 1. Inégalité triangulaire : Voir une présentation ici et une illustration ici Propriété admise Dans un triangle non aplati, la longueur de chaque côté est

Plus en détail

Chapitre 10 - La géométrie Définitions et Propriétés des Angles, Triangles, Droites, Cercles

Chapitre 10 - La géométrie Définitions et Propriétés des Angles, Triangles, Droites, Cercles Chapitre 10 - La géométrie Définitions et Propriétés des Angles, Triangles, Droites, Cercles En géométrie déductive, on n accepte pas une phrase comme vrai sans preuve d un fait, une règle, ou propriété

Plus en détail

Aide mémoire Géométrie 3 è m e

Aide mémoire Géométrie 3 è m e Sinus d'un angle aigu: ide mémoire Géométrie è m e Sinus: est un triangle rectangle en. le sinus de l'angle, noté sin, est le rapport sin = longueur du côté opposé de l'angle longueur de 'hypoténuse côté

Plus en détail

PARALLELES ET PERPENDICULAIRES

PARALLELES ET PERPENDICULAIRES PARALLELES ET PERPENDICULAIRES Je sais définir et construire deux droites perpendiculaires Je sais définir et construire deux droites parallèles Je comprends les propriétés permettant de démontrer que

Plus en détail

Triangles rectangles et trigonométrie

Triangles rectangles et trigonométrie Chapitre 6 Triangles rectangles et trigonométrie I] Rappels a) Définition Un triangle qui a un angle droit est un triangle rectangle. Le côté opposé à l angle droit est l hypoténuse, c est le plus grand

Plus en détail

Configurations du plan en seconde Parallélogrammes Rectangles

Configurations du plan en seconde Parallélogrammes Rectangles Configurations du plan en seconde Parallélogrammes Rectangles Exercices avec GéoPlan : parallélogrammes, problèmes d'alignement. Sommaire Théorème de Varignon 1. Thalès et parallélogramme 2. Projections

Plus en détail

Si un triangle est inscrit dans un cercle de diamètre l un de ses côtés alors, il est rectangle.

Si un triangle est inscrit dans un cercle de diamètre l un de ses côtés alors, il est rectangle. Correction des exercices de géométrie Exercice 1 2. Nature des triangles AMB et ANB : Les triangles AMB et ANB sont inscrits dans un cercle ayant pour diamètre [AB]. Propriété (4 ème ) Si un triangle est

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

Théorème de l angle inscrit. Cocyclicité. Applications

Théorème de l angle inscrit. Cocyclicité. Applications Théorème de l angle inscrit. Cocyclicité. Applications Introduction : On se place dans plan affine euclidien orienté. On suppose connu : - Angles orientés de vecteurs, relation de Chasles - Pour un triangle

Plus en détail

I/ Vocabulaire et définitions. 1 ) Mises au point

I/ Vocabulaire et définitions. 1 ) Mises au point Angles I/ Vocabulaire et définitions 1 ) Mises au point Remarques 1 2 ) Définition d un angle: Application Soit la figure ci-contre Compléter L angle dessiné a pour sommet E Ses côtés sont les deux Demi-droites

Plus en détail

Utiliser les propriétés des symétries axiale ou centrale.

Utiliser les propriétés des symétries axiale ou centrale. Chapitre 4 Éléments de Géométrie Ce que dit le programme CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Coordonnées d un point du plan Abscisse et ordonnée d un point dans le plan rapporté à un repère orthonormé.

Plus en détail

L essentiel des notions

L essentiel des notions L essentiel des notions Sésamath Troisième L essentiel des notions http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Adaptation réalisée par Marie-Laure Besson Table des matières

Plus en détail

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale Géométrie plane Ce chapitre sur la géométrie plane va récapituler toutes les notions de géométrie que vous avez apprises au collège jusqu en classe de seconde. Nous passerons entre autre par les symétries,

Plus en détail

Similitudes du plan : Sessions antérieures

Similitudes du plan : Sessions antérieures 4 ème année Maths Similitudes du plan : Sessions antérieures Décembre 009 A LAATAOUI Session principale 008 : Le plan est orienté dans le sens direct OAB est un triangle rectangle et isocèle tel que OA

Plus en détail

Chapitre 6 Trigonométrie. Table des matières. Chapitre 6 Trigonométrie TABLE DES MATIÈRES page -1

Chapitre 6 Trigonométrie. Table des matières. Chapitre 6 Trigonométrie TABLE DES MATIÈRES page -1 Chapitre Trigonométrie TABLE DES MATÈRES page -1 Chapitre Trigonométrie Table des matières Exercices -1 1................................................ -1................................................

Plus en détail

ÉLÉMENTS DE GÉOMÉTRIE PLANE

ÉLÉMENTS DE GÉOMÉTRIE PLANE ÉLÉMENTS DE GÉOMÉTRIE PLANE I. DROITE ET SEGMENT 1. Généralités Il existe une droite et une seule passant par deux points A et B distincts donnés, on la note (AB). On peut dire que la droite passe par

Plus en détail

Triangles rectangles

Triangles rectangles Triangles rectangles Définitions : L hypoténuse. Le côté adjacent à l angle. Le côté opposé à l angle B. A B. Le côté adjacent à l angle B. Le côté opposé à l angle. Remarque : Dans un triangle rectangle,

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan ème année Maths Produit scalaire dans le plan Octobre 009 A LAATAOUI Exercice n 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle

Plus en détail

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES Géométrie analytique C est Descartes (1596-1650) qui a développé l idée de représenter les figures géométriques dans un repère, les points du plan étant définis

Plus en détail

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan Produit scalaire de deux vecteurs de l espace 1 Rappels sur le produit scalaire de deux vecteurs du plan 1.1 Définition Soit u et v deux vecteurs du plan. Si u = 0 ou v = 0, alors u v = 0 (Attention! On

Plus en détail

Seconde 1 Exercices sur le chapitre 18 : E1. page n

Seconde 1 Exercices sur le chapitre 18 : E1. page n Seconde 1 Exercices sur le chapitre 18 : E1. page n 1 E1 Savoir travailler avec une réflexion. P 229 n 18. ABC est un triangle isocèle en A. d est son axe de symétrie. E est le point d'intersection de

Plus en détail

MATHÉMATIQUE MAT Prétest C. Questionnaire

MATHÉMATIQUE MAT Prétest C. Questionnaire MATHÉMATIQUE MAT-5111 COMPLÉMENT ET SYNTHÈSE II Prétest C Questionnaire Préparé par : France Joyal et Yves Robitaille Vérifié par : Paul Huard et Gilles Viau Novembre 2008 Question 1 Voici les règles

Plus en détail

BREVET BLANC DES 6 et 7 février 2003 SÉRIE COLLÈGE

BREVET BLANC DES 6 et 7 février 2003 SÉRIE COLLÈGE Collège LANGEVIN WALLON BREVET BLANC DES 6 et 7 février 003 SÉRIE COLLÈGE Durée heures MATHEMATIQUES Rédaction, présentation, orthographe (4 points) PARTIE I : ACTIVITES NUMERIQUES (1 points) Dans toute

Plus en détail

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6)

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 3D2 LMRL CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 1 Rappels - classe de quatrième Théorème de Pythagore : Dans un triangle rectangle, le carré de l hypoténuse est égal à la somme des

Plus en détail

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle Trigonométrie 1 Une nouvelle unité de mesure des angles On considère un cercle de centre O et de rayon r. B θ r A Exercice 1. 1. Quelle est la circonférence de ce cercle? L aire du disque associé? O. Exprimer,

Plus en détail

CORRECTION DU BREVET BLANC MATHEMATIQUES

CORRECTION DU BREVET BLANC MATHEMATIQUES Classe de ème Mercredi 7 Décembre 2011 CORRECTION DU BREVET BLANC MATHEMATIQUES I- Activités Numériques : ( 12 pts ) Exercice 1 : Dans chaque cas, indiquer les étapes de calcul. 1- Je calcule A et B en

Plus en détail

Plan complexe avec GéoPlan

Plan complexe avec GéoPlan Plan complexe avec GéoPlan Des carrés autour d'une figure - études de configurations avec les complexes. Sommaire 1. Trois carrés Deux triangles rectangles isocèles - Médiane de l'un, hauteur de l'autre

Plus en détail

ISEFC Juin 2007 Département de Mathématiques MA115. Série d exercices: Géométrie élémentaire du Plan

ISEFC Juin 2007 Département de Mathématiques MA115. Série d exercices: Géométrie élémentaire du Plan ISEFC Juin 2007 Département de Mathématiques MA115 Série d exercices: Géométrie élémentaire du Plan Exercice 1: Soient (ABC) et (ABD) deux triangles tels que C et D soient de part et d autre de la droite

Plus en détail

Exercices de géométrie analytique

Exercices de géométrie analytique Exercice 1 Exercices de géométrie analytique (1) Déterminer les coordonnées des vecteurs représentés dans la base ( i, j ) () Déterminer les coordonnées des vecteurs représentés dans la base ( j, i ) ()

Plus en détail

RELATIONS METRIQUES du TRIANGLE RECTANGLE - Propriétés de Pythagore.

RELATIONS METRIQUES du TRIANGLE RECTANGLE - Propriétés de Pythagore. RELATIONS METRIQUES du TRIANGLE RECTANGLE - Propriétés de Pythagore. - Les relations trigonométriques dans le triangle rectangle. COURS I ) propriétés de Pythagore Pré requis Théorème : Dans un triangle

Plus en détail

Justifier. 2) Comment déceler des transformations dans une figure? 7-8

Justifier. 2) Comment déceler des transformations dans une figure? 7-8 Justifier 1) Comment justifier que page a) un quadrilatère est un parallélogramme, 2 b) un quadrilatère est un rectangle, 3 c) un quadrilatère est un losange, 4 d) un quadrilatère est un carré, 4 e) un

Plus en détail

Ch3 : configurations du plan - repérage d un point

Ch3 : configurations du plan - repérage d un point Ch3 : configurations du plan - repérage d un point 1. Coordonnées d un point sur un plan : repère orthonormé 1 (O,I,J et repérage d un point distance de deux points - démonstration avec le théorème de

Plus en détail

Constructions élémentaires à la règle et au compas

Constructions élémentaires à la règle et au compas Sommaire Constructions élémentaires à la règle et au compas Dix constructions au collège avec GéoPlan : médiatrice, bissectrice, perpendiculaire, parallèle... 1. Médiatrice d'un segment 2. Bissectrice

Plus en détail

ANNEXES. I. Documents cinquième. a. Fiche modèle à rendre avec la figure. Données. Je sais que D après la propriété J en conclus que

ANNEXES. I. Documents cinquième. a. Fiche modèle à rendre avec la figure. Données. Je sais que D après la propriété J en conclus que ANNEXES I. Documents cinquième a. Fiche modèle à rendre avec la figure Noms : Données Je sais que D après la propriété J en conclus que Travail en groupe Exercice Groupe 1 Construire un triangle ABC rectangle

Plus en détail

DROITES REMARQUABLES D'UN TRIANGLE. I - Médiatrices - Cercle circonscrit Les médiatrices des côtés d'un triangle se coupent en un même point

DROITES REMARQUABLES D'UN TRIANGLE. I - Médiatrices - Cercle circonscrit Les médiatrices des côtés d'un triangle se coupent en un même point DROITES REMARQUABLES D'UN TRIANGLE I - Médiatrices - Cercle circonscrit Les médiatrices des côtés d'un triangle se coupent en un même point Leur point d'intersection est le centre d'un cercle passant par

Plus en détail

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB]

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB] EC 4A : ELEMENTS DE MATHEMATIQUES PARALLELISME, PERPENDICULARITE, FIGURES PLANES ELEMENTAIRES COURS Objectifs du chapitre : Reconnaître et construire les figures de base de la géométrie Caractériser, reconnaître

Plus en détail

S13C. Autour des théorèmes de PYTHAGORE et THALES Corrigé

S13C. Autour des théorèmes de PYTHAGORE et THALES Corrigé CRPE Mise en route S13C. Autour des théorèmes de PYTHAGORE et THALES Corrigé A. Dans chaque exercice une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. Si le triangle

Plus en détail

x(a + b) = 2 Pythagore et Thalès

x(a + b) = 2 Pythagore et Thalès Pythagore et Thalès Exercice 1 : On a découpé 4 exemplaires de la figure 0 pour les assembler et obtenir la figure 1. La mesure de l aire de la figure 1 est celle d un carré dont le côté a pour mesure

Plus en détail

On peut aussi trouver une équation cartésienne de la médiatrice de [AB] en écrivant que M (d) si AM = BM ou bien AM 2 = BM 2

On peut aussi trouver une équation cartésienne de la médiatrice de [AB] en écrivant que M (d) si AM = BM ou bien AM 2 = BM 2 1S Corrigé DS n o 9 Durée :h Exercice 1 ( 5,5 points ) Dans un repère orthonormé du plan, on considère les points A(3; 1), B(; ) et C( ; 1). 1. Déterminer une équation de la droite (d 1 ), médiatrice de

Plus en détail

Première S 2 mai 2011

Première S 2 mai 2011 Première S mai 011 Exercices 11 1 Homothétie 1 Mathématiques Soit ABC un triangle, ( Γ ) son cercle circonscrit et O le centre de ( Γ ) Soit H le milieu de [BC] et D le point de ( Γ ) diamétralement opposé

Plus en détail

Aide mémoire Géométrie 4 ème

Aide mémoire Géométrie 4 ème ide mémoire Géométrie 4 ème Si un triangle est rectangle, alors la longueur de la médiane relative à l'hypoténuse est égale à la moitié de la longueur de l'hypoténuse. Triangle rectangle et cercle circonscrit:

Plus en détail

Le triangle, c'est le pied Défi mathématique Classe de quatrième

Le triangle, c'est le pied Défi mathématique Classe de quatrième Le triangle, c'est le pied Défi mathématique Classe de quatrième Un triangle a été effacé. Il n'en reste que certains points (centres, milieux des côtés, pieds des hauteurs...), retrouver le triangle!

Plus en détail

5 ème COURS triangles et droites remarquables. 1 Inégalité triangulaire

5 ème COURS triangles et droites remarquables. 1 Inégalité triangulaire 1 Inégalité triangulaire Quels que soient les points A, B et C on a l inégalité : AB AC + CB appelé linégalité triangulaire. A, B et C, sont trois points. On a l inégalité triangulaire : AB AC + CB Ecrire

Plus en détail

DROITES REMARQUABLES DU TRIANGLE

DROITES REMARQUABLES DU TRIANGLE Exercices 1/8 01 Donner la définition d une : - médiane - médiatrice - hauteur - bissectrice 02 Nommer les droites suivantes : (AC) : (BC) : (BD) : (BE) :. 03 Compléter les phrases relatives aux propriétés

Plus en détail