M2R IMA UE CONF Présentation

Dimension: px
Commencer à balayer dès la page:

Download "M2R IMA UE CONF Présentation"

Transcription

1 M2R IMA UE CONF Présentation L objectif de l UE «Conférences» est de : 1. Présenter des applications du traitement d images dans divers domaines industriels ou académiques. 2. Apporter des compléments de cours par rapports aux autres UE. 3. Fournir des contacts pour le stage de recherche de M2. M2R IMA UE CONF Présentation Date Intervenants Affiliation Application Compléments 20/11 Th. Bernard A. Manzanera ENSTA Rétine A 3 27/11 F. Tupin ENST Télédétection Signal / Radar 4/12 J. Delon ENST Méthodes a contrario 11/12 V. Bouatou Sagem Biométrie 18/12 B. Collin DGA Défense Evaluation 8/1 F. Schmitt ENST Art / Archéologie Imagerie 3d 15/1 Ph. Starck CEA Astrophysique Multi-échelles 1

2 Traitement d images sur Rétine Programmable Antoine Manzanera ENSTA / Lab. d électronique et d informatique Plan de la présentation Contexte et objectifs de la recherche Rétine : aspects combinatoires Liens avec la morphologie mathématique Recherches actuelles et perspectives 2

3 Objectif global de la recherche L objectif est la minimisation globale du coût computationnel des systèmes de vision. Ce coût se traduit en termes de : - Temps de calcul - Energie consommée - Encombrement matériel D autre part, il se répartit dans les différentes fonctions du système : - Calcul - Transfert de données - Contrôle Aujourd hui la principale source de coût computationnel pour les systèmes de vision réside dans l accès aux données. L objet principal des rétines programmables est de réduire au strict minimum le transfert de données. L enjeu réside donc dans le développement de systèmes de vision embarqués, donc temps-réel, de petite taille et à longue autonomie. Traitement Acquisition + Traitement d images bas et moyen dans niveautraitement le plan focal haut (x,y) niveau TRAITEMENT PLAN FOCAL CALCULATEUR EXTERNE Σ 3

4 Phototransduction Les rétines programmables Conversion Traitement analogique Traitement numérique A/N séquençage est Le ProgramMultiple modèle un modèle de fonctionnement de type SIMD(Single de la rétine Instruction numérique Multiple en tant Data)ou que machine SPMD(Single parallèle, La rétine Bus Data). programmable, machine parallèle d instruction synchro. pgm1 synchrone logique séquentielle synchro. p séquençage as de pgm2 asynchrone logique combinatoire 4

5 Pvlsar 2004 (Th. Bernard 2005) Rétine booléenne SIMD 200x200 AMS 0,35 µm Système de vision à base de + Architecture hétérogène. rétine hybride. synchrone asynchrone + Fusionacquisition/traitement. numérique analogique 5

6 Processeurs pixelliques booléens BU x 1 x 2 x 3 x 4 x 5 x 6 y 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 Mémoire : -Données (RAM) - Calcul (registres) Le processeur pixellique de Pvlsar 34 et son unité booléenne Le réseau de processeurs pixelliques et sa topologie 4-connexe Plan de la présentation Contexte et objectifs de la recherche Rétine : aspects combinatoires Liens avec la morphologie mathématique Recherches actuelles et perspectives 6

7 Aspects combinatoires y 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 BU x 1 x 2 x 3 x 4 x 5 x 6 Avec cette architecture, on peut représenter les données manipulées par la rétine comme un ensemble de n plans (images) binaires. Les instructions élémentaires sont alors : - Une opération booléenne binaire : p i = p j p k ; p i = p j p k ; / -Une translation élémentaire : p i = p j EST ; p i = p j NORD ; / Le problème algorithmique revient à : calculer une certaine fonction booléenne d un support (voisinage) donné, en effectuant le moins d opérations possible (temps), et en utilisant le moins de registres mémoire possible (espace). C est en grande partie un problème de minimisation booléenne, il est donc tentant de voir ce qu on peut obtenir avec les décompositions canoniques p 1 p 2 p x8x9 x4x5x6x7 3 p n-1 p n z x 1x2x3 f(,..., x1n x) z=. fx jkkjk Forme disjonctive α ( ) )=.... tn Au (n plus 2 On2) n.... xn x (1,... C=3 y~ jx =j jy ii z = x8x9 x4x5x6x7 zy x 1x2x3 monômes de n variables p 1 p 2 p 3 Cen= Nombre max d opérations (temps) Nombre max de registres mémoire (espace) 7

8 fx,... xn) x1f xn) x Expansion de Shannon C 13 = 2) f(0,,x n ) f(1,,x n ) = 21+ x 1 = 1+ f x) ( ) ( ) ( 1 (0,... 1(1,... n CenCen tnctn Cen=O(n tno(n C= ) récursion 2k Diagramme de décision binaire 22n k k n-k nombre de variables x 1.. Au niveau de récursion k, on calcule 2 k fonctions à (n-k) variables. CenO(n 22n/ )) tn= Le BDD provient de la compaction de l expression produite par l expansion de Shannon. C=. x 1 Or, il «n y a que» 2 2n-k fonctions à (n-k) variables. (On prend k = log(n-log n)) 8

9 Conclusion sur les formes canoniques Si l on considère les bornes sup de complexité fournies par les formes canoniques, ça ne se passe pas très bien, d autant qu un résultat dû à Shannon (1949) montre que la plupart des fonctions booléennes à n variables doivent avoir une complexité supérieure à 2 n /n : Ensemble des fonctions à n variables de complexité inférieure à 2 n /n Card(F(n, 2 n /n)) = o(card(b n )) Ensemble des fonctions à n variables. Oui, mais : (1) Les fonctions intéressantes sont peut-être dans F(n, 2 n /n). (2) La décomposition spatiale nous permet de réduire n. La décomposition spatiale Exemple : un unique opérateur associatif La décomposition spatiale exploite la géométrie du support de la fonction booléenne pour factoriser spatialement la fonction booléenne. On va illustrer ce principe dans 2 fonctions particulières : - Les fonctions seuil binaires. - Les squelettes par amincissement. 9

10 Tnk( x1,..., xn) 1ii nxk Les fonctions seuil binaires Les fonctions seuil binaires sont définies comme suit : Calculées sur un support carré, elles se décomposent T3 1( x1, xceop. 2, x3) =2 31 spatialement de façon très 2x1x2x3 T32( x1, x2, x3) ( xct 31Ceop. ( x 12) x( 2) x31( x 32) x( 3x) 2x3) 3 efficace : 4 T3 3( x1ct, xceop. 2, x3) 3x21x2x3 T T = = T3= T3= T3= T3= T3= T3= = =1 Ct(1) (1) (2) T3 (2) 2 (3) (3) =2 W.E 31 T32 N.S W.E T3 2 T31 T9 T 2 dilatation morphologique binaireérosion morphologique binaire Application aux images binaires ouverture Imorphologique binaire1fermeture () morphologique binaire9( ) 9 I Tδ = 9 I Tε = filtre majoritaire 95( I) Tµ = ( I) (( I)) γ =δ ε I ϕ =ε δ ()(( I)) contours binaires ()\(( I)) µ Iµ ε 10

11 loi Calcul des P-simplicité8-connexe FN squelettes + par amincissement Isotropie Algorithme MB1 d évolution loi P-simplicité8-connexe FN FN Isotropie + Algorithme MB2 \ d évolution \ NE. calcul intérieurs points des calcul de la NEWS.NEWS E4 calcul config. de NWSENESW la E4.NE calcul config. de la Calcul des squelettes par amincissement E4.WS.N β α1 \\\\ ENWN α α2.swne SW. avec Algorithmes parallèles α= α1, on α2, en obtient complètement on 8-connexité obtient MB1-8. MB2-8. : MB1-8 MB2-8 et \ \ β α β α1 config. α 1 \\\\ 2.NESWSE NB : grâce à la factorisation spatiale, la complexité de certaines fonctions peut être inférieure au cardinal de leur support. 11

12 Calcul des squelettes Implantation des algorithmes MB1-8 et MB2-8 sur le prototype PVLSAR 2.2 temps à 10 de MHz calcul MB1 : 0,4 msmb2 0,7 ms Plan de la présentation Contexte et objectifs de la recherche Rétine : aspects combinatoires Liens avec la morphologie mathématique Recherches actuelles et perspectives 12

13 VsV Fusion T1 acquisition-traitement T7 t Procédé d acquisition numérique par interrogation multiple du photocapteur au cours du temps Acquisition active : Adaptation à l éclairement Compression logarithmique Contrôle de gain et par composition/différence Calcul des filtres de rang dilatation morphologique δ(i) gradient morph. : Image bruitée I filtre médian µ(i) ouverture morph. δ(ε(i)) µ(ι) ε(µ(i)) érosion morphologique ε(i) fermeture morph. ε(δ(i)) laplacienmorph. ε(µ(i))+δ(µ(i))-2µ(i) Les filtres de rang en niveaux de gris se calculent aisément pendant l acquisition par application des fonctions seuil binaires sur les ensembles de niveaux. T91 T95 99 T 13

14 Calcul des points d intérêt morphologiques somme Pour chaque ensemble de niveau : endo-squelette 8-connexe (courbure positive) points extrêmes Fonction d intérêt : produit de la courbure par le module du gradient. Maxima locaux exo-squelette 4-connexe (courbure négative) (Thèse Julien Richefeu 2002) points d intérêt Opérateurs connexes et asynchronisme Le coût énergétique de certains opérateurs irréguliers, la reconstruction en particulier peut être très élevé sur la rétine SIMD, dans la mesure ou l opérateur de relaxation (dilatation + MIN) agit sur quelques pixels seulement. Le calcul asynchrone du MAX associé à une topologie programmable permet de réduire de manière drastique ce coût en limitant la consommation aux pixels utiles. 14

15 Opérateurs connexes et asynchronisme Un autre exemple de l utilisation de la reconstruction asynchrone : élimination des courbes ouvertes dans une image filaire (calcul du squelette par zone d influence). (1) Déconnexion des points triples. (2) Reconstruction à partir des points simples. Calcul de somme régionale sur rétine asynchrone D autres primitives régionales peuvent bénéficier de l asynchronisme, comme le calcul de la somme sur les régions (composantes connexes). Calcul de l arbre recouvrant suivi du calcul dichotomique de la somme par propagation de la parité. (Thèse Valentin Gies 2003) 15

16 Segmentation Filtrage horizontal h x y topologique des images Filtrage vertical (domaine temporel) (domaine spatial) Original Watershedbrute Couple opposition de watersheden phase Résultat Plan de la présentation Contexte et objectifs de la recherche Rétine : aspects combinatoires Liens avec la morphologie mathématique Recherches actuelles et perspectives 16

17 It-1 It It+1 Détection de mouvement par estimation Σ tvt Mt (1) (2) Si Mt> Mt< Italors Mt= Mt-1; Mt+ 1; Dt t= Vt> Vt< It Mt K. talors ; Le occupés correspond Occupation mémoire (3) Si t> VtalorsDt= Vt= 1; Vt+ Vt-1; 1; utilisés bitssupplémentaires nombre Coût des pour par à de bits primitives les les 3 images. calculs. données 2 de calcul sont (4) sinon 0; comparaison incrément différence de limitent Si Kest 2, les à : une primitives / absolue décrément puissance se Estimation, poursuite, recalage Poursuite d objets par modéles actifs Estimation du mouvement et poursuite Mise en correspondance des structures d intérêt dans une séquence d image. 17

18 OBJECTIF : Etablir le lien entre les techniques de traitement statistique et les primitives d intégration et de Thèse de Nicolas Burrus (déb. 2005) réduction d informations de la rétine (sommateur analogique en particulier). «Détection d événements visuels saillants avec opérateurs rapides de réduction d information» Exemple : Contrôle de l acquisition Détection de segments significatifs (cicontre) Détection de segments significatifs Pour chaque direction, un ensemble de candidats est calculé. Chaque segment est réduit à un représentant. L ensemble des représentants est filtrée au sens d un critère a contrario, puis reconstruit. 2 critères a contrario ont été utilisés : -1 critère basé sur la longueur, fondé sur le principe d Helmoltz : on mesure le nombre de points blancs N dans l image des candidats, et on en déduit la longueur λ telle que l espérance du nombre de segments de taille λ dans une image aléatoire à N pixels blancs soit inférieure à critère basé sur le contraste : c est l intégrale du module du gradient le long du segment qui doit être significatif ; on doit alors estimer la distribution du gradient dans l image des candidats. Calcul des segments candidats dans une direction donnée. Segments significatifs dans toutes les directions. 18

19 localisation, un cartes et Exploiter de contexte réduction de saillance, les cartographie) capacités d informationde de champs robotique de : calcul d auto-corrélation) mobile(e.g. intensif(e.g. rétine dans Thèse de Renaud Barate (déb. 2005) environnement Apprendre son NS. WE. Apprendre des objets visuels NS. des Apprendre fonctions Stage 1 : Détection de structure d intérêt Capteur intelligent Mécanismes d attention Multi-échelles Détection / Descripteurs / Poursuite Suite Stage IPCC 06 19

20 Stage 2 : Compression de vidéo Capteur intelligent Redondance spatiale Redondance temporelle Stage 3 : IHM basée Vision Artificielle Détection robuste Tracking Programmation Qt3 Suite Stage Erasmus 06 20

21 Stage 4 : Détection a contrario du mouvement radial Stage 5 : LPE cellulaire asynchrone Watershed segmentation as a whole 21

22 Stage 6 : Indices visuels & biométrie bimodale Information mutuelle Son/Video Gestion de la causalité Efficacité du calcul Suite Stage IAD 06 Collaboration ENST / TSI Stage 7 : Fusion & stéréovision bimodale Vis Vis IR IR Recalage fixe/résiduel Fusion mixte numérique/biologique Aspects cognitifs et ergonomiques 22

23 Stage 8 : A 3 des squelettes numériques Parallèlisme de données VS Flot de données Amincissement VS Fonction distance Collaboration P11 / IEF Stage 9 : Oïdium du blé et fongicides Traitement d images couleur Classification Morphologie mathématique Collaboration INRA (Buc) 23

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez

Plus en détail

OPERATEURS MORPHOLOGIQUES

OPERATEURS MORPHOLOGIQUES OPERATEURS MORPHOLOGIQUES Ensembles caractéristiques et éléments structurants Érosion et dilatation Ouverture et fermeture Application au filtrage Extraction de contours, remplissage de régions Épaississement,

Plus en détail

TP5 - Morphologie mathématique

TP5 - Morphologie mathématique TP5 - Morphologie mathématique Vincent Barra - Christophe Tilmant 5 novembre 2007 1 Partie théorique 1.1 Introduction La morphologie mathématique [1] est un outil mathématique permettant au départ d explorer

Plus en détail

III Caractérisation d'image binaire

III Caractérisation d'image binaire III Caractérisation d'image binaire 1. Généralités Les images binaires codent l'information sur deux valeurs. Rarement le résultat direct d'un capteur, mais facilement obtenues par seuillage dans certains

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Reconstruction d une image 3D à partir de plans images capturés par un FIB et analyse 3D

Reconstruction d une image 3D à partir de plans images capturés par un FIB et analyse 3D Reconstruction d une image 3D à partir de plans images capturés par un FIB et analyse 3D Gervais Gauthier ADCIS S.A., 3 rue Martin Luther King, 14280 Saint-Contest www.adcis.net Sommaire Données initiales

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

Morphologie mathématique : introduction. Morphologie mathématique : introduction

Morphologie mathématique : introduction. Morphologie mathématique : introduction Morpologie matématique 2D et 3D Application en analyse d image Morpologie matématique : introduction Téorie de traitement non linéaire de l information introduite en France dans les années 60 par G. Materon

Plus en détail

Géométrie discrète Chapitre V

Géométrie discrète Chapitre V Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets

Plus en détail

CED-ST 2013-2014 Liste des Sujets de Recherche Formation Doctorale : STIC Responsable de la Formation : Pr. L. OMARI (lahcen.omari@usmba.ac.

CED-ST 2013-2014 Liste des Sujets de Recherche Formation Doctorale : STIC Responsable de la Formation : Pr. L. OMARI (lahcen.omari@usmba.ac. CED-ST 2013-2014 Liste des Sujets de Recherche Formation Doctorale : STIC Responsable de la Formation : Pr. L. OMARI (lahcen.omari@usmba.ac.ma) N.B. : Les étudiants qui ont déposé leurs demandes d'inscription

Plus en détail

Fouille de données orientée motifs, méthodes et usages.

Fouille de données orientée motifs, méthodes et usages. Fouille de données orientée motifs, méthodes et usages. François RIOULT GREYC - Équipe Données-Documents-Langues CNRS UMR 6072 Université de Caen Basse-Normandie France Résumé La fouille de données orientée

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche Cemagref - CIRAD - ENGREF Master ère année Analyse spatiale, analyse géographique, spatialité des sociétés Master

Plus en détail

Le programme d examens préparé par le Bureau canadien des conditions d admission en génie d Ingénieurs Canada englobe dix-sept disciplines du génie.

Le programme d examens préparé par le Bureau canadien des conditions d admission en génie d Ingénieurs Canada englobe dix-sept disciplines du génie. INTRODUCTION Le programme d examens préparé par le Bureau canadien des conditions d admission en génie d Ingénieurs Canada englobe dix-sept disciplines du génie. Le programme d examens de chaque spécialité

Plus en détail

Architectures Logicielles et Matérielles Travaux Dirigés Circuits

Architectures Logicielles et Matérielles Travaux Dirigés Circuits UNIVERSITE Joseph FOURIER, Grenoble U.F.R. d Informatique et Maths. Appliquées Architectures Logicielles et Matérielles Travaux Dirigés Circuits Rappel : dessins des portes logiques. Déroulement envisagé

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

Programme scientifique Majeure INTELLIGENCE NUMERIQUE. Mentions Image et Réalité Virtuelle Intelligence Artificielle et Robotique

Programme scientifique Majeure INTELLIGENCE NUMERIQUE. Mentions Image et Réalité Virtuelle Intelligence Artificielle et Robotique É C O L E D I N G É N I E U R D E S T E C H N O L O G I E S D E L I N F O R M A T I O N E T D E L A C O M M U N I C A T I O N Programme scientifique Majeure INTELLIGENCE NUMERIQUE Langage Java Mentions

Plus en détail

Opérations de base sur ImageJ

Opérations de base sur ImageJ Opérations de base sur ImageJ TPs d hydrodynamique de l ESPCI, J. Bico, M. Reyssat, M. Fermigier ImageJ est un logiciel libre, qui fonctionne aussi bien sous plate-forme Windows, Mac ou Linux. Initialement

Plus en détail

Analyse Sémantique de Nuages de Points 3D et d Images dans les Milieux Urbains

Analyse Sémantique de Nuages de Points 3D et d Images dans les Milieux Urbains Analyse Sémantique de Nuages de Points 3D et d Images dans les Milieux Urbains Andrés Felipe SERNA MORALES Directrice de thèse: Beatriz MARCOTEGUI ITURMENDI serna@cmm.ensmp.fr MINES ParisTech, Mathématiques

Plus en détail

Les algorithmes de base du graphisme

Les algorithmes de base du graphisme Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............

Plus en détail

Approche hybride de reconstruction de facettes planes 3D

Approche hybride de reconstruction de facettes planes 3D Cari 2004 7/10/04 14:50 Page 67 Approche hybride de reconstruction de facettes planes 3D Ezzeddine ZAGROUBA F. S.T, Dept. Informatique. Lab. d Informatique, Parallélisme et Productique. Campus Universitaire.

Plus en détail

Informatique? Numérique? L informatique est la science du traitement de l information.

Informatique? Numérique? L informatique est la science du traitement de l information. Informatique? Numérique? L informatique est la science du traitement de l information. L information est traitée par un ordinateur sous forme numérique : ce sont des valeurs discrètes. Cela signifie que,

Plus en détail

Détection des points d intérêt et Segmentation des images RGB-D. Présentée par : Bilal Tawbe. Semaine de la recherche de l UQO

Détection des points d intérêt et Segmentation des images RGB-D. Présentée par : Bilal Tawbe. Semaine de la recherche de l UQO Détection des points d intérêt et Segmentation des images RGB-D Présentée par : Bilal Tawbe Semaine de la recherche de l UQO 25 Mars 2015 1. Introduction Les méthodes de détection de points d intérêt ont

Plus en détail

Journée Esri «SIG BTP» La dimension géographique & le BTP. 8 février 2011

Journée Esri «SIG BTP» La dimension géographique & le BTP. 8 février 2011 Journée Esri «SIG BTP» La dimension géographique & le BTP 1 vos interlocuteurs Eric Bessone Ingénieur en Informatique (RO & IA) Expertise «Images» 2D, 3D & Vidéo depuis 1990 Metrologie, Symbolics (ateliers

Plus en détail

Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test

Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test Grandes lignes Analyseur Statique de logiciels Temps RÉel Embarqués École Polytechnique École Normale Supérieure Mercredi 18 juillet 2005 1 Présentation d 2 Cadre théorique de l interprétation abstraite

Plus en détail

M Younsi Tel :0645755250 www.formation-informatiques.fr mousse.younsi@ formation-informatiques.fr

M Younsi Tel :0645755250 www.formation-informatiques.fr mousse.younsi@ formation-informatiques.fr U2 MATHÉMATIQUES POUR L INFORMATIQUE Dans ce document, on trouve toutes les notions que le référentiel du BTS SIO impose pour l epreuve U22. Les éléments en rouge sont des rappels concernant la notion

Plus en détail

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice

Plus en détail

Introduction à l informatique temps réel Pierre-Yves Duval (cppm)

Introduction à l informatique temps réel Pierre-Yves Duval (cppm) Introduction à l informatique temps réel Pierre-Yves Duval (cppm) Ecole d informatique temps réel - La Londes les Maures 7-11 Octobre 2002 -Définition et problématique - Illustration par des exemples -Automatisme:

Plus en détail

Segmentation interactive d images médicales à 4 dimensions par Lignes de Partage des Eaux

Segmentation interactive d images médicales à 4 dimensions par Lignes de Partage des Eaux 1 Segmentation interactive d images médicales à 4 dimensions par Lignes de Partage des Eaux F. Bidault (1), J. Stawiaski (2), E. Decencière (2), I. Ferreira (3), C. Le Péchoux (3), F. Meyer (2), J. Bourhis

Plus en détail

Analyse d images. Edmond.Boyer@imag.fr. Edmond Boyer UFRIMA 1

Analyse d images. Edmond.Boyer@imag.fr. Edmond Boyer UFRIMA 1 Analyse d images Edmond.Boyer@imag.fr Edmond Boyer UFRIMA 1 1 Généralités Analyse d images (Image Analysis) : utiliser un ordinateur pour interpréter le monde extérieur au travers d images. Images Objets

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Détection des deux roues motorisés par télémétrie laser à balayage

Détection des deux roues motorisés par télémétrie laser à balayage MEsure du TRAfic des deux-roues MOTOrisés pour la sécurité et l évaluation des risques Détection des deux roues motorisés par télémétrie laser à balayage Séminaire de mi parcours 11 mai 2012 CETE Normandie

Plus en détail

Représentation des fonctions booléennes

Représentation des fonctions booléennes Représentation des fonctions booléennes Épreuve pratique d algorithmique et de programmation Juillet 2003 Ce problème est consacré à l étude de deux représentations des fonctions booléennes de N variables

Plus en détail

Propriétés des images numériques Contraintes sur l interprétation

Propriétés des images numériques Contraintes sur l interprétation Propriétés des images numériques Contraintes sur l interprétation M.LOUYS, Traitement d images et problèmes inverses Master Astrophysique, Observatoire de Strasbourg, 2013 Propriétés générales d une image

Plus en détail

Initiation à LabView : Les exemples d applications :

Initiation à LabView : Les exemples d applications : Initiation à LabView : Les exemples d applications : c) Type de variables : Créer un programme : Exemple 1 : Calcul de c= 2(a+b)(a-3b) ou a, b et c seront des réels. «Exemple1» nom du programme : «Exemple

Plus en détail

WP2T23 «APPLICATION de de REFERENCE» Prototypage rapide d une application de traitement d images avec SynDEx EADS

WP2T23 «APPLICATION de de REFERENCE» Prototypage rapide d une application de traitement d images avec SynDEx EADS WP2T23 «APPLICATION de de REFERENCE» Prototypage rapide d une application de traitement d images avec SynDEx EADS Avec l appui de l INRIA www-rocq.inria.fr/syndex 1 PLAN I. Présentation du sujet II. Présentation

Plus en détail

Analyse d images (Image Analysis) : Informatique visuelle - Vision par ordinateur. Introduction. Plan du cours. Plan du cours

Analyse d images (Image Analysis) : Informatique visuelle - Vision par ordinateur. Introduction. Plan du cours. Plan du cours Analyse d images (Image Analysis) : Informatique visuelle - Vision par ordinateur Introduction Utilisation d un ordinateur pour interpréter le monde extérieur au travers d images. Elise Arnaud elise.arnaud@imag.fr

Plus en détail

Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation

Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation Complexité Objectifs des calculs de complexité : - pouvoir prévoir le temps d'exécution d'un algorithme - pouvoir comparer deux algorithmes réalisant le même traitement Exemples : - si on lance le calcul

Plus en détail

CLIP. (Calling Line Identification Presentation) Appareil autonome affichant le numéro appelant

CLIP. (Calling Line Identification Presentation) Appareil autonome affichant le numéro appelant 1. Besoin CLIP (Calling Line Identification Presentation) Appareil autonome affichant le numéro appelant ETUDE FONCTIONNELLE De très nombreux abonnés du réseau téléphonique commuté ont exprimé le besoin

Plus en détail

GPA770 Microélectronique appliquée Exercices série A

GPA770 Microélectronique appliquée Exercices série A GPA770 Microélectronique appliquée Exercices série A 1. Effectuez les calculs suivants sur des nombres binaires en complément à avec une représentation de 8 bits. Est-ce qu il y a débordement en complément

Plus en détail

Chapitre IX SKIZ et Ligne de partage des eaux

Chapitre IX SKIZ et Ligne de partage des eaux Chapitre IX SKIZ et Ligne de partage des eaux SKIZ euclidien et géodésique Fonction distance Ligne de partage des eaux Définition et propriétés Algorithmes J. Serra Ecole des Mines de Paris ( 2000 ) Course

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

Accréditation LMD4. Master mention Informatique Spécialité Informatique Parcours IMAGINA : Image et Jeux vidéo Version du 08/04/15

Accréditation LMD4. Master mention Informatique Spécialité Informatique Parcours IMAGINA : Image et Jeux vidéo Version du 08/04/15 Accréditation LMD4 Master mention Informatique Spécialité Informatique Parcours IMAGINA : Image et Jeux vidéo Version du 08/04/15 Les objectifs du parcours IMAGINA sont de former des ingénieurs et chercheurs

Plus en détail

ELP 304 : Électronique Numérique. Cours 1 Introduction

ELP 304 : Électronique Numérique. Cours 1 Introduction ELP 304 : Électronique Numérique Cours 1 Introduction Catherine Douillard Dépt Électronique Les systèmes numériques : généralités (I) En électronique numérique, le codage des informations utilise deux

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Journée Rencontres Académiques SCS

Journée Rencontres Académiques SCS Journée Rencontres Académiques SCS 24/01/2012 Prof. Frédéric Precioso Knowledge Extraction, Integration & Algorithms (KEIA) http://keia.i3s.unice.fr/ 2 /35 Permanents Célia Pereira da Costa, Christel Dartigues,

Plus en détail

Modélisation agent d une Architecture Logicielle de commande d un Véhicule Autonome

Modélisation agent d une Architecture Logicielle de commande d un Véhicule Autonome Modélisation agent d une Architecture Logicielle de commande d un Véhicule Autonome ENNAJI Mourad LASC université de Metz Ile du Saulcy B.P 80794 57 012 METZ Ennaji@lasc.sciences.univ-metz.fr Résumé Cet

Plus en détail

NFP111 Systèmes et Applications Réparties

NFP111 Systèmes et Applications Réparties NFP111 Systèmes et Applications Réparties 1 de 46 NFP111 Systèmes et Applications Réparties Cours 2 - Les appels de procédure distants (Partie 1) Claude Duvallet Université du Havre UFR Sciences et Techniques

Plus en détail

Théorie de l information : historique

Théorie de l information : historique Théorie de l information : historique Développée dans les années quarante par Claude Shannon. Objectif : maximiser la quantité d information pouvant être transmise par un canal de communication imparfait.

Plus en détail

TS214 - Compression/Décompression d une image binaire

TS214 - Compression/Décompression d une image binaire Filière Télécommunications, 2 ème année TS214 - Compression/Décompression d une image binaire De nombreux télécopieurs utilisent la recommandation T.4 Groupe 3 de l International Telecommunications Union

Plus en détail

Comme chaque ligne de cache a 1024 bits. Le nombre de lignes de cache contenu dans chaque ensemble est:

Comme chaque ligne de cache a 1024 bits. Le nombre de lignes de cache contenu dans chaque ensemble est: Travaux Pratiques 3. IFT 1002/IFT 1005. Structure Interne des Ordinateurs. Département d'informatique et de génie logiciel. Université Laval. Hiver 2012. Prof : Bui Minh Duc. Tous les exercices sont indépendants.

Plus en détail

Analyse des déplacements des objets mobiles : définition de comportements types

Analyse des déplacements des objets mobiles : définition de comportements types Analyse des déplacements des objets mobiles : définition de comportements types Thomas Devogele Université François Rabelais (Tours) thomas.devogele@univ-tours.fr Les déplacements L analyse des déplacements

Plus en détail

Exemple de filtrage non-linéaire : le filtrage médian

Exemple de filtrage non-linéaire : le filtrage médian Exemple de filtrage non-linéaire : le filtrage médian Le filtrage médian est une opération non-linéaire : médiane { x m + y m } médiane { x m } + médiane { y m } sauf exception exemple sur des séquences

Plus en détail

Microscopie de fluorescence Etat de l art

Microscopie de fluorescence Etat de l art Etat de l art Bibliométrie (Web of sciences) CLSM GFP & TPE EPI-FLUORESCENCE 1 Fluorescence Diagramme de JABLONSKI S2 S1 10-12 s Excitation Eex Eem 10-9 s Émission Courtoisie de C. Spriet

Plus en détail

THÉORIE DE L'INFORMATION : RAPPELS

THÉORIE DE L'INFORMATION : RAPPELS THÉORIE DE L'INFORMATION : RAPPELS 1920 : premières tentatives de définition de mesure de l'information à partir de 1948 : travaux de Shannon Théorie de l'information discipline fondamentale qui s'applique

Plus en détail

L apprentissage automatique

L apprentissage automatique L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer

Plus en détail

Les codes Pseudo-Aléatoires et leurs applications

Les codes Pseudo-Aléatoires et leurs applications Les codes Pseudo-Aléatoires et leurs applications A) Les codes Pseudo-Aléaoires B) Les Applications : I. Etalement de spectre, II. Cryptage et chiffrement III. Brouillage numérique A) Les codes Pseudo-aléatoires

Plus en détail

Initiation au HPC - Généralités

Initiation au HPC - Généralités Initiation au HPC - Généralités Éric Ramat et Julien Dehos Université du Littoral Côte d Opale M2 Informatique 2 septembre 2015 Éric Ramat et Julien Dehos Initiation au HPC - Généralités 1/49 Plan du cours

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

COURS LabVIEW. V. Chollet - 25/11/2013 - COURS LabVIEW 14 - Page 1 sur 37

COURS LabVIEW. V. Chollet - 25/11/2013 - COURS LabVIEW 14 - Page 1 sur 37 COURS LabVIEW V. Chollet - 25/11/2013 - COURS LabVIEW 14 - Page 1 sur 37 Chapitre 1 CALCULS DANS LabVIEW I INTRODUCTION Un calcul utilise des données pour fournir un résultat à partir d une formule. ENTREES

Plus en détail

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges? Compétences générales Avoir des piles neuves, ou récentes dans sa machine à calculer. Etre capable de retrouver instantanément une info dans sa machine. Prendre une bouteille d eau. Prendre CNI + convocation.

Plus en détail

Système binaire. Algèbre booléenne

Système binaire. Algèbre booléenne Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser

Plus en détail

Conception de SoPC pour applications multimédia

Conception de SoPC pour applications multimédia Conception de SoPC pour applications multimédia Auteurs : Michael Guarisco, Nicolas Marques, Eric Dabellani, Yves Berviller, Hassan Rabah, Serge Weber Laboratoire d Instrumentation Electronique de Nancy.

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Chaine de transmission

Chaine de transmission Chaine de transmission Chaine de transmission 1. analogiques à l origine 2. convertis en signaux binaires Échantillonnage + quantification + codage 3. brassage des signaux binaires Multiplexage 4. séparation

Plus en détail

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)

Plus en détail

Les apports de l informatique. Aux autres disciplines

Les apports de l informatique. Aux autres disciplines Les apports de l informatique Aux autres disciplines Le statut de technologie ou de sous-discipline est celui de l importation l et de la vulgarisation Le statut de science à part entière est lorsqu il

Plus en détail

Licence Sciences et Technologies Examen janvier 2010

Licence Sciences et Technologies Examen janvier 2010 Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.

Plus en détail

Information quantique

Information quantique Information quantique J.M. Raimond LKB, Juin 2009 1 Le XX ème siècle fut celui de la mécanique quantique L exploration du monde microscopique a été la grande aventure scientifique du siècle dernier. La

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Le son sur le web. S. Natkin

Le son sur le web. S. Natkin Le son sur le web S. Natkin Usage du son Contenus sonores: dialogues, interview Amélioration de l ihm (sons pour les boutons ) Musique de fond Ventes de musique et de contenus sonores Les limites techniques

Plus en détail

codage correcteur d erreurs convolutionnel 1. Définition...2 2. représentation en treillis...3 3. Décodage : algorithme de Viterbi...3 4.

codage correcteur d erreurs convolutionnel 1. Définition...2 2. représentation en treillis...3 3. Décodage : algorithme de Viterbi...3 4. codage correcteur d erreurs convolutionnel. éfinition.... représentation en treillis...3 3. écodage : algorithme de Viterbi...3 4. istance libre...5 5. iagramme d état. Fonction de transfert...5 6. écodage

Plus en détail

Comparaison de Relevés 3D issus de plusieurs Systèmes de Numérisation

Comparaison de Relevés 3D issus de plusieurs Systèmes de Numérisation Laboratoire Vision & Robotique Comparaison de Relevés 3D issus de plusieurs Systèmes de Numérisation Emilie KOENIG, Benjamin ALBOUY, Sylvie TREUILLET, Yves Lucas Contact : Sylvie Treuillet Polytech'Orléans

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd UE 503 L3 MIAGE Initiation Réseau et Programmation Web La couche physique A. Belaïd abelaid@loria.fr http://www.loria.fr/~abelaid/ Année Universitaire 2011/2012 2 Le Modèle OSI La couche physique ou le

Plus en détail

CALCULS PARALLÈLES ET APPLICATIONS LA VISION PAR ORDINATEUR AU CEA LIST, QUELS CHOIX ARCHITECTURAUX?

CALCULS PARALLÈLES ET APPLICATIONS LA VISION PAR ORDINATEUR AU CEA LIST, QUELS CHOIX ARCHITECTURAUX? CALCULS PARALLÈLES ET APPLICATIONS LA VISION PAR ORDINATEUR AU CEA LIST, QUELS CHOIX ARCHITECTURAUX? LABORATOIRE DE VISION ET INGÉNIERIE DES CONTENUS (LVIC) Fusion multimedia : extraction multimodale d

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

Fonctions logiques élémentaires

Fonctions logiques élémentaires Fonctions logiques élémentaires II. Systèmes binaires et algèbre de oole ctuellement, alors que les ordinateurs analogiques sont encore du domaine de la recherche, les informations traitées par les systèmes

Plus en détail

Tutorat 2 de Mathématiques (1ère année)

Tutorat 2 de Mathématiques (1ère année) Tutorat 2 de Mathématiques (ère année) 9//200 Transformée de Radon et Tomographie par Rayons X Compte-rendu à déposer svp le casier de mon bureau. N hésitez pas à me contacter en cas de difficultés majeures

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Communiqué de presse. Canon EOS C100 : la première caméra à grand capteur destinée à la production télévisuelle

Communiqué de presse. Canon EOS C100 : la première caméra à grand capteur destinée à la production télévisuelle Communiqué de presse Canon EOS C100 : la première caméra à grand capteur destinée à la production télévisuelle Courbevoie, le 29 août 2012 Canon complète aujourd hui son Système EOS Cinéma avec le lancement

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES Bertrand GOTTIN Directeurs de thèse: Cornel IOANA et Jocelyn CHANUSSOT 03 Septembre 2010 Problématique liée aux Transitoires

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

COMPRESSION/DECOMPRESSION D UNE IMAGE BINAIRE

COMPRESSION/DECOMPRESSION D UNE IMAGE BINAIRE Le 29 novembre 2013, Rapport projet TS114 COMPRESSION/DECOMPRESSION D UNE IMAGE BINAIRE Par Marc BELLINGER et Antoine BINON. 2eme année Télécommunications. 1 Introduction : Le but de ce projet est d implémenter

Plus en détail

Simulation d'un examen anthropomorphique en imagerie TEMP à l iode 131 par simulation Monte Carlo GATE

Simulation d'un examen anthropomorphique en imagerie TEMP à l iode 131 par simulation Monte Carlo GATE Simulation d'un examen anthropomorphique en imagerie TEMP à l iode 131 par simulation Monte Carlo GATE LAURENT Rémy laurent@clermont.in2p3.fr http://clrpcsv.in2p3.fr Journées des LARD Septembre 2007 M2R

Plus en détail

Systèmes de transmission

Systèmes de transmission Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un

Plus en détail

Couleur : de la perception au traitement

Couleur : de la perception au traitement Couleur : de la perception au traitement Title background : Rotating snakes illusion, by Akiyoshi KITAOKA Antoine Manzanera ENSTA-ParisTech / U2IS Introduction à la Couleur Couleur : perception, formalismes,

Plus en détail

UV Théorie de l Information. Codes à longueur variable

UV Théorie de l Information. Codes à longueur variable Cours n 5 : UV Théorie de l Information Compression de l information : Codage de source sans distorsion Ex 1 : Code de Shannon Fano Ex 2 : Code de Huffman Ex 3 : Codage par plage Ex 4 : Codage de Lempel

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

2015 // 2016. des formations. programme. Retrouvez toutes ces informations sur enseirb-matmeca.bordeaux-inp.fr

2015 // 2016. des formations. programme. Retrouvez toutes ces informations sur enseirb-matmeca.bordeaux-inp.fr programme des formations Filière Électronique...2 Filière Informatique...3 Filière Mathématique et Mécanique...4 Filière Télécommunications...5 Filière Réseaux et Systèmes d Information...6 Filière Systèmes

Plus en détail

Julien MATHEVET Alexandre BOISSY GSID 4. Rapport RE09. Load Balancing et migration

Julien MATHEVET Alexandre BOISSY GSID 4. Rapport RE09. Load Balancing et migration Julien MATHEVET Alexandre BOISSY GSID 4 Rapport Load Balancing et migration Printemps 2001 SOMMAIRE INTRODUCTION... 3 SYNTHESE CONCERNANT LE LOAD BALANCING ET LA MIGRATION... 4 POURQUOI FAIRE DU LOAD BALANCING?...

Plus en détail

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas 1. Arbres ordonnés 1.1. Arbres ordonnés (Arbres O) On considère des arbres dont les nœuds sont étiquetés sur un ensemble muni d'un

Plus en détail