Informatique Décisionnelle pour l environnement

Dimension: px
Commencer à balayer dès la page:

Download "Informatique Décisionnelle pour l environnement"

Transcription

1 Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique et outils d exploration des données

2 Plan Rappel historique Définitions et architectures Cube multidimensionnel Mise en œuvre Outils de remobilisation et de restitution des données Propriétés fondamentales des Entrepôts de données Conclusion 2

3 Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Rappel Historique

4 Rappel historique Information décisionnelle Conçus pour répondre au besoin de prise de décision rapide de la part de la Grande distribution Gestion de flux financiers Suivi du Chiffre d affaire Dédiés à l aide à la décision Temps de réponse rapide (de l ordre de quelques secondes) et constants quelque soit la complexité des requêtes 4

5 Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Définitions et architectures

6 Architecture centralisée Les données sont centralisées au sein d une même plateforme Source Yvan Bédard 6

7 Base de données (Transactionnelle) C est une Base de données dont le mode d exploitation est tourné vers la saisie, le stockage, la mise à jour, la sécurité et l intégrité des données. 7

8 Entrepôts de données C est une collection de données portant sur des sujets touchant une organisation, intégrée, variant dans le temps, et non-volatile pour supporter le processus de prise de décision d une organisation (Inmon et al. 1996) 8

9 Architecture fédérée Les données centralisées dans un entrepôt sont restructurées selon différentes fonctions de l entreprise dans des marchés de données Source Yvan Bédard 9

10 Architectures trois-tiers Architecture fédérée où les données sont organisées par niveau de détail Source Yvan Bédard 10

11 Architectures n-tiers Architecture trois-tiers où les données sont résumées avant d être agrégées Source Yvan Bédard 11

12 Architectures «sans entrepôt» Les données ne sont pas centralisées mais organisées directement par fonction Source Yvan Bédard 12

13 Comparaison des caractéristiques Base de données transactionnelles Données organisées pour limiter la redondance (normalisation) Nombre élevé de tables Requêtes souvent complexes Temps de réponse long Entrepôt de données Redondance des données organisée selon des analyses préétablies Données résumées et/ou agrégées Requêtes souvent plus simples Temps de réponse rapide et constant 13

14 Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Cube multidimensionnel (Hypercube)

15 Exemple Exemple d un Cube multidimensionnel (Hypercube) Chiffre d affaire (CA) d une Entreprise Agricole Mesure ou Indicateur Membre 50<SAU<100 SAU 20<SAU<50 Dimension 10<SAU<20 CA Carottes Salade SAU<10 Taureau Vache Année 15

16 Organisation Agrégative de la Dimension Production Agricole Dimension Production Ensemble Production Ensemble Production * Liste Types Produit Bovin Gallinacé Légume Type Produit * Liste Produits Pomme Vache Taureau Poule Carotte Salade de Terre Produit 16

17 Exemple Cube multidimensionnel (Hypercube) Chiffre d affaire (CA) d une Entreprise Agricole 50<SAU<100 20<SAU<50 10<SAU<20 CA SAU<10 Carottes Salade Taureau Vache Bovin Légumes Production

18 Ft? Agrégation : opérateur historique Ft? + + CA d une entreprise : mesure agrégative 18

19 Exemple Cube multidimensionnel (Hypercube) Chiffre d affaire (CA) d une Entreprise Agricole Quantité de produit (Q) 50<SAU<100 20<SAU<50 10<SAU<20 SAU<10 CA Q Carottes Salade Taureau Vache 19

20 Implémentation des cubes Implémentation sous forme de base de données multidimensionnelle Technologie MOLAP (OLAP Multidimensionnel) Implémentation sous forme de base de données relationnelle Technologie ROLAP (OLAP Relationnel) simule une structure relationnelle dans un SGBD Implémentation sous forme mixte Technologie HOLAP (OLAP Hybride) Les données détaillées sont stockées dans une base relationnelle Les données agrégées sont stockées dans une base multidimensionnelle 20

21 Les structures multidimensionnelles dans un SGBDR Modèle en étoile (Star Schema) DIMENSION 1 DIMENSION 4 FAITS DIMENSION 2 DIMENSION 5 Mesures DIMENSION 3 DIMENSION N Modèle en flocon (Snowflake Schema) Modèle mixte (Mixed Schema) Modèle en constellation (Fact Constellation Schema) 21

22 Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Mise en œuvre

23 Transformations de Données Modélisation Métier Phases de mise en œuvre Développement Profil SOLAP & Modélisation d Analyse Transformations de Données Développement SOLAP Agregator Mise en œuvre de l outil SOLAP Recherches pour automatiser le processus de conception et d implémentation Collecter Restituer Données existantes Systèmes d information transactionnels Entrepôt de données Postes client 23

24 Profil SIG Extension de l AGL Objecteering Formalisme pictogrammique Propriétés spatiales et temporelles des concepts métiers Ligne de production automatique du code SQL Collecter Restituer SIT 24

25 Profil SOLAP SIE Pesticides Aide à la modélisation Contrôle de cohérence Génération du modèle de la base Génération du code SQL Dimension Spatiale Dimension Temporelle Profil SOLAP Dimension M atière Active Mesure Surface développée : real Quantité de Matière Active kg : real /Quantité de Matière Active kg/ha : real Entrepôt de Données Collecter Restituer 25

26 Modèle Physique des Données du Cube MPD_SiePesticides2 SiePesticides2 IdComposantBassinVersantPk : integer {foreignkey(dimensionspatiale,idcomposantbassinversantpk,dimensionspatiale_of_siepes_fk)} IdJourPk : integer {foreignkey(dimensiontemporelle,idjourpk,dimensiontemporelle_of_siep_fk)} IdMatiereActivePk : integer {foreignkey(dimensionmatiereactive,idmatiereactivepk,dimensionmatiereactive_of_s_fk)} SurfaceDeveloppee : real QuantiteDeMatiereActiveKg : real DimensionMatiereActive IdEnsembleMatiereActive : integer NomEnsembleMatiereActive : string DimensionMatiereActive_of_S_FK IdFamilleMatiereActive : integer NomFamilleMatiereActive : string IdMatiereActivePk : integer {primarykey(1)} NomMatiereActive : string IdTypeAction : integer XxxxxTypeAction : string DimensionSpatiale_of_SiePes_FK DimensionSpatiale ComposantBassinVersantFathe_FK ComposantBassinVersantFather_I : integer {foreignkey(dimensionspatiale,idcomposantbassinversantpk,composantbassinversantfathe_fk)} IdComposantBassinVersantPk : integer {primarykey(1)} NomComposantBassinVersant : string DimensionTemporelle_of_SieP_FK DimensionTemporelle IdEnsembleAnnees : integer NomEnsembleAnnees : string IdAnneeCalendaire : integer NomAnneeCalendaire : string IdSemaine : integer NumeroSemaine : string IdAnneeHydrologique : integer NomAnneeHydrologique : string IdMois : integer NumeroMois : string IdJourPk : integer {primarykey(1)} NumeroJour : string

27 Principe outil ETL (Extract, Transform and Load) Effectuer des transformations de données Dispose de composants Ex : composants de lecture/écriture de données Gestion de flux de données Ex : coupler le Flux de Bâtiments et le Flux de Parcelles => Flux de Parcelles Bâties Collecter Restituer 27

28 Principe d un ETL Exprimer graphiquement les relations entre données Flux d entrée Flux de sortie 28

29 Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Outils de remobilisation et de restitution des données Collecter Restituer

30 Plusieurs familles d outils de remobilisation et de restitution des données Requêteur (Spatial) On-Line Analytical Processing (OLAP ou SOLAP) Tableau de Bord (Spatial et Non Spatial) Outils d extraction de connaissances 30

31 Requêteur (Reporting ou Querying tool) Saisir des données Supprimer des données Mettre à jour des données Génération de rapports pré-formatés automatiquement Génération de page web automatiquement 31

32 On-Line Analytical Processing (OLAP) Spatial On-Line Analytical Processing (SOLAP) Il s agit d une catégorie de logiciels axés sur l exploration et l analyse rapide des données (spatiales) selon une approche multidimensionnelle à plusieurs niveaux d agrégation (Caron, 1998) 32

33 Drill Down / Drill Up Opérateurs OLAP ou SOLAP Navigation à travers plusieurs niveaux d une dimension Niveau global vers niveau détaillé ou l inverse Dimension Production Ensemble Production * Liste Types Produit Type Produit * Liste Produits Produit 33

34 Opérateurs OLAP ou SOLAP Drill Down / Drill Up Navigation à travers plusieurs niveaux d une dimension Niveau global vers niveau détaillé ou l inverse 50<SAU<100 20<SAU<50 10<SAU<20 SAU<10 CA Vache Taureau Production Bovin 34

35 Pivot ou Rotation Opérateurs OLAP ou SOLAP Changer la représentation des données SAU CA Production Année 35

36 Exemple d un emboîtement de BV 36

37 Evolution temporelle de la Matière Active appliquée 37

38 Restitutions plus classiques Histogrammes Camemberts Etc 38

39 39

40 40

41 Outils d extraction de connaissances A pour objet l extraction d'un savoir ou d'une connaissance à partir de grandes quantités de données (Wikipédia) Outils implémentant des algorithmes Outils statistiques Analyse discriminante, régressions linéaires et non linéaires Arbre de décision Réseau de neurones Algorithme génétique Raisonnement par cas 41

42 Utilisateurs potentiels de ces outils informatiques Requêteur Utilisateurs OLAP et SOLAP Utilisateurs expérimentés Scientifiques Tableau de Bord (Spatial et Non Spatial) Décideurs Extraction de connaissances Scientifiques 42

43 Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Propriétés fondamentales des Entrepôts de données

44 1 Propriété : Souplesse de l Architecture informatique Equipements Etat Ecotoxicologie Région Hydrobiologie Bassin Versant Collecter Restituer Systèmes d information transactionnels Entrepôt de données Marchés de données distribuées Postes client Données primaires Indicateurs (Calculés) 44

45 Collecter Restituer UMR TETIS 2 Propriété : Dichotomie des modèles métier/analyse Matière Active Matière Active Spécialité Commerciale Spécialité Commerciale Dimension MA Famille : string Solubilité : real DT50 : real DJA : real KOC : real LC50 : real 1..* * Concentration Mode de Pénétration : string Commentaire : string Toutes MA * Types Action Concentration Type Action Valeur : real Unité : string * Matières Actives Matière Active Systèmes d information transactionnels Entrepôt de données Marchés de données distribuées Postes client Connaissances métiers Besoins d analyse

46 Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Conclusion

47 Architecture de capitalisation Capitalisation des connaissances Dichotomie des modèles métiers et d analyse Meilleure stabilité des modèles Capitalisation des données Dichotomie des données primaires et des indicateurs (données calculées) Evite la «pollution» des bases de données. 47

48 Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Merci de votre attention

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

Conception de systèmes d'information et d'entrepôts de données

Conception de systèmes d'information et d'entrepôts de données Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Conception de systèmes d'information et d'entrepôts de données Vers des structures

Plus en détail

Prototype SOLAP appliqué sur des champs continus en mode raster

Prototype SOLAP appliqué sur des champs continus en mode raster Session démos 24 novembre 2014 Prototype SOLAP appliqué sur des champs continus en mode raster Analyse de hot spots de criminalité Jean-Paul Kasprzyk, doctorant Introduction 2 L informatique décisionnelle

Plus en détail

Système OLAP Fresqueau

Système OLAP Fresqueau Système OLAP Fresqueau Kamal BOULIL Journées 20 mars Strasbourg Réunion plénière -Fresqueau 07-08 octobre 2013 1 Plan 1. Introduction 1. Projet ANR Fresqueau 2. Systèmes OLAP 2. Système OLAP Fresqueau

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP BI = Business Intelligence Master Data-Science Cours 4 - OLAP UPMC 15 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Entrepôt de données Les entrepôts de données (data warehouse)

Plus en détail

CAPACITE CARTOGRAPHIQUE AUTOUR DES TECHNOLOGIES SOLAP

CAPACITE CARTOGRAPHIQUE AUTOUR DES TECHNOLOGIES SOLAP CONSERVATOIRE NATIONAL DES ARTS ET METIERS CENTRE REGIONAL RHONE-ALPES CENTRE D'ENSEIGNEMENT DE GRENOBLE UE ENG111 - Epreuve TEST Travail d'etude et de Synthèse Technique en INFORMATIQUE CAPACITE CARTOGRAPHIQUE

Plus en détail

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes II - II 1ère génération 13 2ème génération : Entrepôt de données / Magasin de données 15 3ème génération OLAP 16 Références Bibliographiques 18 A. 1ère génération Infocentre Tableur Base de données Infocentre

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 Workflow/DataWarehouse/DataMining 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 plan Workflow DataWarehouse Aide à la décision DataMinig Conclusion 14-09-98 LORIA

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

La place de la Géomatique Décisionnelle dans le processus de décision

La place de la Géomatique Décisionnelle dans le processus de décision Géomatique décisionnelle La place de la Géomatique Décisionnelle dans le processus de décision - Arnaud Van De Casteele Mines ParisTech - CRC Arnaud {dot} van_de_casteele {at} mines-paristech.fr Les rencontres

Plus en détail

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................

Plus en détail

PARTIE 1 : ETAT DE L ART...

PARTIE 1 : ETAT DE L ART... Table des matières INTRODUCTION... 1 Contexte général de l étude... 3 Problématiques... 4 Contributions des nos travaux de recherche... 5 Organisation du mémoire... 6 PARTIE 1 : ETAT DE L ART... 9 CHAPITRE

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP... Table des matières CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2 Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...6 OPÉRATIONS SUR LES CUBES...7 Exemple

Plus en détail

La problématique. La philosophie ' ) * )

La problématique. La philosophie ' ) * ) La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse

Plus en détail

Urbanisation des SI-NFE107

Urbanisation des SI-NFE107 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

Base de données en mémoire

Base de données en mémoire Base de données en mémoire Plan Bases de données relationnelles OnLine Analytical Processing Difficultés de l OLAP Calculs en mémoire Optimisations 1 Base de données relationnelle Introduction Date Exemple

Plus en détail

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

Évolution de modèle dans les entrepôts de données : existant et perspectives

Évolution de modèle dans les entrepôts de données : existant et perspectives EDA'07 3èmes journées francophones sur les Entrepôts de Données et l'analyse en ligne Poitiers, 7 et 8 Juin 2007 Évolution de modèle dans les entrepôts de données : existant et perspectives Cécile Favre,

Plus en détail

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres juan-manuel.torres@univ-avignon.fr LIA/Université d Avignon Cours/TP

Plus en détail

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants:

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Tassadit BOUADI 22 Juin 2010, Saint Jacut 1 Plan Introduc

Plus en détail

Master Professionnel Informatique Appliquée aux Systèmes d Informations Géographiques. Projet personnel. Thème : Présenté par IOGO Valentin

Master Professionnel Informatique Appliquée aux Systèmes d Informations Géographiques. Projet personnel. Thème : Présenté par IOGO Valentin Master Professionnel Informatique Appliquée aux Systèmes d Informations Géographiques Projet personnel Thème : «Etude exploratoire des systèmes d information géographique décisionnels (SIG décisionnels)

Plus en détail

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing Bases de données multidimensionnelles OLAP OnLine Analytical Processing OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour la mise en place d'un Système d'information décisionnel

Plus en détail

PLAN. Les systèmes d'information analytiques. Exemples de décisions

PLAN. Les systèmes d'information analytiques. Exemples de décisions Les systèmes d'information analytiques Dr A.R. Baba-ali Maitre de conferences USTHB PLAN Le cycle de decision Les composants analytiques ETL (Extract, Transform and Load) Entrepot de (Data warehouse) Traitement

Plus en détail

Contexte général de l étude

Contexte général de l étude 1 2 Contexte général de l étude Les entrepôts de données associés à des outils d analyse On Line Analytical Processing (OLAP), représentent une solution effective pour l informatique décisionnelle (Immon,

Plus en détail

ETL Extract - Transform - Load

ETL Extract - Transform - Load ETL Extract - Transform - Load Concept général d analyse en ligne (rappels) Rémy Choquet - Université Lyon 2 - Master 2 IIDEE - 2006-2007 Plan Définitions La place d OLAP dans une entreprise OLAP versus

Plus en détail

BI2 : Un profil UML pour les Indicateurs Décisionnels

BI2 : Un profil UML pour les Indicateurs Décisionnels BI2 : Un profil UML pour les Indicateurs Décisionnels Sandro Bimonte Irstea, TSCF, 9 Av. Blaise Pascal, 63178, Aubière, France sandro.bimonte@irstea.fr Thème de Recherche MOTIVE www.irstea.fr 2 Plan Motivations

Plus en détail

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016 Entrepôts de données NEGRE Elsa Université Paris-Dauphine 2015-2016 Contexte et problématique Le processus de prise de décision L entrepôt de données Définition Différence avec un SGBD Caractéristiques

Plus en détail

Business Intelligence : Informatique Décisionnelle

Business Intelligence : Informatique Décisionnelle Business Intelligence : Informatique Décisionnelle On appelle «aide à la décision», «décisionnel», ou encore «business intelligence», un ensemble de solutions informatiques permettant l analyse des données

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

BUSINESS OBJECTS V5 / V6

BUSINESS OBJECTS V5 / V6 BUSINESS OBJECTS V5 / V6 Durée Objectif 2 jours L objectif de ce cours est de savoir utiliser le logiciel BUSINESS OBJECTS pour faire des interrogations multi - dimensionnelles sur les univers BO et de

Plus en détail

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Restitution Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Fgi was here Restitution: les problématiques Stocker ne suffit, il faut permettre de comprendre et d analyser ces données. Avec des

Plus en détail

Datawarehouse. C. Vangenot

Datawarehouse. C. Vangenot Datawarehouse C. Vangenot Plan Partie 1 : Introduction 1. Objectifs 2. Qu'est ce qu'un datawarehouse? 3. Pourquoi ne pas réutiliser les BD? Partie 2 : Implémentation d'un datawarehouse ROLAP MOLAP HOLAP

Plus en détail

Investigation des modes d intégration physique entre un serveur de base de données multidimensionnelle et un SIG

Investigation des modes d intégration physique entre un serveur de base de données multidimensionnelle et un SIG SONIA RIVEST Investigation des modes d intégration physique entre un serveur de base de données multidimensionnelle et un SIG Essai présenté à la Faculté des études supérieures de l Université Laval pour

Plus en détail

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données :

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données : Page 1 of 6 Entrepôt de données Un article de Wikipédia, l'encyclopédie libre. L'entrepôt de données, ou datawarehouse, est un concept spécifique de l'informatique décisionnelle, issu du constat suivant

Plus en détail

Les Entrepôts de Données. (Data Warehouses)

Les Entrepôts de Données. (Data Warehouses) Les Entrepôts de Données (Data Warehouses) Pr. Omar Boussaid Département d'informatique et de Sta5s5que Université Lyon2 - France Les Entrepôts de Données 1. Généralités, sur le décisionnel 2. L'entreposage

Plus en détail

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1 JASPERSOFT ET LE PAYSAGE ANALYTIQUE Jaspersoft et le paysage analytique 1 Ce texte est un résumé du Livre Blanc complet. N hésitez pas à vous inscrire sur Jaspersoft (http://www.jaspersoft.com/fr/analyticslandscape-jaspersoft)

Plus en détail

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Action de formation: SQL Server Business Intelligence & Data Warehouse

Action de formation: SQL Server Business Intelligence & Data Warehouse Action de formation: SQL Server Business Intelligence & Data Warehouse Contenu : Integration Services Présentation de Management Studio - Présenter les différentes tâches de SSMS - Structure des serveurs

Plus en détail

Etude de faisabilité visant à mettre en place un entrepôt de données sur les données de l IFN. Analyser et Explorer avec une grande interactivité

Etude de faisabilité visant à mettre en place un entrepôt de données sur les données de l IFN. Analyser et Explorer avec une grande interactivité Établissement chargé de réaliser l inventaire permanent du patrimoine forestier sur tout le territoire métropolitain indépendamment de toute question de propriété. Parmi ces objectifs: Connaissance de

Plus en détail

Cybermarché et analyse comportementale

Cybermarché et analyse comportementale Cybermarché et analyse comportementale Antoine-Eric Sammartino aesammartino@e-laser.fr Séminaire Data Mining - Educasoft Formations 18 juin 2001-1- MENU Le Groupe LaSer Le processus Data Mining L industrialisation

Plus en détail

QU EST-CE QUE LE DECISIONNEL?

QU EST-CE QUE LE DECISIONNEL? La plupart des entreprises disposent d une masse considérable d informations sur leurs clients, leurs produits, leurs ventes Toutefois ces données sont cloisonnées par les applications utilisées ou parce

Plus en détail

LES ENTREPOTS DE DONNEES

LES ENTREPOTS DE DONNEES Module B4 : Projet des Systèmes d information Lille, le 25 mars 2002 LES ENTREPOTS DE DONNEES Problématique : Pour capitaliser ses informations, une entreprise doit-elle commencer par mettre en œuvre des

Plus en détail

Evry - M2 MIAGE Entrepôt de données

Evry - M2 MIAGE Entrepôt de données Evry - M2 MIAGE Entrepôt de données Introduction D. Ploix - M2 Miage - EDD - Introduction 1 Plan Positionnement du BI dans l entreprise Déclinaison fonctionnelle du décisionnel dans l entreprise Intégration

Plus en détail

ERP & Processus. lacreuse@unistra.fr

ERP & Processus. lacreuse@unistra.fr ERP & Processus Métiers lacreuse@unistra.fr Processus : «Système d activités qui utilise des ressources pour transformer des éléments d entrée en résultat» Iso9000 Approche par processus Axes de modélisation

Plus en détail

. Ce module offre la gamme de requête et d analyse la plus évoluée et la plus simple d utilisation du marché.

. Ce module offre la gamme de requête et d analyse la plus évoluée et la plus simple d utilisation du marché. La connaissance des facteurs-clés de réussite constitue un élément déterminant pour l amélioration des performances. Divalto intègre en standard, systématiquement Hyperion Intelligence. Ce module offre

Plus en détail

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI 5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI Un SI : et pour faire quoi? Permet de stocker de manière définitive des informations volatiles provenant d autre BD.

Plus en détail

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles) SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients

Plus en détail

Intelligence Economique - Business Intelligence

Intelligence Economique - Business Intelligence Intelligence Economique - Business Intelligence Notion de Business Intelligence Dès qu'il y a une entreprise, il y a implicitement intelligence économique (tout comme il y a du marketing) : quelle produit

Plus en détail

Comment réussir son projet décisionnel?

Comment réussir son projet décisionnel? Comment réussir son projet décisionnel? Lionel Navetier, associé, Valutis La réactivité avant la prévision est devenue le mot-clé pour décrire l exercice délicat qui consiste à piloter une entreprise.

Plus en détail

Les entrepôts de données

Les entrepôts de données Les entrepôts de données Lydie Soler Janvier 2008 U.F.R. d informatique Document diffusé sous licence Creative Commons by-nc-nd (http://creativecommons.org/licenses/by-nc-nd/2.0/fr/) 1 Plan Introduction

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 8 Introduction à OLAP 8.1. Présentation de la semaine Le modèle OLAP (Online Analytical Processing) est un modèle quasiomniprésent en intelligence

Plus en détail

Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel

Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 11 Introduction 1. Présentation du décisionnel 13 1.1 La notion de décideur 14 1.2 Les facteurs d'amélioration

Plus en détail

Fiche de lecture OLAP

Fiche de lecture OLAP Fiche de lecture OLAP NFE107 Urbanisation des Systèmes d Information Karim Sekri Informatique décisionnelle BI, Business Intelligence Système interprétant des données complexes permettant aux dirigeants

Plus en détail

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1 Entrepôt de Données Jean-François Desnos Jean-Francois.Desnos@grenet.fr ED JFD 1 Définition (Bill Inmon 1990) Un entrepôt de données (data warehouse) est une collection de données thématiques, intégrées,

Plus en détail

Durée ou Modalité: Examen! MOTS CLES : Architecture d application, Internet, Web2, RIA, Service Oriented Architecture, XML

Durée ou Modalité: Examen! MOTS CLES : Architecture d application, Internet, Web2, RIA, Service Oriented Architecture, XML DEPARTEMENT INFORMATIQUE ET GESTION S 9 PIGUE9.1 ARCHITECTURE DES SYSTEMES D INFORMATION & INTERNET! COORDINATEUR : Christophe FIORIO! EQUIPE PEDAGOGIQUE : Christophe FIORIO, Tiberiu STRATULAT! VOLUME

Plus en détail

La Business Intelligence 01/05/2012. Les Nouvelles Technologies

La Business Intelligence 01/05/2012. Les Nouvelles Technologies 2 La Business Intelligence Les Nouvelles Technologies 3 Une expertise méthodologique pour une intervention optimale sur tous les niveaux du cycle de vie d un projet 4 5 Ils nous font confiance : L ambition

Plus en détail

Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel

Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 10 Introduction 1. Présentation du décisionnel 15 1.1 La notion de décideur 15 1.2 Les facteurs d'amélioration

Plus en détail

Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France

Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France 12 juin 2013 Atelier SOLAP @EDA2013 Démarrage Projet MIDAS - 29 Janvier 2008 1 Plan Projet Fresqueau Objectifs généraux

Plus en détail

III. Entrepôts de. données. A. Définition. Définition. Orientées sujet. Intégrées, Variables dans le temps,

III. Entrepôts de. données. A. Définition. Définition. Orientées sujet. Intégrées, Variables dans le temps, Entrepôts de III - données III Définition 19 Architecture d'un entrepôt de données 20 Architecture ED avec magasins de données 22 Architecture basée sur des magasins de données indépendants 23 Fonctionnement

Plus en détail

IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL

IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL Proposé par BUMA Feinance Master en management e projets informatiques Consultant en système écisionnel I. COMPREHENSION DU CONTEXTE «L informatique

Plus en détail

Plateforme SAS. Data & Information System

Plateforme SAS. Data & Information System Data & Information System SOMMAIRE Rédacteur : Ref: F.Barthelemy AXIO_1111_V1 PLATEFORME SAS PREREQUIS SAS GUIDE SAS WRS SAS PORTAL SAS MINER Une plateforme unique et modulable capable d exploiter l architecture

Plus en détail

Business & High Technology

Business & High Technology UNIVERSITE DE TUNIS INSTITUT SUPERIEUR DE GESTION DE TUNIS Département : Informatique Business & High Technology Chapitre 8 : ID : Informatique Décisionnelle BI : Business Intelligence Sommaire Introduction...

Plus en détail

UE 8 Systèmes d information de gestion Le programme

UE 8 Systèmes d information de gestion Le programme UE 8 Systèmes d information de gestion Le programme Légende : Modifications de l arrêté du 8 mars 2010 Suppressions de l arrêté du 8 mars 2010 Partie inchangée par rapport au programme antérieur Indications

Plus en détail

Introduction à GeoKettle un outil ETL spatial open source

Introduction à GeoKettle un outil ETL spatial open source Introduction à GeoKettle un outil ETL spatial open source par Etienne Dubé et Thierry Badard {etienne.dube,thierry.badard}@scg.ulaval.ca Groupe de recherche GeoSOA (http://geosoa.scg.ulaval.ca) Université

Plus en détail

Cycle de formation certifiante Business Intelligence. Initiation, Approfondissement et Maîtrise

Cycle de formation certifiante Business Intelligence. Initiation, Approfondissement et Maîtrise Cycle de formation certifiante Business Intelligence Initiation, Approfondissement et Maîtrise Objectifs de la formation : - Maîtriser les concepts et les outils de la business intelligence - Concevoir

Plus en détail

Le Géodécisionnel. P7 : Projet Bibliographique Dans le cadre du Mastère ASIG. Les SIG au service du géodécisionnel.

Le Géodécisionnel. P7 : Projet Bibliographique Dans le cadre du Mastère ASIG. Les SIG au service du géodécisionnel. P7 : Projet Bibliographique Dans le cadre du Mastère ASIG Le Géodécisionnel Les SIG au service du géodécisionnel Thierry Lallemant 15 Mai 2008 Mastère ASIG / Projet Bibliographique 2008 1 TABLE DES MATIERES

Plus en détail

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes II - II A. 1ère génération Infocentre L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes Définition L'infocentre est une collection de données orientées sujet, intégrées,

Plus en détail

Didier MOUNIEN Samantha MOINEAUX

Didier MOUNIEN Samantha MOINEAUX Didier MOUNIEN Samantha MOINEAUX 08/01/2008 1 Généralisation des ERP ERP génère une importante masse de données Comment mesurer l impact réel d une décision? Comment choisir entre plusieurs décisions?

Plus en détail

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

Bases de données multidimensionnelles OLAP

Bases de données multidimensionnelles OLAP Bases de données multidimensionnelles OLAP OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour l analyse multidimensionnelle. Les données sont historisées, résumées, consolidées.

Plus en détail

Nouspresentonslesprincipauxaspectsautourdelanotion(entrep^otde Resume

Nouspresentonslesprincipauxaspectsautourdelanotion(entrep^otde Resume EdgardBentez-Guerrero,ChristineCollet,MichelAdiba Entrep^otsdeDonnees:SyntheseetAnalyse RR1017-I-LSR8 RAPPORTDERECHERCHE Mai1999 e-mail:fedgard.benitez,christine.collet,michel.adibag@imag.fr Entrep^otsdeDonnees:SyntheseetAnalyse

Plus en détail

L information et la technologie de l informationl

L information et la technologie de l informationl L information et la technologie de l informationl CRM & informatique décisionnelled CRM CRM & informatique décisionnelle. d 1 2 3 Les Les fondements managériaux managériaux du du CRM. CRM. Les Les fondements

Plus en détail

Ici, le titre de la. Tableaux de bords de conférence

Ici, le titre de la. Tableaux de bords de conférence Ici, le titre de la Tableaux de bords de conférence pilotage d entreprise, indicateurs de performance reporting et BI quels outils seront incontournables à l horizon 2010? Les intervenants Editeur/Intégrateur

Plus en détail

Data Mining, fouille de données: Concepts et techniques. Marius Fieschi Faculté de Médecine de Marseille

Data Mining, fouille de données: Concepts et techniques. Marius Fieschi Faculté de Médecine de Marseille Data Mining, fouille de données: Concepts et techniques Marius Fieschi Faculté de Médecine de Marseille Data Mining, fouille de données: Concepts et techniques Ce cours est très proche du cours diffusé

Plus en détail

GUIDE COMPARATIF OLAP. www.viseo.com

GUIDE COMPARATIF OLAP. www.viseo.com GUIDE COMPARATIF OLAP www.viseo.com Table des matières Contexte et usage... Champs d application... Principes OLAP... 4 Les architectures OLAP... 5 Ouverture et complémentarité... 6 Questionnaire opérationnel...

Plus en détail

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Objectifs Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Structure générale des études à l UTC Règlement

Plus en détail

2 Serveurs OLAP et introduction au Data Mining

2 Serveurs OLAP et introduction au Data Mining 2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité

Plus en détail

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Présenté par Hana Gara Kort Sous la direction de Dr Jalel Akaichi Maître de conférences 1 1.Introduction

Plus en détail

Cabinet Conseil en Intelligence d Affaires. L'Intégration de données et la Qualité des données dans l'écosystème BI actuel et future

Cabinet Conseil en Intelligence d Affaires. L'Intégration de données et la Qualité des données dans l'écosystème BI actuel et future Cabinet Conseil en Intelligence d Affaires L'Intégration de données et la Qualité des données dans l'écosystème BI actuel et future Nous croyons que Les données sont des actifs corporatifs Les projets

Plus en détail

Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com

Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com Agenda Vision de la BI par Microsoft SQL Server 2008 R2 Démo PowerPivot Démo Reporting Services Questions / Réponses Une plateforme

Plus en détail

PITAGORE. Pour tout renseignement complémentaire, veuillez contacter le Pôle de Compétences PITAGORE

PITAGORE. Pour tout renseignement complémentaire, veuillez contacter le Pôle de Compétences PITAGORE MINISTÈRE DE LA DÉFENSE MINISTÈRE DE LA DÉFENSE Pour tout renseignement complémentaire, veuillez contacter le Pôle de Compétences Téléphone : 01 44 42 51 04 Télécopie : 01 44 42 51 21 Messagerie : pitagore-pc@sga.defense.gouv.fr

Plus en détail

Troisième partie. Entrepôt de données

Troisième partie. Entrepôt de données Troisième partie Entrepôt de données 23 Chapitre 8 Architecture d un entrepôt de données 8.1 Systèmes décisionnels 8.1.1 Comparaison avec un système transactionnel Un système transactionnel est une base

Plus en détail

Les outils OLAP. Proposé par : Mr R.Chalal. Réalisé par : Benakezouh Leïla Tifous Amira

Les outils OLAP. Proposé par : Mr R.Chalal. Réalisé par : Benakezouh Leïla Tifous Amira Les outils OLAP Proposé par : Mr R.Chalal Réalisé par : Benakezouh Leïla Tifous Amira SOMMAIRE Chapitre 1 Chapitre 2 Chapitre 3 Chapitre 4 Chapitre 5 Chapitre 6 OLAP: Définition, 12 règles, opérations

Plus en détail

Informatique décisionnelle (Première partie) Emmanuelle Cravoisier

Informatique décisionnelle (Première partie) Emmanuelle Cravoisier Informatique décisionnelle (Première partie) Emmanuelle Cravoisier Informatique décisionnelle Concepts Présentation de Business Objects Conception d un univers Business Objects Structure générale d une

Plus en détail

ThémaMap : un outil de cartographie thématique

ThémaMap : un outil de cartographie thématique ThémaMap : un outil de cartographie thématique Un exemple de mise en œuvre sur les pêches artisanales péruviennes. G. Domalain, C. Rodriguez (IRD-UMR EME-Sète) J. Madelaine, J. Chauveau GREYC - CNRS UMR

Plus en détail

Vanilla. Open Source Business Intelligence. Présentation de la plateforme

Vanilla. Open Source Business Intelligence. Présentation de la plateforme Vanilla Open Source Business Intelligence Présentation de la plateforme Novembre 2008 Patrick Beaucamp BPM Conseil Contact : patrick.beaucamp@bpm-conseil.com Table des matières Introduction...3 Portail

Plus en détail

Entrepôt de données (ED) Exercice traité en cours

Entrepôt de données (ED) Exercice traité en cours Enoncé Entrepôt de données (ED) Exercice traité en cours Une grande entreprise à succursales multiples veut rassembler toutes les nuits dans un entrepôt de données des informations sur les s du jour afin

Plus en détail

Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé

Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé ESNE Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé I.Cirillo 2010-2011 Introduction Le laboratoire de base de données de l ESNE a mis en place, il y a quelques années,

Plus en détail

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1 La Geo-Business Intelligence selon GALIGEO avec ESRI 2005 session «Décisionnel» 26/10/2005 1 La Business Intelligence : Une Définition La Business intelligence permet l utilisation des données opérationnelles

Plus en détail