COURS ELE2700 ANALYSE DES SIGNAUX

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "COURS ELE2700 ANALYSE DES SIGNAUX"

Transcription

1 ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE ÉLECTRIQUE AUTOMNE 20 COURS ELE2700 ANALYSE DES SIGNAUX SÉANCE #3 (TP2) FENÊTRES TEMPORELLES OBJECTIFS Éudier e comparer l effe de différenes fenêres emporelles uilisées pour l analyse specrale de signaux de longues durées. TABLE DES MATIÈRES Théorie de base Programmaion avec MATLAB 2. Fenêres emporelles Transformée de Fourier Travail à effecuer... 7 page sur 7

2 THÉORIE DE BASE Lors de l analyse specrale d un signal de longue durée, nous n avons accès, en praique, qu à une porion limiée de ce signal. Le specre obenu correspond donc au specre du signal à analyser auquel une «fenêre» a éé préalablemen mulipliée. La figure ci-dessous illusre cee opéraion. x() signal à analyser y() = x() f() Y( jω) = X( jω) F( jω) 2π [ ] f() : fenêre Exemple : x() f() 2 y() 2 page 2 sur 7

3 Comme on peu le consaer, la fenêre f() doi êre elle que le specre Y(jω) puisse êre considéré comme une approximaion accepable de X(jω), le specre du signal comple. Plusieurs éudes on éé effecuées pour déerminer la forme opimale de la fenêre à uiliser. Les principales caracérisiques d une fenêre peuven êre mises en évidence en uilisan, par exemple, un signal x() sinusoïdal de fréquence ω 0. Comme on le sai, le specre X(jω) de la sinusoïde n es formé que deux impulsions de Dirac siuées à ±ω 0 ; le specre Y(ω) sera donc (à un faceur près) F[j(ω+ω 0 )] + F[j(ω-ω 0 )] e nous permera d évaluer la qualié de la fenêre selon les deux crières suivans : 2 ω 0 ω La largeur du lobe cenral déermine la résoluion specrale de la fenêre, c es-à-dire sa capacié de discriminer deux fréquences proches l une de l aure. 2 L ampliude des lobes laéraux déermine l éalemen specral de la fenêre. Un éalemen specral rop grand nuira à la déecion d un signal d ampliude faible en présence d un signal d ampliude élevée. page 3 sur 7

4 Exemples de fenêres Fenêre recangulaire : f() 0 Fenêre riangulaire : f() 0 ½ Fenêre de Blackman : f() 2π 4π cos π cos 0 ½ Fenêre de Hamming : f() cos π + π 0 ½ page 4 sur 7

5 2 PROGRAMMATION AVEC MATLAB 2. Fenêres emporelles Les commandes riang(n), blackman(n) e hamming(n) produisen direcemen les fenêres voulues selon n poins (en veceurs colonnes). 2.2 Transformée de Fourier Soi Y(jω), la ransformée de Fourier de y(), un signal borné dans le emps enre 0 e. 0 () jω Y( jω) = y e d Lors du ravail praique #2, vous avez réalisé un algorihme permean l évaluaion de coefficiens de séries exponenielles de Fourier. En appliquan ce algorihme à y() selon un inervalle d analyse T >, on obien : Yn 2π n j T = y() e T d 0 Cee expression correspond à l évaluaion de différens poins de Y(jω), la ransformée de Fourier du signal y() : Y( ω) = TY ω = 2π n T On remarque que l échanillonnage du specre Y(jω) es obenu selon des muliples de 2π/T. On peu donc en augmener la précision en augmenan la grandeur de l inervalle d analyse T. Dans ce ravail, nous vous suggérons l inervalle suivan : n 0 T Inervalle [ 0 ] représené par 024 poins Inervalle [ 0 T ] représené par 6384 poins page 5 sur 7

6 Programme suggéré (à compléer ou modifier) % CONSTRUCTION DU VECTEUR SIGNAL y DE 024 POINTS y= ; % INTERVALLE D ANALYSE T= ; % ÉVALUATION DE LA TRANSFORMÉE DE FOURIER fy=t*ff([y zeros(,5360)])/6384; % AFFICHAGE DU RESULTAT omega= 2*pi*[0:89]/T; plo(omega,abs(fy(:892))) grid ile( TRANSFORMÉE DE FOURIER DE y() ) xlabel( Fréquence angulaire (rad/s) ) ylabel ( Module ) page 6 sur 7

7 3. TRAVAIL À EFFECTUER Au débu de la séance, deux fenêres vous serons désignées. Vous uiliserez le logiciel MATLAB pour : mere en évidence par une simulaion perinene () la supériorié d une fenêre sur l aure en ce qui a rai à la résoluion specrale, () deux sinusoïdes de fréquences rès proches l une de l aure mere en évidence par une simulaion perinene (2) la supériorié d une fenêre sur l aure en ce qui a rai à l éalemen specral. (2) une sinusoïde d ampliude fore + une sinusoïde de fréquence différene e d ampliude faible Avan la fin de la séance, vous devrez remere : des figures illusran la supériorié d une fenêre sur l aure en ce qui a rai à la résoluion specrale, des figures illusran la supériorié d une fenêre sur l aure en ce qui a rai à l éalemen specral, le lisage commené des commandes MATLAB uilisées. page 7 sur 7

IUT GEII Nîmes. DUT 2 - Alternance Représentation fréquentielle - Séries de Fourier. Yaël Thiaux

IUT GEII Nîmes. DUT 2 - Alternance Représentation fréquentielle - Séries de Fourier. Yaël Thiaux 1 héorie DU2-Al IU GEII Nîmes DU 2 - Alernance Représenaion fréquenielle - Séries de Fourier Yaël hiaux yael.hiaux@iu-nimes.fr Janvier 2015 2 DU2-Al héorie 1 héorie 2 3 3 DU2-Al Une somme de sinusoïdes?

Plus en détail

Echantillonnage d un signal : principe et conditions à satisfaire.

Echantillonnage d un signal : principe et conditions à satisfaire. Page 1 Echanillonnage d un signal : principe e condiions à saisfaire. I. Inroducion. L acquisiion d une grandeur analogique par l inermédiaire d une care d acquisiion possédan plusieurs enrées analogiques

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Les Qualisar+

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Convertisseurs. Figure 1 Figure 2

Convertisseurs. Figure 1 Figure 2 Converisseurs Converisseurs On se propose d éudier expérimenalemen les converisseurs permean de passer d un signal analogique à un signal numérique, e inversemen. Il s agi de mesurer leurs principales

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

Chapitre 4. Série de Fourier. 4.1 Série de Fourier

Chapitre 4. Série de Fourier. 4.1 Série de Fourier Chapire 4 Série de Fourier On a vu commen analyser des circuis don l enrée es une source sinusoïdale. Mais commen faire si la source n es pas sinusoïdale? Es-ce qu on peu quand même uiliser la foncion

Plus en détail

Fréquence et signaux

Fréquence et signaux Fréquence e signaux On désigne par signal la variaion, emporelle par exemple, d une grandeur physique comme la empéraure, l éclairemen, la conraine mécanique, l inensié d un son, la ension élecrique ec...

Plus en détail

CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE U-32 PHYSIQUE APPLIQUÉE

CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE U-32 PHYSIQUE APPLIQUÉE Session 2014 BREVET de TECHNICIEN SUPÉRIEUR CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE E3 Sciences Physiques U-32 PHYSIQUE APPLIQUÉE Durée : 2 heures Coefficien : 2,5 Maériel auorisé : - Toues les calcularices

Plus en détail

Le Principe de PASCAL

Le Principe de PASCAL Hydraulique LES LOIS D HYDROSTATIQUE N 1/8 LA FORCE. On appelle FORCE oue acion qui end à modifier l éa d un corps. Elle s exprime en NEWTON (symbole N). La force es définie par son sens, son inensié,

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

Leçon 15 Les formes des signaux électriques Page 1/7

Leçon 15 Les formes des signaux électriques Page 1/7 Leçon 15 Les formes des signaux élecriques Page 1/7 1. Les différenes formes de ension ou de couran élecriques 1.1 Signal unidirecionnel C es un signal qui circule oujours dans le même sens Couran unidirecionnel

Plus en détail

Redressement commandé

Redressement commandé Redressemen commandé Exercice 1 On donne ci-dessous le chronogramme de la ension aux bornes de la charge u C.( 1 V / div ) La fréquence du signal u issue du ransformaeur es de 5 Hz. De plus, on donne E

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

Réglage valeur moyenne

Réglage valeur moyenne P Cours : l insrumenaion élecrique A- Le généraeur de basses fréquences ou G.B.F - Présenaion uilisé : Réglage fréquence Réglage ampliude Réglage valeur moyenne Sweep : Possibilié de créer un signal de

Plus en détail

Amplification de puissance

Amplification de puissance Académie de Marinique Préparaion Agrégaion Sciences Physiques B. Ponalier Amplificaion de puissance Objecifs Comparer les différenes classes d amplificaion du poin de vue: du foncionnemen du rendemen Classe

Plus en détail

Réponse d un dipôle RC à un échelon de tension

Réponse d un dipôle RC à un échelon de tension 1- Le dipôle C es une associaion en série d un condensaeur e d un conduceur ohmique ( ou résisor) : I- Inroducion 2- L échelon de ension : es le passage insanané d une ension de la valeur à une valeur

Plus en détail

On verra des signaux communs analogiques et discrets et l application de ces signaux à des systèmes simples par l entremise de la convolution.

On verra des signaux communs analogiques et discrets et l application de ces signaux à des systèmes simples par l entremise de la convolution. Chapire Signaux e sysèmes Ce premier chapire ser de révision des principes de base des signaux, comme par exemple les définiions de période, phase, ainsi qu une inroducion aux sysèmes. Les conceps de signaux

Plus en détail

TPn 21 Régulation de vitesse d un train Durée: 4 heures

TPn 21 Régulation de vitesse d un train Durée: 4 heures TEE Sciences e Technologies de l'indusrie e du Développemen Durable Dae Lycée Nicolas Apper OBJECTIFS Régulaion de la viesse d un rain TP 2 Séquence 2 Décoder un schéma élecrique Décoder un schéma bloc

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages Chapire 3 Pourcenages Objecifs du chapire : iem références auo évaluaion relier évoluions e pourcenages éudier des évoluions successives calculer le aux d évoluion réciproque 19 I lien enre une évoluion

Plus en détail

CHAPITRE 4 LA VAR MONTE CARLO... 2

CHAPITRE 4 LA VAR MONTE CARLO... 2 CHAPITRE 4 LA VAR MONTE CARLO... I. PRINCIPE... A. Quel modèle uiliser?... B. Algorihme de simulaion... 3 II. EXEMPLE D APPLICATION... 4 A. Travail préliminaire... 4 B. Simulaion des rajecoires... 6 Algorihme...

Plus en détail

La réponse d un système linéaire en questions

La réponse d un système linéaire en questions La réponse d un sysème linéaire en quesions Version juille 00 Quesions La réponse d un sysème linéaire en quesions _1_ Un sysème es caracérisé par la ransmiance : jω) = 3 + 5jω quelle es l équaion différenielle

Plus en détail

Module TS (Théorie de Signal)

Module TS (Théorie de Signal) Module TS (Théorie de Signal) Conenu de Module Chap1 : Signaux, Foncions e Opéraeurs de base. Chap2 : Classificaion des Signaux. Chap3 : Séries e Transformée de Fourier. Chap4 : Convoluion e Corrélaion.

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure TP SdF N 25 Modélisaion e opimisaion de la mainenance prévenive e correcive d un maériel soumis à usure Ce TP complèe le TP N 22 sur la modélisaion e l opimisaion de la mainenance d un maériel réparable

Plus en détail

REPONSE DES CIRCUITS A UN ECHELON DE TENSION

REPONSE DES CIRCUITS A UN ECHELON DE TENSION LTOINTIQU Duperray Lycée FBUISSON PTSI PONS DS IUITS A UN HLON D TNSION Dans les circuis élecriques, les régimes on oujours un débu Nous allons éudier commen à parir des condiions iniiales, les courans

Plus en détail

2nde FICHE n 8 Utiliser les différents types de pourcentage

2nde FICHE n 8 Utiliser les différents types de pourcentage 2nde FICHE n 8 Uiliser les différens ypes de pourcenage Lorsque l on éudie un problème avec des pourcenages, il convien d abord de se poser la quesion du ype de pourcenage uilisé dans ce problème : le

Plus en détail

RMN_Chap VIII PARAMETRES D'ACQUISITION ET TRAITEMENT VIII _ LES PARAMETRES D' ACQUISITION ET DE TRAITEMENT EN RMN.

RMN_Chap VIII PARAMETRES D'ACQUISITION ET TRAITEMENT VIII _ LES PARAMETRES D' ACQUISITION ET DE TRAITEMENT EN RMN. PARAMETRES D'ACQUISITION ET TRAITEMENT VIII _ LES PARAMETRES D' ACQUISITION ET DE TRAITEMENT EN RMN. VIII.1 LA TRANSFORMEE DE FOURIER DE L'AIMANTATION. Dans le Chap_I, on a vu que l'aimanaion ransversale(m

Plus en détail

INFO-F-305 Modélisation et Simulation TP2 : Introduction à SIMULINK et cas d étude

INFO-F-305 Modélisation et Simulation TP2 : Introduction à SIMULINK et cas d étude INFO-F-5 Modélisaion e Simulaion TP : Inroducion à SIMULINK e cas d éude Inroducion Simulink es une exension graphique de Malab permean de représener des ssèmes sous forme de diagrammes en blocs, e de

Plus en détail

Figure 1. Enregistrements et spectres fréquentiels des deux émetteurs sonores

Figure 1. Enregistrements et spectres fréquentiels des deux émetteurs sonores Classe de Terminale S Physique Thème abordé : Ondes sonores Poin Cours Exercice Pour ou l exercice, on considère la célérié v du son dans l air, à 2 C, égale à 34 m.s. Les rois paries de l exercice son

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0 Balisique Inroducion La balisique es l'éude du mouvemen des mobiles soumis à la force raviaionnelle. Galilée (1564-164) a éé le premier à décrire de façon adéquae le mouvemen des projeciles e à démonrer

Plus en détail

Détermination de la primitive d une fonction trigonométrique à l aide de la V200

Détermination de la primitive d une fonction trigonométrique à l aide de la V200 Déerminaion de la primiive d une foncion rigonomérique à l aide de la V00. Formules élémenaires Dans les formules suivanes, u u ( ) es une foncion de. sin cos k u'sinu cosu cos sin k u'cosu sinu k k sin

Plus en détail

Électronique numérique

Électronique numérique 1 Cours Sciences Physiques MP Élecronique numérique Le développemen de l informaique don le foncionnemen repose sur le mode binaire 0 ou 1 a progressivemen imposé de ravailler avec des signaux numérisés

Plus en détail

Signal 1 Signal et ondes progressives

Signal 1 Signal et ondes progressives Signal Signal e ondes progressives Lycée Jules Viee - Grand Chenois - Physique-Chimie - TSI - 26-27 Conenu du programme officiel : Noions e conenus Eemples de signau, specre. Onde progressive dans le cas

Plus en détail

Cinétique de l oxydation du sulfite de cuivre

Cinétique de l oxydation du sulfite de cuivre Cinéique de l oxydaion du sulfie de cuivre Grégory Vial 11 avril 2006 Résumé On s inéresse à l oxydaion du sulfie de cuivre : il s agi d une réacion d auocaalyse don l éude cinéique condui à un problème

Plus en détail

Chapitre 0 : Ondes. Equations d onde. Solutions.

Chapitre 0 : Ondes. Equations d onde. Solutions. Spéciale PSI - Cours "Physique des ondes" Complémens Chapire : Ondes. Equaions d onde. Soluions. Conens Qu es-ce qu une onde?. Le concep d onde.... Ondes planes....3 Ondes planes progressives... 3. Ondes

Plus en détail

MESURES CHRONOMETRIQUES

MESURES CHRONOMETRIQUES Chapire 8 I- FRQUNCMR : MSURS CRONOMRIQUS Le schéma de principe d un fréquencemère numérique es donné par la figure 36. Signal de fréquence f Circui de mise en Base de emps X() Y() & Compeur orloge RAZ

Plus en détail

I. Mesure de température et chaîne de transmission optique

I. Mesure de température et chaîne de transmission optique IRSCPA BTS INFORMATIQUE INDUSTRIELLE Session 1998 Epreuve de : Physique Appliquée Durée : 3 heures Coefficien :3 Les amplificaeurs opéraionnels son ous considérés comme idéaux. Un formulaire es fourni

Plus en détail

Textures. François Faure. 2 Coordonnées de texture Modes de répétition Le problème des surfaces courbes... 5

Textures. François Faure. 2 Coordonnées de texture Modes de répétition Le problème des surfaces courbes... 5 Texures François Faure Résumé Table des maières 1 Inroducion 2 2 Coordonnées de exure 3 2.1 Modes de répéiion............................... 3 2.2 Le problème des surfaces courbes.......................

Plus en détail

SECONDE PARTIE - ELECTRONIQUE -

SECONDE PARTIE - ELECTRONIQUE - ENS de Cachan Concours d enrée en 3 ème année pour la préparaion à l agrégaion de Génie Elecrique Session 2001 SECONDE PARTIE - ELECTRONIUE - Ce problème se propose d éudier le foncionnemen de l élecronique

Plus en détail

Lasers femtosecondes : principes et applications en physique, chimie et biologie

Lasers femtosecondes : principes et applications en physique, chimie et biologie ECOLE DOCTORALE DE PHYSIQUE DE LA REGION PARISIENNE COURS D ECOLE DOCTORALE Lasers femosecondes : principes e applicaions en physique chimie e biologie Manuel Joffre Laboraoire d Opique e Biosciences INSERM

Plus en détail

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION ANALYSE DES SYSTÈMES ASSERVIS 7. Caracérisaion des sysèmes asservis 7.. Srucure des sysèmes asservis Un sysème asservi linéaire peu se représener par le schéma 7.. On y rerouve, une chaîne d acion qui

Plus en détail

Cours de Mathématiques. Chapitre 1 : Produit de convolution Distribution et peigne de Dirac. Distribution et peigne de Dirac

Cours de Mathématiques. Chapitre 1 : Produit de convolution Distribution et peigne de Dirac. Distribution et peigne de Dirac Chapire : Produi de convoluion Disribuion e peigne de Dirac UNVERSTE DE TULN UT DE TULN DEPARTEMENT GE Cours de Mahémaiques Chapire : Produi de convoluion Disribuion e peigne de Dirac Enseignane : Sylvia

Plus en détail

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI UNIVERSIE PARIS OUES, NANERRE LA DEFENSE UFR SEGMI Année universiaire 202 203 Cours d économérie L3 Economie Cours de Valérie MIGNON D de Benoî CHEZE e David GUERREIRO Exercice : Données en coupe D Inroducion

Plus en détail

Série d exercices Bobine et dipôle RL

Série d exercices Bobine et dipôle RL xercice 1 : Série d exercices Bobine e dipôle R On réalise un circui élecrique comporan une bobine d inducance e de résisance r, un conduceur ohmique de résisance R, un généraeur de ension de f.é.m. e

Plus en détail

Problème d'examen (Représentation triangulaire, ACP et élections)

Problème d'examen (Représentation triangulaire, ACP et élections) ISFA 2 année 2-21 Problème d'examen (Représenaion riangulaire, ACP e élecions) D. Chessel Les exercices (17-2) son indépendans du problème (1-16). 1. Quesions On considère la marice A à n = 14 lignes e

Plus en détail

Evolution de la valeur de l'entreprise

Evolution de la valeur de l'entreprise Correcion de l exercice 4 du cours Managemen Bancaire : «Eude du modèle de Meron» I) Valeur de l enreprise Quesion : dans quel cas (pariculier) es il possible d observer la valeur de l enreprise? Si l

Plus en détail

Minisère de l éducaion & de la formaion D. R. E. N Lycée Secondaire -Haouaria Devoir de conrôle N 1 Classes : 4 e Sc- Exp & Mah Dae : 15/11 /2008 Durée : 2 H Maière : Sciences Physiques profs: Laroussi

Plus en détail

LES ONDULEURS Convertisseurs DC/AC

LES ONDULEURS Convertisseurs DC/AC Chapire VI - Les onduleurs - LES ONDULEURS Converisseurs DC/AC I- Inroducion : L éude va porer sur les onduleurs : monophasés, de ension :Source d enrée (DC) = Source de Tension Source de sorie (AC) =

Plus en détail

LA THEORIE DE L'ECHANTILLONNAGE : LE THEOREME DE SHANNON

LA THEORIE DE L'ECHANTILLONNAGE : LE THEOREME DE SHANNON LA HEORIE DE L'ECHANILLONNAGE : LE HEOREME DE SHANNON 5 0 5 0 5 oue communicaion se fai par l inermédiaire de signaux, qui peuven êre acousiques (parole, e sons en général), élecromagnéiques (radio), élecriques

Plus en détail

Circuits R -C Réponse à un échelon de tension

Circuits R -C Réponse à un échelon de tension Lycée Viee TSI ircuis - -L -L- éponse à un échelon de ension I. égime libre. Définiion d un régime libre Le régime libre ( ou propre ) d un circui es un régime obenu lorsque les sources libres son éeines.

Plus en détail

Produit de Convolution Principe et Propriétés. par Vincent Choqueuse, IUT GEII

Produit de Convolution Principe et Propriétés. par Vincent Choqueuse, IUT GEII Produi de Convoluion Principe e Propriéés par Vincen Choqueuse, IUT GEII . Problémaique Problémaique Conexe : Soi un sysème Linéaire e Invarian dans le Temps (SLIT) défini par sa réponse à une impulsion

Plus en détail

l analyse harmonique : les séries et la transformée de Fourier 1. mise en évidence expérimentale de la décomposition et de la synthèse d un signal

l analyse harmonique : les séries et la transformée de Fourier 1. mise en évidence expérimentale de la décomposition et de la synthèse d un signal BS EL l analyse harmonique : les séries e la ransformée de Fourier. mise en évidence epérimenale de la décomposiion e de la synhèse d un signal la décomposiion d un signal la synhèse de Fourier : le synhéiseur

Plus en détail

Les filtres passe-haut

Les filtres passe-haut Les filres passe-hau Je ais ener ici de ous expliquer le foncionnemen d un filre passe-hau. Nous allons oir dans l ordre : - le schéma ype - l éude de la ransmiance - l éude du diagramme de Bode - l uilié

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

IFSTTAR Bvd Newton Cité Descartes, Champs sur Marne F Marne La Vallée Cedex 2

IFSTTAR Bvd Newton Cité Descartes, Champs sur Marne F Marne La Vallée Cedex 2 Le 24 février 2014 Commission de Normalisaion Jusificaion des Ouvrages Géoechniques Desinaaires : Membres de la CNJOG PRESIDENT Jean-Paul VOLCKE SECRETARIAT Sébasien Burlon 01 81 66 81 07 Sebasien.Burlon@ifsar.fr

Plus en détail

CHAPITRE 2 LES CONVERTISSEURS ALTERNATIFS/CONTINUS

CHAPITRE 2 LES CONVERTISSEURS ALTERNATIFS/CONTINUS CHAPITRE 2 LES CONVERTISSEURS ALTERNATIFS/CONTINUS LES MONTAGES REDRESSEURS COMMANDÉS Suppor de Élecronique de puissance - 25 - I.S.E.T de Bizere 2 LES CONVERTISSEURS ALTERNATIFS/CONTINUS 1-INTRODUCTION

Plus en détail

Propriétés des systèmes et Convolution

Propriétés des systèmes et Convolution Chapire 3 Propriéés des sysèmes e Convoluion 3. Rappel héorique Nous uilisons principalemen la noaion des signaux coninus dans le rese de ce rappel ; il suffi de remplacer () par [n] pour obenir le correspondan

Plus en détail

CHAPITRE III : LES COMPTEURS

CHAPITRE III : LES COMPTEURS CHAPITRE III : LES COMPTEURS I. Inroducion Dans de nombreuses applicaions on es amené à faire des compages d impulsions dans un emps donné pour la mesure de fréquences (par exemple) ou ou simplemen comper

Plus en détail

1 - Etude d'une alimentation à découpage

1 - Etude d'une alimentation à découpage 1 - Eude d'une alimenaion à découpage BTS ELECTROTECHNIQUE - Session 1997 - PHYSIQUE APPLIQUEE Durée : 4 heures Coefficien : 3 Cee éude compore rois paries, liées enre elles, mais pouvan êre raiées indépendammen

Plus en détail

Chapitre 2 Les outils mathématiques pour le traitement du signal

Chapitre 2 Les outils mathématiques pour le traitement du signal Chapire Les ouils mahémaiques pour le raiemen du signal 1. specre des signau sinusoïdau: Les signau sinusoïdau (ou harmoniques) son des signau périodiques rès imporans. Ce son les signau de la orme : ()

Plus en détail

LES COMPTEURS 3. COMPTEURS ET DECOMPTEURS ASYNCHRONES :

LES COMPTEURS 3. COMPTEURS ET DECOMPTEURS ASYNCHRONES : ISET de Nabeul ours de Sysème logique (2) hapire 3. OBJETIFS LES OMPTEURS Eudier les différens ypes de compeurs. omprendre le principe de foncionnemen de chaque ype. Mairiser les éapes de synhèse d un

Plus en détail

CHAP. 5 : LES CONDENSATEURS

CHAP. 5 : LES CONDENSATEURS CHAP. 5 : LES CONDENSATEURS I. Descripion e symboles Un condensaeur es un composan consiué par, appelés séparés sur oue l'éendue de leur surface par un milieu nommé. Le es de faible épaisseur e il s exprime

Plus en détail

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3 PHYSIQUE APPLIQUÉE Durée : 4 heures Coefficien 3 Le problème éudie l enraînemen d un venilaeur conrôlan le irage d une chaudière de fore puissance équipan une usine de pâe à papier. La régulaion de empéraure

Plus en détail

1 Proportionnalité et représentation graphique

1 Proportionnalité et représentation graphique 1 Proporionnalié 1 Proporionnalié e représenaion graphique 1 a) proporionnalié e conséquences On di qu il y a proporionnalié dans un ableau lorsque l on peu passer d une ligne à l aure en muliplian par

Plus en détail

MÉTHODE DE COMPENSATION DE DÉRIVE LORS D UNE MESURE D IMPÉDANCE ÉLECTROCHIMIQUE

MÉTHODE DE COMPENSATION DE DÉRIVE LORS D UNE MESURE D IMPÉDANCE ÉLECTROCHIMIQUE 2ème Forum sur les Impédances Élecrochimiques, C. Gabrielli (Ed.), Paris 17 Déc. 27, p. C29. MÉTHODE DE COMPENSATION DE DÉRIVE LORS D UNE MESURE D IMPÉDANCE ÉLECTROCHIMIQUE J.-P. DIARD 1, B. PETRESCU 2

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

Installations électriques des bâtiments.

Installations électriques des bâtiments. TP 4 : Eude de la errasse (Minuerie) Objecifs : Insallaions élecriques des bâimens. Prendre connaissance du CCTP, des plans dexécuion. Prendre connaissance e simuler sous chemaplic le monage Minuerie.

Plus en détail

M1 Economie : "colle" d économie industrielle

M1 Economie : colle d économie industrielle M Economie : "colle" d économie indusrielle Armel JACQUES novembre 0 Les calcularices son auorisées ; en revanche les appareils permean de communiquer (éléphone porable ou aures) son inerdis. Concurrence

Plus en détail

I. La lumière et ses propriétés

I. La lumière et ses propriétés Module 3 : L opique : Vocabulaire Ampliude (f) Hyperméropie (f) Propagaion (f) reciligne Axe (m) principal Image (f) réelle Réfléchi Concave Image (f) viruelle Réflexion (f) Convexe Incidence (f) Réflexion

Plus en détail

Temporisation par bascules monostables

Temporisation par bascules monostables Temporisaion par bascules Monosables TSTI 00-0 Chrisian Loverde Temporisaion par bascules monosables Rappels :. Charge d un condensaeur à ension consane i R C Débu de la charge u C (0)= 0 V u C A la fin

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Épreuve de Mahémaiques La claré des raisonnemens e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. L usage d un insrumen de calcul e du formulaire officiel de

Plus en détail

Evaluations socio-économiques et financière des projets de transports collectifs : méthode de calcul, paramètres et conventions

Evaluations socio-économiques et financière des projets de transports collectifs : méthode de calcul, paramètres et conventions 1 Juille 2001 Evaluaions socio-économiques e financière des projes de ranspors collecifs : méhode de calcul, paramères e convenions Période de l éude La période de l éude débue à l année de mise en service.

Plus en détail

CHAPITRE 1 SYSTÈMES LINÉAIRES - SYSTÈMES ASSERVIS

CHAPITRE 1 SYSTÈMES LINÉAIRES - SYSTÈMES ASSERVIS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE SYSTÈMES LINÉAIRES - SYSTÈMES ASSERVIS Les sysèmes - Définiions e exemples Un sysème peu êre défini comme un ensemble d'élémens

Plus en détail

Traitement du Signal Déterministe

Traitement du Signal Déterministe Cours e ravaux Dirigés de raiemen du Signal Déerminise Benoî Decoux (benoi.decoux@wanadoo.fr) - s - ère parie : "Noions de base e éudes emporelles" Bases du raiemen de signal Calculer l ampliude de la

Plus en détail

Physique appliquée. Analyse spectrale. Harmoniques 50 Hz. Spectre d un signal FSK Spectre d un signal périodique. 500 Hz. 2000 Hz

Physique appliquée. Analyse spectrale. Harmoniques 50 Hz. Spectre d un signal FSK Spectre d un signal périodique. 500 Hz. 2000 Hz Analyse specrale Physique appliquée Analyse specrale Harmoniques 50 Hz Specre d un signal FSK Specre d un signal périodique 500 Hz 000 Hz Analyse specrale Sommaire 1- La représenaion emporelle d un signal

Plus en détail

2 Compléter un tableau de proportionnalité

2 Compléter un tableau de proportionnalité 1 Reconnaire un ableau de proporionnalié OJECTIF 1 DÉFINITION Il y a proporionnalié dans un ableau de nombres à deux lignes lorsque les nombres de la deuxième ligne s obiennen en muliplian ceux de la première

Plus en détail

TD N 5 : Systèmes linéaires Les outils mathématiques

TD N 5 : Systèmes linéaires Les outils mathématiques Sysèmes Elecronique DUT APP 06 / 07 TD N 5 : Sysèmes linéaires Les ouils mahémaiques Chap. : Inroducion aux SA S.POUJOULY @poujouly hp://poujouly.ne Elémens de correcion Exercice n 3 : Modélisaion d'un

Plus en détail

Formalisme des processus aléatoires

Formalisme des processus aléatoires HAPITRE Formalisme des processus aléaoires. - Signal déerminise e signal aléaoire.. - Signal déerminise Les signaux déerminises son connus par leur représenaion emporelle e specrale. Dans le domaine emporel,

Plus en détail

Spectroscopie résolue en temps Détermination de durée de vie de fluorophores par déconvolution temporelle

Spectroscopie résolue en temps Détermination de durée de vie de fluorophores par déconvolution temporelle Séminaire GDR Monalisa - Ocobre 2003 Specroscopie résolue en emps Déerminaion de durée de vie de fluorophores par déconvoluion emporelle Roland REDON - Equipe ISO FLUORESCENCE Emission de phoons de longueurs

Plus en détail

DOSSIER TECHNIQUE. FONCTION RETARD ou TEMPORISATION

DOSSIER TECHNIQUE. FONCTION RETARD ou TEMPORISATION DOSSIER TECHNIQUE Foncion FONCTION RETARD ou TEMPORISATION La foncion reard ou emporisaion es une foncion dans laquelle oue ransiion d enrée (commande) se radui par une ransiion reardée de l informaion

Plus en détail

Exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation»

Exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation» Exercice du cours Managemen Bancaire : «Calcul de la VaR d une obligaion» L une des préoccupaions des gesionnaires des risques dans les banques es de prendre en compe les caracérisiques des porefeuilles

Plus en détail

Fiche d exercices 12 : Lois normales

Fiche d exercices 12 : Lois normales Fiche d exercices 1 : Lois normales Exercice 1 Loi normale cenrée e réduie N (0,1) Une variable aléaoire Z sui la loi N (0,1). On donne P ( Z 1,8 ) 0, 964 e P ( Z,3) 0, 989. Calculer les probabiliés suivanes

Plus en détail

d 2 X dt 2 = F 2KX (14) M B ω 2 X + 2K X = F X = ω B =

d 2 X dt 2 = F 2KX (14) M B ω 2 X + 2K X = F X = ω B = 1. Couplage par inerie e amorisseur accordé a b α m k F F x 0 0 (a Bâimen de masse sans le disposiif d amorissemen Les forces qui s appliquen au bâimen son : - la force due aux rafales de ven, - la force

Plus en détail

deux valeurs pour v 2 : v 2 = ou v 2 = donc v 2moy =, B or il nous faut v 2moy =.

deux valeurs pour v 2 : v 2 = ou v 2 = donc v 2moy =, B or il nous faut v 2moy =. Chapire.3.3 Conversion coninu alernaif 1 ) Principe 1.1) Généraliés C es un converisseur saique, qui perme des échanges d énergie enre une enrée coninue e une sorie alernaive. Symbole: Si la source coninue

Plus en détail

S 4 : Phénomène d interférence et de battement

S 4 : Phénomène d interférence et de battement : PCSI 016 017 I Inerférence : mise en évidence epérimenale 1. Disposiif epérimenal n dispose deu émeeurs ulrasons (f = 40 khz) que l on va brancher sur le même généraeur e d un récepeur qu on va brancher

Plus en détail

TUTORAT UE Physique CORRECTION Séance n 4 Semaine du 18/ 10 /2010

TUTORAT UE Physique CORRECTION Séance n 4 Semaine du 18/ 10 /2010 TUTORAT UE3 2010-2011 Physique CORRECTION éance n 4 emaine du 18/ 10 /2010 RMN 2 Pr. Zanca QCM n 1 : B-C Pour l angle de bascule : η=2πν 1 τ = γb 1 τ or γ= 2πν 0 B0 = 2πν0 car B 0 = 1T. η=2πν 0 B 1 τ =2π*42*10

Plus en détail

Probabilités 5 : Loi normale centée réduite N (0 ; 1)

Probabilités 5 : Loi normale centée réduite N (0 ; 1) «I» : Théorème définiion / Théorème admis Probabiliés 5 : Loi normale cenée réduie N ( ; ) La foncion f définie sur R par f ()= π e es une densié de probabilié sur R Il es clair que f es coninue e posiive

Plus en détail

Exemple de système asservi CONCEPT DU SCOOTER AUTOBALANCE

Exemple de système asservi CONCEPT DU SCOOTER AUTOBALANCE Cours 8 Sabilié des SLCI Lycée Bellevue Toulouse CPGE MP Sabilié des SLCI Uno I (Concep iniial) Uno III Le scooer Uno III es un parfai exemple de sysème asservi qui doi êre nécessairemen sable pour un

Plus en détail

Exercice n HA Corrigé

Exercice n HA Corrigé ENAC/ISTE/HYDRAM HYDROTHEQUE : base de données d exercices en Hydrologie Cours : Hydrologie Appliquée / Thémaique : Processus & Réponse Hydrologiques Exercice n HA 0101 - Corrigé Logo opimisé par J.-D.Bonour,

Plus en détail

Chapitre 7 : Les instruments de musique. Instruments à cordes, à vent, à percussion. Terminale spécialité Thème 2 : son et musique.

Chapitre 7 : Les instruments de musique. Instruments à cordes, à vent, à percussion. Terminale spécialité Thème 2 : son et musique. Chapire 7 : Les insrumens de musique. Insrumens à cordes, à ven, à percussion. Terminale spécialié Thème 2 : son e musique. I. Son émis par un insrumen de musique. 1. D abord, c es quoi un son? Définiion

Plus en détail

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté CHAPITRE II Oscillaions libres amories Sysème à un degré de liberé 011-01 CHAPITRE II Oscillaions libres amories : Sysèmes à un degré de liberé Inroducion : Le pendule élasique comme le pendule pesan,

Plus en détail

Unité 6 : La proportionnalité numérique 3 ème ESO

Unité 6 : La proportionnalité numérique 3 ème ESO UITÉ 6 : LA PROPORTIOALITÉ UMÉRIQUE POUR DÉBUTER Il fau rappeler - Définiion de grandeur : Une grandeur es une caracérisique qui es mesurée, e la valeur es exprimée par un nombre. Le concep de grandeur

Plus en détail

1 Analyse des systèmes asservis

1 Analyse des systèmes asservis i TABLE DES MATIÈRES Analyse des sysèmes asservis. Caracérisaion des sysèmes asservis......................................... Srucure des sysèmes asservis.........................................2 Caracérisiques

Plus en détail

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que PROPORTIONNALITE a) Définiion d une proporion a Quare nombres a, b, c e d éan non nuls, on di que c l une des condiions suivanes (équivalenes) es vérifiée : b d es une proporion lorsque Condiion 1 : Les

Plus en détail

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps.

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps. Modélisaion des sysèmes mécaniques LA CINÉMATIQUE DU POINT Dae : Inroducion : La cinémaique es la parie de la mécanique qui éudie le mouvemen des corps, indépendammen des effors qui les produisen. Les

Plus en détail

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE TERMINALE S.T.I. MOUVEMENT UNIFORME ET / hp://perso.orange.fr/herve.jardin-nicolas/ MOUVEMENT UNIFORME ET mv uniforme e uniformemen I. Domaine d applicaion de ce cours Ce chapire sera relaif d une par

Plus en détail

CAP C.C.F. Académie de BORDEAUX ÉTUDE DU MOUVEMENT D UN SOLIDE FICHE DESCRIPTIVE DU SUJET DESTINÉE AU PROFESSEUR

CAP C.C.F. Académie de BORDEAUX ÉTUDE DU MOUVEMENT D UN SOLIDE FICHE DESCRIPTIVE DU SUJET DESTINÉE AU PROFESSEUR Ce documen comprend : une fiche descripive du suje desinée au professeur. une siuaion d évaluaion desinée au candida. une grille d'évaluaion / noaion desinée au professeur. FICHE DESCRIPTIVE DU SUJET DESTINÉE

Plus en détail