Interdépendance des marchés d actions : analyse de la relation entre les indices boursiers américain et européens

Dimension: px
Commencer à balayer dès la page:

Download "Interdépendance des marchés d actions : analyse de la relation entre les indices boursiers américain et européens"

Transcription

1 Inerdépendance des marchés d acions : analyse de la relaion enre les indices boursiers américain e européens SANVI AVOUYI-DOVI, DAVID NETO Direcion générale des Éudes e des Relaions inernaionales Direcion des Éudes économiques e de la Recherche Cenre de recherche Dans ce aricle, le degré d inerdépendance enre les marchés boursiers européens e américain es mesuré par la corrélaion condiionnelle enre les rendemens boursiers : le coefficien de corrélaion es esimé dans le cadre d un modèle décrivan l évoluion de plusieurs variables (rendemen e volailié, par exemple) e son esimaion prend en compe l ensemble des informaions disponibles à un momen donné (i.e. l ensemble des informaions relaives aux faceurs explicaifs du modèle). On défini la variance condiionnelle de manière analogue. Par ailleurs, deux ouils d analyse, récemmen inroduis en finance appliquée, son uilisés de manière combinée. Le premier, développé par Engle en 00 sous la forme d une spécificaion originale des corrélaions condiionnelles dans le cadre de modèles à plusieurs variables ou marchés endogènes (modèles dis «mulivariés»), perme de reracer l évoluion des corrélaions enre deux ou plusieurs acifs. Le second ouil, les foncions copules, perme de mere en œuvre des lois de disribuion plus conformes aux fais sylisés observés sur les marchés financiers que celles courammen uilisées. L originalié de l approche suivie ici réside dans l uilisaion conjoine de ces deux insrumens. Le modèle mulivarié éudié condui à l abandon de deux hypohèses reenues radiionnellemen dans les éudes empiriques en finance : les corrélaions enre les acifs son supposées consanes ; les phénomènes d asymérie ou de présence d événemens rares ne son pas pris en compe dans les disribuions des prix d acifs. De fai, nos résulas empiriques validen l hypohèse de variaion des corrélaions dans le emps, ainsi que le choix d une loi de disribuion asymérique e inégran la présence d événemens rares. On noe aussi l exisence de phases de fores e de faibles corrélaions, ainsi que de phases similaires pour la volailié. Par ailleurs, nos résulas révèlen une liaison inense enre corrélaions e volailiés observées sur les différens marchés boursiers : dans les phases de fore volailié, la corrélaion a endance à passer au-dessus de son niveau moyen de long erme ; à l opposé, dans les périodes de faible volailié, les marchés semblen évoluer de manière plus indépendane. Enfin, la convergence enre les indices boursiers allemand e français au cours des années récenes es confirmée par la valeur du coefficien de corrélaion qui es proche de. Cela peu refléer l inégraion croissane de ces deux marchés e, au-delà, des économies française e allemande, au sein de l Union économique e monéaire. Banque de France Revue de la sabilié financière N 4 Juin 004 5

2 Les marchés boursiers son répués inerdépendans, mais les insrumens de mesure permean de suivre l évoluion de cee relaion au cours du emps son souven frusres. En effe, auan les modèles permean de mesurer e de suivre la variaion de la volailié (noammen lorsqu elle es évaluée à parir d un modèle en se servan des informaions disponibles, i.e. la volailié condiionnelle) son divers, auan les approches permean d évaluer l évoluion de cee inerdépendance enre les marchés son relaivemen rares. Par analogie avec les résulas empiriques disponibles sur la volailié (cf. Bollerslev, Engle e Nelson, 994, ou Gouriéroux, 99), on pressen que le degré d inerdépendance des marchés peu êre plus for dans les phases de «crise» ou d euphorie que dans celles dies «normales». Ceci proviendrai du fai que les marchés financiers surréagissen, en général, aux rès mauvaises ou rès bonnes nouvelles (mais pas forcémen de manière symérique). De ce fai, il semble raisonnable de faire l hypohèse d une alernance de périodes de fores e de faibles liaisons dans le cadre d une analyse de plusieurs marchés boursiers (une analyse mulivariée). Par ailleurs, le processus de globalisaion e d inégraion des marchés amorcé depuis une vingaine d années laisse penser que l inerdépendance enre les places boursières a évolué conjoinemen avec les modificaions srucurelles du sysème financier mondial dans le long erme, e au ryhme de la conjoncure financière dans le cour erme. Ce processus a pu accenuer les risques de conagion enre les marchés financiers e, plus pariculièremen, enre les marchés boursiers. Nous reenons la corrélaion condiionnelle comme mesure d inerdépendance ou de degré de liaison enre deux ou plusieurs variables. En d aures ermes, le coefficien de corrélaion es esimé dans le cadre d un modèle décrivan, noammen, l évoluion du rendemen e de la volailié. L éude vise à vérifier si l hypohèse de variaion des corrélaions es perinene e si celles-ci on des propriéés similaires à celles des volailiés condiionnelles. Oure les relaions décrivan l évoluion des corrélaions, on analyse simulanémen les équaions des rendemens (calculés comme des variaions relaives des cours) e des volailiés (ici les variances condiionnelles) sur les marchés boursiers américain e européens. Nous pourrons ainsi comparer les évoluions des volailiés observées sur ces marchés, d un côé, celles des volailiés e des corrélaions, de l aure. Pour cela, nous éudierons l évoluion des corrélaions condiionnelles enre les deux principales places boursières de la zone euro (Paris e Francfor) e la Bourse américaine, en combinan les appors du modèle mulivarié à corrélaions condiionnelles dynamiques (Dynamic Condiional Correlaion, cf. annexe ), inrodui par Engle, e ceux de la héorie des copules (cf. annexe ), qui auorisen une décomposiion judicieuse des lois de disribuions joines de plusieurs variables. Comme nous le verrons plus loin, l approche développée par Engle (00, 00) s inscri dans le prolongemen de ses ravaux, qui enen d expliquer de manière joine l évoluion du rendemen e celle de la volailié, par exemple. Ces modèles de Engle, plus connus sous le nom de modèles ARCH (pour AuoRegressive Condiional Heeroscedasiciy), son rès prisés dans les éudes de finance appliquée. Ils on permis, enre aures, de rejeer l hypohèse selon laquelle la variance condiionnelle n évolue pas au cours du emps. Les modèles ARCH décriven ainsi de manière joine la dynamique du rendemen e celle de la volailié. D une ceraine manière, l hypohèse de variaion des corrélaions généralise les modèles ARCH dans un cadre d analyse simulanée de plusieurs variables, en y rajouan des équaions décrivan les relaions d inerdépendance enre les différenes variables endogènes du modèle. Jusqu à une dae récene, du fai de la complexié de l expression analyique des disribuions joines afférenes à une analyse mulivariée, on ne reenai qu une caégorie resreine de lois de disribuion dans les éudes empiriques. L approche par les foncions copules perme d évier ce écueil par un accès à une gamme plus éendue de disribuions joines. L aricle s organise de la façon suivane : la première secion es consacrée à un bref aperçu des moyens uilisés pour définir la corrélaion condiionnelle ; la présenaion e le raiemen des données, ainsi que la présenaion e l inerpréaion des résulas, fon l obje de la seconde secion ; on y expose égalemen un exemple d applicaion de l hypohèse de variaion du coefficien de corrélaion dans le cadre d un Modèle d équilibre des acifs financiers (MEDAF). Enfin, les principales conclusions son présenées à l issue de d aricle. Des résulas empiriques (cf. De Bond e Thaler, 985, par exemple) on mis à jour des phases de surréacion des marchés des acions provenan, enre aures, de vagues d excès d opimisme ou de pessimisme des invesisseurs. On rouve ces résulas, obje de discussions imporanes, noammen dans la liéraure sur les ess d efficience des marchés. 6 Banque de France Revue de la sabilié financière N 4 Juin 004

3 Bref aperçu de la démarche Cadre général Plusieurs modèles permeen d évaluer la volailié sur un marché donné. Ceux-ci son soi srucurels (explicaion par des faceurs économiques fondamenaux), soi saisiques. Ce son, sans doue, les modèles à fondemen saisique qui on connu les développemens les plus imporans au cours des dernières décennies. Les modèles ARCH fon parie de cee caégorie d ouils. Ils on éé appliqués aux marchés financiers pour prendre en compe cerains fais sylisés (disribuions de lois aypiques, présence d effes d asymérie, ec.). En oure, les avancées récenes de l économérie on rendu leurs esimaions plus robuses. Les modèles ARCH son l un des poins d ancrage de cee éude. Dans le cas d une seule variable endogène (un marché boursier, par exemple), oure l équaion du rendemen, le modèle ARCH (ou GARCH pour ARCH généralisé) propose une relaion explicaive de la variance condiionnelle fondée sur rois faceurs : le passé de cee variance, qui inrodui ainsi un phénomène d inerie (ou de persisance) dans la relaion ; les chocs récens, représenés ici par l écar enre les valeurs esimées e observées de la variable éudiée ; un faceur consan (en fai la consane de l équaion). Ainsi, si l hypohèse de consance de la variance condiionnelle es admise (i.e. si l équaion es réduie à la seule consane), les coefficiens des deux premiers faceurs (effe d inerie e effe des chocs récens) son nuls. Lorsque l on cherche à analyser simulanémen plusieurs variables ou marchés (analyse mulivariée), l un des problèmes les plus épineux provien de l augmenaion du nombre de paramères inconnus avec celui des variables ou des marchés. Cee analyse impose égalemen des conraines addiionnelles, noammen sur les signes ou les valeurs des paramères. Cee difficulé générale relaive aux modèles mulivariés concerne égalemen les modèles ARCH ou GARCH mulivariés. En prenan le cas de rois marchés supposés dépendans, par exemple, oure les paramères relaifs aux équaions des rendemens, il fau inroduire rois coefficiens de corrélaion, rois variances condiionnelles e des paramères propres à la disribuion de la loi joine de ces variables. Si on se propose de décrire les variances e corrélaions par des équaions, on peu imaginer la difficulé d une esimaion simulanée de l ensemble des équaions, sauf à se limier à des relaions explicaives rès simples. Dans le cas des modèles ARCH mulivariés, plusieurs ravaux on poré sur des spécificaions judicieuses permean, à la fois, de réduire le nombre des paramères e de limier l imporance des conraines, ou en gardan une srucure dynamique du modèle relaivemen riche. Une approche consise à supposer qu il exise un ou plusieurs faceurs explicaifs communs aux différens marchés (cf. Diebold e Nerlove, 989). Cee approche, pluô orienée vers la recherche d une explicaion srucurelle, a comme principal handicap l idenificaion des faceurs lorsqu ils son observables e leur esimaion lorsqu ils ne le son pas. De fai, la complexié des méhodes d esimaion des modèles de cee famille n es généralemen pas à la haueur des résulas obenus dans des cas concres. Une aure voie revien à se limier à une exploiaion de modèles puremen saisiques dans la veine des modèles ARCH univariés (cf. Baba, Engle, Kraf e Kroner, 987, par exemple). Le modèle ARCH à corrélaions condiionnelles consanes (CCC-ARCH) proposé par Bollerslev en 987, l une des approches représenaives de cee caégorie, fai évoluer les variances condiionnelles dans le emps, ou en mainenan les corrélaions consanes. Ce modèle rédui, de manière considérable, le nombre de paramères à esimer, mais l hypohèse de consance des corrélaions ne résise pas à la réalié des fais. Dès lors, la recherche a visé à «conserver» les propriéés essenielles du modèle de Bollerslev (simplicié de mise en œuvre, souplesse du cadre, ec.), en y ajouan une hypohèse plus réalise sur le comporemen des corrélaions. Engle (00, 00), Engle e Sheppard (00) ainsi que Tse e Tsui (00) on proposé une spécificaion dynamique originale des corrélaions condiionnelles dans le cadre de modèles GARCH ou ARCH mulivariés, le DCC-GARCH. Par rappor à l approche de Bollerslev, le DCC-GARCH inrodui des équaions décrivan l évoluion des coefficiens de corrélaion, similaires dans leur concepion à celles des variances condiionnelles décries précédemmen (cf. annexe ). En effe, à l insar des variances condiionnelles, ces coefficiens son expliqués par rois principaux faceurs : leur propre passé, en vue de prendre en compe les phénomènes d inerie ; un faceur représenan l effe des chocs récens ; une Banque de France Revue de la sabilié financière N 4 Juin 004 7

4 consane. En cas de reje de l hypohèse de variaion des coefficiens de corrélaion, leurs équaions son alors réduies aux paramères consans (on rerouvera alors le cadre d un CCC-ARCH). Cee approche es plus réalise que celle proposée par Bollerslev, qui ne suppore pas les vérificaions empiriques, noammen lorsqu elles dériven de l analyse de marchés boursiers. En oure, la mise en place du DCC-GARCH es relaivemen aisée grâce aux avancées récenes de l économérie. Par ailleurs, elle s accommode de la mise en œuvre d un cerain nombre de ess, don celui relaif à la consance des coefficiens de corrélaion. Appor des foncions copules Les foncions copules on éé inroduies récemmen en finance appliquée, pour permere l uilisaion d une gamme plus éendue e plus réalise de lois décrivan l évoluion joine des rendemens observés sur plusieurs marchés. En effe, auparavan, la prise en compe de cerains fais sylisés (présence d évènemens rares e d effe d asymérie) dans les modèles mulivariés éai liée à la connaissance des expressions analyiques des disribuions ou à leur plus ou moins grande facilié d exploiaion (c es, par exemple, le cas de la disribuion de Suden qui es symérique, mais prend en compe la présence d événemens rares). Ceci a largemen limié le champ d une modélisaion simulanée des marchés. En effe, les difficulés provenan, noammen, du choix de la loi conjoine, de la fore augmenaion du nombre de paramères inconnus e, parfois, du nombre rédui des données disponibles on pénalisé les modèles empiriques mulivariés. Ce son à ces difficulés que s aaquen, en parie, les foncions copules. Sous des condiions faciles à vérifier, les foncions copules auorisen une décomposiion unique d une disribuion joine quelconque de plusieurs variables en deux élémens. Le premier es une foncion, appelée aussi srucure, de dépendance qui es caracérisée par un ensemble de paramères (désignés paramères ou mesures de dépendance). Parmi ces paramères, on compe le coefficien de corrélaion, l une des mesures d inerdépendance. La deuxième composane es un erme correspondan au produi des disribuions marginales des variables éudiées (si l on prend le cas de deux variables, par exemple, ce erme représenera la disribuion marginale de la première mulipliée par celle de la seconde, cf. annexe ou Paon, 00, ainsi que Rockinger e Jondeau, 00). Grâce à cee décomposiion, la connaissance de la srucure de dépendance e des disribuions marginales condui à celle de la disribuion joine, qui es définie comme le produi de ses deux composanes. De ce fai, il n es plus nécessaire de connaîre l expression analyique exace de cee disribuion. On peu, par exemple, choisir des disribuions marginales asymériques e/ou à queues épaisses (présence d événemens rares), combinées avec une srucure de dépendance auorisan des liaisons enre les événemens exrêmes (flambées ou chues des cours). Par ailleurs, les foncions copules renden l esimaion des modèles mulivariés plus aisée ; elles inroduisen une plus grande souplesse dans la mise en œuvre de ces modèles. 3 Caracérisiques du modèle esimé Le modèle reenu pour les applicaions compore des équaions décrivan les rendemens, les variances e les corrélaions condiionnelles (cf. annexe 3). En pariculier, l équaion de la variance auorise une différenciaion enre les effes des chocs posiifs e ceux des chocs négaifs (effes d asymérie). Cee disincion a éé inroduie pour enir compe du fai «sylisé» sur les marchés financiers, selon lequel ces marchés réagissen plus violemmen aux mauvaises nouvelles. Comme on l avai noé plus hau, les foncions copules renden possible une décomposiion de la disribuion joine facilian la mise en œuvre du modèle. Dans le cadre de cee éude, à la suie de ess préliminaires (cf. Avouyi-Dovi e Neo, 003), la disribuion la plus appropriée sur chaque marché doi êre asymérique e auoriser la présence d événemens rares. La loi de Pearson IV possède les caracérisiques précédenes e a éé esée récemmen avec succès dans d aures éudes ; elle a éé reenue ici. Pour la srucure de dépendance de la loi joine des rendemens, des résulas empiriques (cf. Avouyi-Dovi e Neo, 003, ainsi que Longin e Le comporemen asymérique aux signes des chocs pourrai s expliquer par la posiion «longue» des inervenans sur les marchés boursiers, qui les rendrai plus sensibles aux chocs négaifs. 8 Banque de France Revue de la sabilié financière N 4 Juin 004

5 Solnik, 998, ou Mashal e Zeevi, 00) on monré qu elle devrai auoriser une dépendance marquée à la fois aux queues supérieures e inférieures, c es à dire que les événemens rares (crises ou flambées) doiven êre liés. Le choix de cee srucure peu donc êre limié à la famille de foncions suscepibles de correspondre à la caracérisique précédene. C es le cas pour la srucure de dépendance de Suden. De plus, les paramères de dépendance de cee dernière son les corrélaions (cf. annexes e 3), ce que nous cherchons précisémen à modéliser ici via le DCC-GARCH. Deux remarques son nécessaires à ce sade : les coefficiens de corrélaion analysés ici son calculés enre des marchés pris deux à deux. Ils ne concernen pas la liaison enre les volailiés observées sur les différens marchés. Pour simplifier, ces coefficiens peuven êre considérés comme des mesures de liaison enre les rendemens ; on peu vérifier l exisence d une relaion enre les indices en inroduisan le rendemen du marché américain dans l équaion de son homologue français. Pour eser la variaion emporelle de la liaison, il faudrai alors supposer que le coefficien de l indice américain dans la relaion explicaive de celui de la France varie au cours du emps. Ce n es pas cee opion qui a éé choisie ici, car ce exercice n es pas aisé dans un cadre où les séries de variance e de corrélaion ne son pas disponibles (ex ane). Nous reenons ici l hypohèse selon laquelle le passé de chaque rendemen explique son évoluion courane 3. Les résulas e leur inerpréaion Une brève analyse descripive des données Les degrés de liaison enre les marchés boursiers français, allemand e américain (au ravers des indices CAC 40, DAX, Dow Jones) son éudiés ici simulanémen en fréquence quoidienne sur la période allan du 3 décembre 993 au 30 juille 00 (soi 38 poins pour chaque série). Pour des raisons d homogénéié, nous avons reenu des indices érois pour les différenes places. Les séries son exraies des bases de données de Daasream ; les valeurs des indices de clôure (c) e d ouverure (o) son disponibles pour les rois places. Les données associées aux jours spécifiques de fermeure, els que les jours fériés propres à chaque pays, on éé remplacées par des moyennes mobiles cenrées sur des poins manquans. Pour enir compe des jours de suspensions excepionnelles (les rois jours correspondan au sepembre 00, par exemple), des variables indicarices on éé inroduies dans les modèles. Les rendemens des acions, calculés comme la différence première du logarihme des indices quoidiens mulipliée par 00 (i.e. 00*(lnP lnp ) où ln désigne le logarihme), son analysés en même emps que leurs volailiés e corrélaions 4. Tableau Coefficiens de corrélaion enre les rendemens DJ c DJ o DJ c o c DAX / DAX o o CAC / DAX 0,5838/0,5648 c c CAC / DAX 0,7497/0,307 0,309/0, ,38640/0, ,38640/0,39480 o c CAC / CAC 0,7353/0,7356 Dans les analyses de liaison enre les marchés européens e américain, on a couume de comparer les rendemens européens au rendemen de leur homologue américain, décalé d une période pour prendre en compe le décalage horaire enre l Europe e les Éas-Unis. En analysan les coefficiens de corrélaion (non condiionnelle) enre les rendemens du CAC, du DAX e du Dow Jones, esimés en ou en, avec des indices d ouverure ou des indices de clôure (cf. ableau ), on consae que : la siuaion du marché américain à la fermeure en semble influencer le plus foremen l éa 3 On aurai, sans doue, gagné en perinence si les données éaien en fréquence inra-journalière. Nous n en disposons pas. 4 Les rendemens on éé cenrés (de moyenne nulle) pour conourner un problème d idenificaion des consanes dans le modèle rivarié. Ces rendemens possèden les propriéés saisiques (saionnarié) qui permeen d évier des relaions fallacieuses. Par ailleurs, comme on l a signalé plus hau, on rejee l hypohèse de normalié de la disribuion joine. Banque de France Revue de la sabilié financière N 4 Juin 004 9

6 des marchés européens à leur ouverure en (ableau ). Les coefficiens de corrélaion enre les rendemens européens e américain valen respecivemen 0,58 (pour le CAC e le Dow Jones) e 0,56 (pour le DAX e le Dow Jones). Ces coefficiens monren qu il exise une relaion relaivemen fore enre les indices européens à l ouverure en e américain à la fermeure en ; les coefficiens de corrélaion calculés enre les rendemens observés en à la fermeure en Europe e à l ouverure ou comme à la fermeure aux Éas-Unis (0,39 à la fermeure pour les couples CAC-Dow Jones e DAX-Dow Jones ; 0,30 e 0,34 à l ouverure pour les mêmes couples), ainsi que ceux esimés à la fermeure enre les rendemens européens en e celui de Wall Sree en (0,8 e 0,3), son relaivemen faibles e peuven êre inerpréés comme des mesures de relaion de faible inensié enre ces marchés. Lorsque les indices d ouverure ne son pas disponibles, on rapproche, en général, les rendemens à la fermeure en Europe en de ceux des Éas-Unis en. À l évidence, ceci sous-esime foremen la liaison enre les places européennes e américaine. Pour le couple CAC e Dow Jones, par exemple, le coefficien de corrélaion ombe de 0,58 à 0,7. En se fondan sur ces résulas de saisiques descripives, les rendemens européens à l ouverure à la dae seron donc rapprochés du rendemen américain à la fermeure à la dae dans le modèle à rois variables éudié dans ce aricle. Une éude des corrélaions condiionnelles L analyse de l évoluion graphique des corrélaions enre les différens couples de rendemens (CAC-Dow Jones, CAC-DAX, DAX-Dow Jones, graphique ) condui aux remarques suivanes : quel que soi le couple de rendemens considéré, des «paques» de fores e de faibles corrélaions apparaissen. Ceci n es que la maérialisaion du phénomène de persisance déjà menionné ; les coefficiens de corrélaion calculés pour les couples CAC-Dow Jones e DAX-Dow Jones son, sans surprise, rès proches (an au niveau qualiaif, mêmes profils, qu au niveau quaniaif). Par exemple, on observe des «pics» dans les corrélaions auour des périodes des crises récenes (crises asiaique e russe ou éclaemen de la bulle des valeurs echnologiques) ou les mêmes creux aux premiers signes de reournemen de cycle aux Éas-Unis en 000. On peu faire la même remarque concernan l année 996 lors des premières alarmes sur une évenuelle suresimaion de la Bourse américaine ; à quelques rares excepions près, les coefficiens de corrélaion des rendemens du CAC e du DAX se siuen enre 70 % e 80 % sur oue la période de l éude, avec une endance à la hausse légèremen plus marquée enre le roisième rimesre 999 e le premier rimesre 00. Bien que l on observe un léger rerai vers la oue fin de la période, indui sans doue par des écars de conjoncure enre les deux pays, les niveaux élevés des coefficiens de corrélaion reflèen, sans doue, l inégraion croissane de ces deux marchés e, au-delà des économies française e allemande, au sein de l Union économique e monéaire. Graphique Corrélaions condiionnelles (en % ; données quoidiennes) 0,85 0,75 0,65 0,55 0,45 0,35 0,5 4 mai janv. 4 sep. 4 mai DAX-CAC CAC-DJ DAX-DJ 4 janv sep mai janv sep mai 000 Sources : Daasream e calculs de la Banque de France 4 janv sep. 4 mai Si on compare les profils des corrélaions e ceux des variances condiionnelles (par exemple, les variances du CAC e du Dow Jones e le coefficien de corrélaion enre les deux rendemens), si de plus on prend comme exemple deux sous-périodes pariculières ( e ), pour des raisons de lisibilié, les conclusions demeuran globalemen vraies sur l ensemble de la période, on noe que (cf. graphique ) : les coefficiens de corrélaion deviennen plus élevés dès que l un des marchés devien 0 Banque de France Revue de la sabilié financière N 4 Juin 004

7 Graphique Volailiés e corrélaions condiionnelles (en % ; données quoidiennes) CAC-DAX er mars 996 er juille 996 er nov. 996 er mars 997 er juille 997 er nov. 997 er mars 998 Volailié CAC Volailié DAX Corrélaion condiionnelle CAC-DAX er juille 998 er nov fév avril juin aoû oc déc fév avril 00 3 juin 00 Volailié CAC Volailié DAX Corrélaion condiionnelle CAC-DAX 3 aoû 00 3 oc déc. 00 CAC-Dow Jones er mars 996 er juille 996 er nov. 996 er mars 997 er juille 997 er nov. 997 Volailié CAC Volailié Dow Jones Corrélaion condiionnelle CAC-DJ er mars 998 er juille 998 er nov fév. 3 avril juin 3 aoû oc. 3 déc fév. 3 avril Volailié CAC Volailié Dow Jones Corrélaion condiionnelle CAC-DJ 3 juin 3 aoû oc. 3 déc DAX-Dow Jones er mars 996 er juille 996 er nov. 996 er mars 997 er juille 997 er nov. 997 Volailié DAX Volailié Dow Jones Corrélaion condiionnelle DAX-DJ er mars 998 er juille 998 er nov fév. 3 avril juin 3 aoû oc. 3 déc fév. 3 avril Volailié DAX Volailié Dow Jones Corrélaion condiionnelle DAX-DJ 3 juin 3 aoû oc. 3 déc Sources : Daasream e calculs de la Banque de France Banque de France Revue de la sabilié financière N 4 Juin 004

8 relaivemen volail ; lorsque les deux marchés affichen de fores volailiés, la endance précédene (hausse des corrélaions) devien plus marquée (crises asiaique e russe ou sepembre 00). L ampliude des variaions des coefficiens de corrélaion dépend de l inensié de ces volailiés ; à l opposé, dans des phases de baisses ou de hausses graduelles de la volailié ou encore de faible volailié, les coefficiens de corrélaion enden à baisser ou à sagner. À parir de cee éude graphique, il apparaî difficile de valider l hypohèse de non-variaion emporelle des corrélaions. En oure, compe enu du fai que les agens inervenan sur ces marchés peuven inerpréer les informaions différemmen, la variaion des corrélaions, ou comme celle des volailiés, n es pas anormale. Analysons mainenan les résulas des esimaions, afin d en juger la qualié noammen au sens saisique. 3 Quelques remarques sur les résulas des esimaions L esimaion es réalisée en deux éapes, comme le permeen les foncions copules (cf. annexe 3) : la première es consacrée à l esimaion des paramères des disribuions marginales e de ceux des équaions décrivan l évoluion des rendemens e des volailiés (processus EGARCH) ; la seconde éape perme d esimer les coefficiens de la srucure de dépendance, ainsi que les paramères des équaions des corrélaions. Les résulas déaillés son présenés dans l annexe 3. D une manière générale, les paramères esimés dans les deux éapes son ous significaivemen différens de zéro. Pour ceux esimés dans la première éape, on noe que : le paramère des équaions des rendemens (rédui ici au seul coefficien de la variable endogène décalée d une période, ϕ, i.e. le coefficien d auorégressivié, cf. annexe 3) es, en général, faible en valeur absolue. Touefois, alors qu il demeure significaivemen différen de zéro pour les marchés européens, il es quasi nul pour le marché américain. Ceci signifie que le poids des rendemens passés es plus faible dans la déerminaion des rendemens pour le Dow Jones que pour les indices européens. Cee différence dans le mode de déerminaion des rendemens des indices européens e américain pourrai résuler de différences dans le profil des inervenans sur les marchés, noammen en ermes de viesse de réacion aux informaions qui agissen sur la formaion des prix. Cee dernière remarque doi, cependan, êre nuancée, compe enu du fai qu elle ne pore que sur les indices érois éudiés sur une période pariculière ; les paramères des variances condiionnelles des rois marchés son relaivemen proches. En pariculier, on noe une rès fore inerie de la volailié (le coefficien β es proche de dans les rois cas e varie de 0,97 pour le CAC à 0,986 pour le DAX). Ceci indique la présence d un phénomène de persisance somme oue radiionnel, noammen dans le cas des marchés acions. Par ailleurs, le choix d une spécificaion de ype EGARCH (cf. annexe 3) es apparu perinen. En effe, les impacs des chocs posiifs e négaifs sur la volailié paraissen dissymériques : le coefficien de sensibilié de la volailié aux chocs négaifs (γ α, cf. annexe 3) es égal à 0,363 pour le Dow Jones ; il vau 0,44 e 0,30, respecivemen, pour le CAC e le DAX ; le coefficien de sensibilié aux chocs posiifs (γ + α, cf. annexe 3) es de l ordre de 0,0 pour les marchés européens e vau seulemen 0,05 sur le marché américain. Les inervalles de confiance de ces coefficiens ne se recouvran pas, on peu les considérer comme saisiquemen différens. Comme on s y aendai, les marchés boursiers réagissen donc plus vivemen aux chocs négaifs. Ainsi, par exemple, une augmenaion significaive du chômage aux Éas-Unis, accueillie comme un mauvais signal, enraînerai une variaion relaive fore de la volailié, alors qu une baisse significaive du chômage (choc posiif) se raduirai par une variaion de sens opposé, mais de plus faible ampliude. En oure, la dissymérie semble neemen plus marquée aux Éas-Unis. Par ailleurs, une fore similiude de comporemen apparaî enre les marchés allemand e français, don les coefficiens de sensibilié aux chocs son rès proches. Pour ce qui concerne les paramères esimés des lois sur les rois marchés, on remarque que l hypohèse de leur symérie doi êre rejeée. En effe, pour qu on puisse l acceper, il aurai fallu que le paramère représenan le degré d asymérie (ou paramère de conrôle de la symérie, δ, cf. annexe 3) soi saisiquemen nul, ce qui n es pas le cas. Ceci confirme le diagnosic relaif au choix d une disribuion asymérique dans la spécificaion du modèle e monre qu une modélisaion de l asymérie Banque de France Revue de la sabilié financière N 4 Juin 004

9 à ravers un processus EGARCH n es pas suffisane dans le cas de l analyse des rendemens de ces indices. De même, on accepe la présence de queues épaisses (présence d événemens rares) dans les disribuions relaives aux marchés européens e américain. Sur les coefficiens esimés dans la seconde éape, on peu faire les remarques suivanes : les moyennes des coefficiens des corrélaions condiionnelles ne son pas significaivemen différenes des valeurs obenues dans le ableau. Pour le CAC e le Dow Jones, cee moyenne vau 0,59, conre 0,58 ; elle es égale à 0,75, conre 0,74, pour le CAC e le DAX ; enfin, elle vau 0,56, conre 0,564, dans le cas du DAX e du Dow Jones. Il y aurai donc une compensaion (ou des correcions) des effes des chocs posiifs e négaifs sur longue période ; la présence de phénomènes de persisance dans l évoluion de la marice de corrélaion enre les rendemens es confirmée. En effe, plus le paramère mesuran le degré d inerie (ici θ, cf. annexe 3) es proche de, plus les effes des chocs persisen dans l évoluion des corrélaions (i.e. lorsqu un coefficien de corrélaion aein un niveau donné sous l effe d un choc, il y rese un cerain emps). Ce coefficien vau ici 0,935. Ceci corrobore les résulas poran sur l exisence de phénomènes de persisance marquée de la volailié, qui es un indicaeur de même naure que la covariance (ou les corrélaions). Il n es pas éonnan que les phénomènes de persisance, considérés comme des fais sylisés dans l analyse des variances des marchés boursiers, se vérifien égalemen pour les corrélaions ; on noe la fore significaivié du poids des chocs récens (θ, cf. annexe 3) sur les corrélaions. Comme nous venons de le voir, les chocs n expliquen pas à eux seuls l évoluion des coefficiens de corrélaions. Ainsi, on obien un résula assez conforme à l inuiion : les degrés de liaison enre marchés boursiers son non consans au cours du emps. Ce résula peu êre rapproché de celui poran sur les volailiés condiionnelles. 4 Une applicaion du DCC-GARCH dans le cadre du MEDAF En reenan l hypohèse de variaion des corrélaions, on monre que le «bêa» (i.e. la mesure de la volailié relaive d un acif risqué par rappor à l ensemble du marché), évalué dans le MEDAF, varie égalemen au cours du emps (cf. encadré). Pour illusrer cela, considérons un invesisseur qui dispose d un acif risqué (l indice boursier allemand), d un acif sans risque (le aux à 7 jours du marché monéaire), d un acif de référence du marché (l indice boursier du rese du monde hors Union monéaire européenne 5 ). Les données son irées de Daasream. Les variances e corrélaions condiionnelles proviennen de l esimaion d un modèle de ype DCC-GARCH 6. En ne reprenan ici que les courbes reraçan l évoluion du «bêa» e du coefficien de corrélaion enre les rendemens des acifs risqués e de référence (graphique 3), on noe un parallélisme prononcé enre ces deux courbes. En pariculier, les creux e pics coïnciden. Les phases dans lesquelles le rendemen de l acif risqué amplifie vigoureusemen (ou amori foremen) les chocs affecan le marché son associées à des hausses marquées (ou à de fores baisses) des corrélaions. Cee variaion du «bêa de marché» se répercue sur celle du risque sysémaique (cf. encadré) 7, qui mone ou baisse selon l évoluion du «bêa». Ce exemple monre que l analyse de la sabilié financière à ravers l éude des risques devrai privilégier l hypohèse de corrélaions variables dans le emps. Il es, en effe, apparu que le risque sysémaique es loin d êre figé comme pourrai le laisser croire l analyse radiionnelle dans laquelle les variances e corrélaions son supposées consanes. La prise en compe de l hypohèse de variaion des corrélaions propose donc une lecure plus dynamique e plus réalise du «bêa» e du risque. En effe, il es possible d observer dans ce conexe une succession de phases d amplificaion (β > ) ou d amorissemen (β < ) par l acif des chocs émanan du marché. 5 Il s agi ici d un indice calculé par Daasream pour le rese du monde (monde hors Union monéaire européenne). Le poids cumulé des Éas-Unis, du Royaume-Uni e du Japon es de l ordre de 80 % dans ce indice. 6 Les résulas des esimaions son disponibles auprès des aueurs. 7 Le risque sysémaique es la composane du risque oal de l acif impuable au «sysème», auremen di à la conjoncure, i.e. celle qui ne peu donc pas êre diversifiée. Banque de France Revue de la sabilié financière N 4 Juin 004 3

10 Graphique 3 Bêa e corrélaion (données hebdomadaires) Du février 98 au 8 mai 003,,0 0,8 0,6 0,4 0, 0,0 fév. 98 fév. 984 fév. 986 fév. 988 fév. 990 fév. 99 fév. 994 fév. 996 fév. 998 fév. 000 fév. 00 Du er janvier 996 au 3 décembre 998,,0 0,8 0,6 0,4 0, 0,0 3 mars juille novembre mars juille novembre mars juille novembre 998 Du er janvier 000 au 8 mai 003,,0 0,8 0,6 0,4 0, 0,0 5 mars juille nov mars 00 5 juille 00 5 nov mars 00 5 juille 00 5 nov mars 003 Bêa Rho Sources : Daasream e calculs de la Banque de France 4 Banque de France Revue de la sabilié financière N 4 Juin 004

11 Applicaion du DCC-GARCH : le cas du MEDAF Le Modèle d équilibre des acifs financiers (MEDAF) fu inrodui par Sharpe (964) e Linner (965). Il complèe la héorie du choix de porefeuille proposée par Markowiz en 95. Le MEDAF repose sur les hypohèses suivanes : les invesisseurs on une aversion pour le risque e reiennen le crière moyenne-variance pour sélecionner le porefeuille efficien ; ils open ous pour la même disribuion de probabilié des rendemens (efficience informaionnelle du marché) ; le marché es parfai (il n y a pas de coûs de ransacion, les acifs son infinimen divisibles, les venes à découver son auorisées) ; le marché es compéiif (les agens son des price akers) ; il exise un nombre fini de ires linéairemen indépendans. Si r j, désigne le rendemen d un acif risqué j, r f le rendemen de l acif sans risque, r m le rendemen du porefeuille de marché e si E [r j, ], V [r m, ] e COV [(r j, ),(r m, )] son les opéraeurs respecifs de l espérance, la variance e la covariance, le résula fondamenal du MEDAF es : COV [(r j, ),(r m, )] E [r j, ] = E [r m, ] V [r m, ] Lorsque l espérance, la variance e la covariance des écars de rendemen varien dans le emps, le MEDAF s écri : COV [(r j, ),(r m, )] E [r j, ] = E [r m, ] V [r m, ] où les opéraeurs E, V e COV son, respecivemen, l espérance, la variance e la covariance condiionnelles à l ensemble des informaions disponibles à la dae. L équaion [ ] s écri alors : E [r j, ] = β E [r m, ] β mesure la volailié relaive de l acif j au marché. Lorsqu il es supérieur (inférieur) à, l acif j amplifie (amori) les chocs qui affecen le marché. Lorsqu il es égal à, les flucuaions de l acif risqué reproduisen celles du marché. Sous l hypohèse de corrélaions variables, β peu s écrire : β = COV [(r j, ),(r m, )] V [r j, ] V [r j, ] = ρ V [r m, ]V [r j, ] V [r m, ] V [r m, ] ρ, la corrélaion enre l acif j e le marché, peu êre engendrée par un DCC-GARCH (cf. annexe ) : ρ = ( θ θ )ρ + θ ψ + θ ρ Le risque sysémaique condiionnel es défini par σ m, = β V [r m, ]. Banque de France Revue de la sabilié financière N 4 Juin 004 5

12 En combinan la spécificaion des corrélaions condiionnelles proposée par Engle (00) e les foncions copules, on a pu éudier, de manière flexible, la dynamique de la dépendance enre les marchés acions européens e américain. En effe, la spécificaion reenue perme de modéliser de façon commode, au vu des difficulés de l analyse saisique mulivariée, la corrélaion condiionnelle enre les rendemens de rois marchés, pris deux à deux. En oure, on a pu eser e rejeer l hypohèse de consance des corrélaions. Dans le même emps, bénéfician de l inroducion récene des foncions copules dans l analyse empirique en finance, une gamme plus large de disribuions joines a éé esée en uilisan, enre aures, une copule auorisan la dépendance enre les événemens exrêmes (bulles e crises). La perinence de ce effe es aujourd hui validée par plusieurs éudes empiriques réalisées, noammen, sur les marchés boursiers développés (Longin e Solnik, 998). Ce consa d une corrélaion variable dans le emps me en cause de nombreux modèles dans lesquels celle-ci es supposée consane. Le modèle du choix de porefeuille de Markoviz, le modèle d équilibre des acifs financiers (MEDAF) ou encore les modèles de Value a Risk (VaR) mulivariés en son des exemples. Dans le cas du MEDAF, par exemple, si la corrélaion e le «bêa» son supposés consans, oues choses égales par ailleurs, on peu se rouver dans une siuaion où l acif risqué amplifie (ou amori) en permanence les chocs qui affecen le marché dans son ensemble. En revanche, si l hypohèse de variaion du coefficien de corrélaion es admise, le «bêa» pourrai flucuer e connaîre ainsi des phases correspondan à des valeurs élevées (périodes d amplificaion de chocs) ou des phases associées à de plus faibles valeurs (périodes d amorissemen des chocs). En oure, l inégraion de l inerdépendance dynamique des marchés dans les modèles précédens devrai permere de mieux rendre compe du risque de conagion, une composane non négligeable du risque global. Deux résulas imporans de cee éude pourraien influencer la modélisaion en finance appliquée : premièremen, l hypohèse de consance des corrélaions es foremen rejeée. Si l inerdépendance des marchés es naurellemen prise en compe dans les modèles de diversificaion inernaionale des porefeuilles, il convien donc d y ajouer le fai que cee inerdépendance varie dans le emps, un phénomène pouvan jusifier en an que el la nécessié de réajusemens plus ou moins amples e fréquens des porefeuilles. Or, la variabilié des corrélaions es relaivemen négligée dans les éudes empiriques, en raison des difficulés posées par sa prise en compe. De plus, l analyse conjoine de la volailié e de la corrélaion condiionnelle a permis de consaer une concomiance manifese enre ces deux variables : en période de fore volailié, la corrélaion a endance à passer au-dessus de son niveau «normal». De façon symérique, en période de faible volailié, les marchés semblen évoluer de manière plus indépendane ; le second résula dégagé es celui de la fore persisance dans l évoluion des corrélaions. Ceci renvoie à l exisence de cycles (succession de «paques» de phases de hausse ou de baisse) dans la dynamique de formaion de l indicaeur d inerdépendance des marchés boursiers. On pourrai égalemen avancer, comme élémen explicaif de ce phénomène de persisance, l héérogénéié des agens inervenan sur les marchés éudiés. Cee hypohèse appelle, ouefois, de plus amples analyses pour êre validée. 6 Banque de France Revue de la sabilié financière N 4 Juin 004

13 Bibliographie Avouyi-Dovi (S.) e Neo (D.) (004) : «Les foncions copules en finance», Banque & Marchés, 68 Avouyi-Dovi (S.) e Neo (D.) (003) : «Inerdépendance des marchés financiers : cas des marchés américain e européens», Banque de France, mimeo Baba (Y.), Engle (R.), Kraf (D.) e Kroner (K.) (987) : «Mulivariae simulaneous generalized ARCH», Universiy of California San Diego, Deparmen of Economics, Documen de ravail Bollerslev (T.) (987) : «A mulivariae GARCH model wih consan condiional correlaions for a se of exchange raes», Norhwesern Universiy, D.P. Bollerslev (T.), Engle (R. F.) e Nelson (D. B.) (994) : «ARCH Models», Handbook of economerics, vol. 4, chaper 49, p , Elsevier, Norh-Holland De Bond (W. M.) e Thaler (R.) (985) : «Does he sock marke overreac?», Journal of Finance, 40, p Diebold (F.) e Nerlove (M.) (989) : «The dynamic of exchange rae volailiy: A mulivariae laen facor ARCH model», Journal of Applied Economerics, 4, p. - Engle (R. F.) (00) : «Dynamic condiional correlaion: A simple class of mulivariae GARCH models», Universiy of California San Diego, Deparmen of Economics, Documen de ravail Engle (R. F.) (00) : «Dynamic condiional correlaion: A simple class of mulivariae generalized auoregressive condiional heeroscedasiciy models», Journal of Business Economic Saisics, 0(3), p Engle (R. F.) e Sheppard (K.) (00) : «Theoreical and empirical properies of dynamic condiional correlaion mulivariae GARCH», Naional Bureau Economic Research, Documen de ravail, 8554 Gouriéroux (C.) (99) : «Modèles ARCH e applicaions financières», Economica Joe (H.) (997) : «Mulivariae models and dependence conceps», Monographs on Applied Probabiliy and Saisics, (73), Chapman e Hall Linner (J.) (965) : «The valuaion of risky asses and he selecion of risky invesmens in sock porfolios and capial budges», Review of Economics and Saisics, 47, p Longin (F.) e Solnik (B.) (998) : «Correlaion srucure of inernaional equiy markes during exremely volaile periods», HEC, Documen de ravail Markowiz (H. M.) (95) : «Porfolio selecion», Journal of Finance, 7(), p Mashal (R.) e Zeevi (A.) (00) : «Beyond correlaion: exreme co-movemens beween financial asses», Columbia Universiy, mimeo Nelsen (R. B.) (998) : «An inroducion o copulas», Lecure Noes in Saisics, (39), Springer Verlag Paon (A. J.) (00) : «Modelling ime-varying exchange rae dependence using he condiional copula», Documen de ravail, Universiy of California San Diego, Deparmen of Economics Rockinger (M.) e Jondeau (E.) (00) : «Condiional dependency of financial series: An applicaion of copulas», Banque de France, Noes d éudes e de recherche, 8 Sharpe (W.) (964) : «Capial asse prices: A heory of marke equilibrium under condiions of risk», Journal of Finance, 9, p. 45 Tse (Y. K.) e Tsui (A. K. C.) (00) : «A mulivariae GARCH model wih ime-varying correlaions», Journal of Business and Economic Saisics, 0(3), p Banque de France Revue de la sabilié financière N 4 Juin 004 7

14 Annexe Spécificaion des corrélaions condiionnelles dynamiques En guise d illusraion, considérons deux marchés d acifs financiers dépendans. Sur le marché i, i=,, désignons par r j,, ε i,, m i e I, respecivemen, le rendemen, l aléa, l espérance condiionnelle e l ensemble des informaions disponibles à la dae. Pour des raisons de commodié, supposons que les rendemens suiven une loi joine normale, de dimension (bivariée) e de marice de variance covariance condiionnelle H dépendan du emps : ε, ( ε ) I ~ N(0,H )., Pour ou i, i=,, r i, es engendré par un processus AR(). Ainsi, pour ou, =,...,T (T éan le nombre oal des observaions), le modèle s écri : r, =m +ϕ r, +ε, r, =m +ϕ r, +ε, ε, [] ( ) I ~ N(0,H ) avec H ( ) = h, h, ε h,, h, Il convien mainenan de préciser les équaions décrivan les élémens de la marice de variance covariance H (i.e. les équaions décrivan l évoluion des h i,, i=,, e de ρ,, respecivemen, les variances e corrélaion condiionnelles). H peu êre décomposée en un produi de marices : H =D R D où : D es une marice diagonale don les élémens non nuls son les racines carrées des variances (ou volailiés) condiionnelles h i,, i=, ; la définiion de D perme de considérer R comme une marice de corrélaions don les élémens de la diagonale principale valen (si R =R, i.e. ρ, =ρ, on rerouve le modèle à corrélaions condiionnelles consanes de Bollerslev, 987). De manière plus précise, H s écri : [] = H h, 0 ρ, h, 0 ( ) ( ) ( ). 0 h ρ,, 0 h, Les h i,, i=,, son supposées décries par des processus GARCH (p,q). Si p = q =, on a : h i, =α 0 +α i ε i, +β i h i, avec α 0 > 0, α i e β i 0 els que α i e β i <. Les corrélaions condiionnelles son définies par un processus auorégressif, le Dynamic condiional correlaions (DCC), proposé à l origine par Engle e Sheppard (00) e amendé par la suie par Tse e Tsui (00) : P Q P Q [3] = ( θ θ )R + θ Ψ + θ R où : R i =,i j =,j i =,i i j =,j j R, la marice des corrélaions non condiionnelles évaluées sur la période, es définie par : = ρ, ρ, R ( ) ; Ψ es une marice don les élémens son des corrélaions empiriques calculées en sur une fenêre de longueur m (, 5,..., jours) donnée : ',, = Q MMQ ; M =, ; h, h, 0,5 m ε, i m ε, i i, = ( εi, m,..., ε i, ); Q = diag, (Σi = i= h Σ, h ), Ψ ξ ξ ξ ( ) où diag désigne l opéraeur définissan une marice diagonale. Engle e Sheppard on monré que si θ,i e θ,j 0 ( i, i P e j, j Q ) P Q Σ,i Σ, j < i = j = e θ + θ, la marice R es définie posiive en ou poin du emps. Comme pour les modèles, la somme des paramères mesure le degré de persisance de la corrélaion. Remarques Les relaions précédenes des variances e de la corrélaion condiionnelles définissen un modèle DCC-GARCH (,). 8 Banque de France Revue de la sabilié financière N 4 Juin 004

15 Dans le cas de deux marchés, la relaion décrivan l évoluion de la marice de corrélaion se rédui à une équaion expliquan l évoluion du coefficien de corrélaion enre ces marchés. On peu supposer que la loi des rendemens n es pas normale e prendre ainsi en compe l un des fais sylisés (présence de queues épaisses e/ou d asymérie dans la disribuion des rendemens) des marchés financiers. Engle e Sheppard, d un côé, Tse e Tsui, de l aure, on reenu l hypohèse de normalié de la disribuion joine dans leurs ravaux. Cee hypohèse n es pas réalise dans le cas des prix des acifs financiers. De ce fai, nous avons opé dans cee éude pour une disribuion de Pearson qui perme de conrôler, à la fois, l asymérie e la présence de valeurs exrêmes. Des ess d adéquaion réalisés ex pos monren que l ajusemen à cee disribuion es d excellene qualié. Banque de France Revue de la sabilié financière N 4 Juin 004 9

16 Annexe Les foncions copules Récemmen inroduies en finance appliquée, les foncions copules auorisen une plus grande flexibilié dans la modélisaion mulivariée (choix élargi de disribuions joines, grande diversié de foncions de dépendance, choix varié de foncion de répariion, grande facilié d implémenaion, ec., cf. Nelsen,998, ou Avouyi-Dovi e Neo, 004). Elles permeen une meilleure prise en compe de la réalié observée sur les marchés. Nous allons les définir dans le cas de deux marchés ; la généralisaion à n marchés es immédiae. Soien deux variables aléaoires X e X de foncions de répariion F e F, définies par le veceur de paramères, θ i, i=,. Soi H la disribuion joine de X e X e de veceur de paramères θ H. La copule paramérique de famille Q, noée C Q e de marice de paramères de dépendance θ c, es une foncion de liaison enre H e les foncions marginales F e F e à valeur dans l inervalle [0,], définie par : [] H(X,X ;θ H )=C Q (F (X ;θ ),F (X ;θ );θ c ) Selon le héorème de Sklar, si F e F son coninues, la décomposiion précédene es unique. De la formule [], on ire une expression équivalene qui perme de définir la copule à parir de la disribuion joine en supposan que u =F (X ;θ ) e u =F (X ;θ ) : [] C Q ( u, u ) [0,] (u, u ; θ c ) = H(F (u ; θ ), F (u ; θ ); θ En dérivan membre à membre [] par rappor à chacune des variables, on obien une relaion enre la densié joine, h, (la dérivée de H) e les densiés c Q (la dérivée de C Q ) e f i (i=,, les dérivées des foncions F i ). La foncion de densié joine es ainsi H ) égale au produi des foncions de densié f i, i=,, e d une foncion de dépendance c Q, soi : [3] c u, u ; θ ) f ( X ; θ ) f ( X ; θ ) = h( X, X ; θ ). Q ( c H Par définiion, c Q CQ (u,u ; θc ) = (u,u ; θc ) =, u u F i (X i; θi ) f i (X i; θi ) = X e h(x, X ; θ H i ) = H(X, X ; θ X X Cee décomposiion de la disribuion joine es pariculièremen judicieuse : elle auorise une esimaion en deux éapes (die approche IFM, i.e. Inference Funcion for Margins, Joe,997) qui perme de résoudre, au moins en parie, le problème du nombre des paramères inconnus. De plus, elle perme le choix de la disribuion joine plus générale, dans la mesure où on n es plus conrain par une sélecion condiionnée par la plus ou moins grande facilié de l expression analyique de la loi. On peu ainsi choisir des foncions de répariion quelconques (mais coninues), combinées avec une srucure de dépendance rès générale. Dans l éude empirique présenée ici, les disribuions marginales son des lois de Pearson IV, andis que la foncion de dépendance es une copule de Suden qui auorise des dépendances aux queues (dépendance enre événemens rares de même naure). En oure, la marice des paramères de dépendance es la marice des corrélaions dans ce cas. H ). 30 Banque de France Revue de la sabilié financière N 4 Juin 004

17 Annexe 3 Le modèle : spécificaions e esimaions Comme nous l avons noé dans l annexe, les foncions copules permeen de séparer les marges e la srucure de dépendance correspondan à une disribuion joine. De manière plus précise, les deux éapes (Inference Funcion of Margins) consisen à esimer, dans un premier emps, les paramères des foncions marginales ; ensuie, ceux des paramères de la srucure de dépendance, en enan compe des paramères esimés dans la première éape. Spécificaion des foncions marginales Les rendemens e les variances condiionnelles des acifs financiers son modélisés de manière à enir compe des fais sylisés observés sur les marchés (présence d asymérie e de queues épaisses des disribuions, ec.). Le conrôle de l asymérie es inrodui de deux manières : la disincion des effes des chocs sur la variance selon leur signe (par l inermédiaire d un processus Exponenial GARCH, EGARCH) ; l uilisaion d une loi asymérique. La prise en compe des événemens rares es faie via l uilisaion d une loi à queues épaisses. La loi de Pearson IV (ou les lois Gamma e Suden généralisées, par exemple) perme de conrôler, à la fois, les phénomènes d asymérie e de présence de queues épaisses. C es celle-ci qui es reenue ici en se fondan sur des résulas publiés récemmen. Ainsi, l espérance des rendemens es déerminée de façon auorégressive e la variance des erreurs es modélisée par un modèle EGARCH radiionnel : r i, = mi + ϕiri, + / β <, i =,,3 ε i, ε i, = ( hi, ) ηi, [ ] ln hi, = α 0 + β ln( hi, ) + γηi, + α ηi, π η i, ~ P IV (.; a, q, δ, σ ) où : les ϕ i (i=,,3) son les coefficiens auorégressifs ; β es le paramère qui mesure l effe de persisance de la variance ; l influence des chocs (représenés par η i, ), les posiifs (négaifs) sur la variance, es mesurée par γ+α (resp. γ α ), qui représene le coefficien des η i,. La noaion X désigne la valeur absolue de X e P IV (.;a,q,δ,σ) désigne la loi de Pearson IV. Sa densié cenrée réduie es définie par : f ( η ;a,q, δ, σ) = κ IV [ i, σ h i, [ σ µ + ηi, + a a ] ( ) ] + q exp δan avec κ une consane de normalisaion π κ = π σ µ ηi, + a a q δa a (q + δ ) a cos ( ω) exp( δω)dω, µ = e σ =. q q (q ) Remarques La Pearson IV es doée d un paramère δ de conrôle de l asymérie e d un paramère q qui fourni des indicaions sur l épaisseur des queues de la disribuion ; lorsque δ=0, la loi es symérique ; si en plus q, alors f IV (.;a,q,δ,σ) N(0,) ; le paramère a qui apparaî dans la consane de normalisaion pourra êre conrain à êre égal à (pour des problèmes d idenificaion des paramères du modèle). En fai, on peu soi conraindre la consane m i à êre nulle soi fixer le paramère a à (log(a)=0). Nous avons opé pour la première soluion ; des exemples de foncions de densié de la Pearson IV définies selon les valeurs des paramères q e δ (cf. graphique) son proposés ici pour visualiser les propriéés de cee loi : PIV(δ =.5, q = 4) 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0, 0, PIV(δ =.5, q = 4) PIV(δ = 0, q = 4) N(0,) PIV(δ = 0, q = 00) Banque de France Revue de la sabilié financière N 4 Juin 004 3

18 Spécificaion de la srucure de dépendance Des ravaux empiriques récens (cf. Longin e Solnik, 998, par exemple) on monré que cerains marchés financiers, ceux des acions par exemple, éaien caracérisés par une dépendance des événemens exrêmes (ou des queues de disribuion). On prend ainsi en compe le fai que les bulles (les queues posiives ou, à l opposé, les krachs, les queues négaives) observées sur les différens marchés son liées enre elles. Une foncion copule qui auorise la dépendance enre les événemens rares, celle de Suden par exemple (mais pas la gaussienne), es donc ou indiquée. Par ailleurs, la marice des paramères de dépendance de la copule de Suden (ou comme celle de la gaussienne) s inerprèe comme une marice de corrélaion. De ce fai, le choix de cee dernière paraî perinen pour l analyse de l inerdépendance des marchés, car elle répond à la double exigence relaive à la dépendance aux queues e à l inerpréaion de la marice des paramères de dépendance. Dans le cas de deux marchés, la foncion de Suden prend la forme générique suivane (cf. Avouyi-Dovi e Neo, 003, pour une formulaion plus générale de cee foncion) : c S ν ν = s( ( u), ( u ); R, ν ) où : s( ν ( u), ν ( u ); R, ν ) désigne la foncion densié de la copule de la Suden, R e ν représenen, respecivemen, la marice des paramères de dépendance e le degré de liberé (lorsque ν, alors la copule de Suden converge vers une copule gaussienne) ; l inverse de la ν foncion de répariion de la Suden univariée e, enfin, u e u les foncions de répariions (empiriques ou héoriques) des foncions marginales (ici des Pearson IV). La marice des corrélaions, varian dans le emps, es décrie par un processus DCC à la Engle e Sheppard, amendé par Tse e Tsui (cf. annexe ). Dans les applicaions présenées ici, nous avons reenu un DCC avec un processus auorégressif d ordre (Q=) e un reard sur la marice des corrélaions empiriques (P=). R s écri alors : R = ( θ θ )R + θ Ψ + θ R. Les corrélaions empiriques son calculées sur une fenêre de longueur 5 jours ouvrés (m=5). L esimaion du modèle es faie en deux éapes (esimaion des paramères de la parie ; ensuie, esimaion des paramères de la foncion de dépendance en enan compe des résulas de la première éape). La consance des corrélaions condiionnelles peu êre vérifiée à l aide du es de rappor de vraisemblance. L hypohèse nulle H es 0 définie par H 0 : H 0 : θ = θ = 0 R = R.Sous H 0, la saisique de ce es (W, cf. ableau ci-dessous) sui une loi du Chi à degrés de liberé. Esimaion du modèle EGARCH (,) avec la loi de Pearson (a) ϕ i α 0 α β γ a q δ (a) DJ c 0,0790 (0,0996) 0,09068 (0,05833) 0,938 (0,067) 0,97989 (0,00557) 0,6900 (0,05575) 0,8659 (0,5037) 7,5396 (,5960),8037 (0,545) CAC o 0,0507 (0,0330) 0,03599 (0,09894) 0,7430 (0,06808) 0,974 (0,0076) 0,074 (0,075),37343 (,37) 9,3660 (,37405),53695 (0,9643) DAX 0,05854 (0,0009) 0,089 (0,04358) 0,7036 (0,04540) 0,98598 (0,0043) 0,0663 (0,087),786 (,465),09497 (3,566),4463 (,4878) (o) ouverure e (c) clôure. Les chiffres enre parenhèses représenen les écars-ypes. Esimaion de la srucure de dépendance de Suden (a) m = 5 ρ CAC-DJ ρ DAX-CAC ρ DJ-DAX θ θ ν Moy(ρCAC-DJ,) Moy(ρDAX-CAC,) Moy(ρDJ-DAX,) W P-Value (a) o DJ c o, CAC, DAX 0,64606 (0,085) 0,77978 (0,048) 0,60997 (0,076) 0,0638 (0,00539) 0,93475 (0,059) 9,5637 (3,3547) 0,5933 0,7498 0, ,8 0,000 Les esimaions on éé obenues par la méhode IFM (Inference Funcion for Margins) décrie dans Joe (997). 3 Banque de France Revue de la sabilié financière N 4 Juin 004

19 Les valeurs des élémens de la marice de corrélaion H 0, associée à l hypohèse de consance des corrélaions (les élémens ρ i, j, i j, i, j=cac, DAX, Dow Jones de la marice R, cf. annexe 3), son relaivemen fores (oues supérieures à 0,50) e significaivemen différenes de zéro. En pariculier, elles son oues supérieures ou égales aux moyennes des corrélaions variables. Si on avai imposé la consane des marices de corrélaion, alors que l on devrai rejeer H 0, on aurai donc obenu de faco des coefficiens plus élevés, e suresimé, en moyenne, le degré de liaison enre les marchés. Touefois, la conribuion de cee marice (correspondan à H 0 ) à l évoluion des corrélaions variables es modese, en raison de la faiblesse de son coefficien dans l équaion décrivan R ( θ θ = 0,04). Les remarques relaives à la similiude enre les moyennes des coefficiens des corrélaions non condiionnelles e de ceux des corrélaions condiionnelles on conforé la nécessié de eser l hypohèse H 0 de consance des corrélaions 8. Les résulas de ce es présenés dans l annexe (cf. la saisique W e P-Value) permeen de rejeer H 0 au seuil de %. 8 Les modèles à corrélaions consanes e le modèle à corrélaions dynamiques éan emboîés, une saisique du rappor de vraisemblance perme de eser H 0 (cf. Avouyi-Dovi e Neo, 003). Banque de France Revue de la sabilié financière N 4 Juin

4. Principe de la modélisation des séries temporelles

4. Principe de la modélisation des séries temporelles 4. Principe de la modélisaion des séries emporelles Nous raierons ici, à ire d exemple, la modélisaion des liens enre la polluion amosphérique e les indicaeurs de sané. Mais les méhodes indiquées, comme

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin.

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin. Formaion ESSEC Gesion de parimoine Séminaire i «Savoir vendre les nouvelles classes d acifs financiers» Produis à capial garani : méhode du coussin (CCPI) Origine de la méhode Descripion de la méhode Plan

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

L inflation dans la zone euro et aux États-Unis est. Rue de la Banque. Le découplage des courbes de rendement en euro et en dollar

L inflation dans la zone euro et aux États-Unis est. Rue de la Banque. Le découplage des courbes de rendement en euro et en dollar Le découplage des courbes de rendemen en euro e en dollar Benoî MOJON Direceur des Éudes monéaires e financières Fulvio PEGORARO Direcion des Éudes monéaires e financières Cee lere présene le résula de

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Une mesure financière de l importance de la prime de risque de change dans la prime de risque boursière*

Une mesure financière de l importance de la prime de risque de change dans la prime de risque boursière* Une mesure financière de l imporance de la prime de risque de change dans la prime de risque boursière* Salem Boubakri Janvier 2009 Résumé Cee éude ese une exension inernaionale du Modèle d Evaluaion des

Plus en détail

Écart de production et inflation en France

Écart de production et inflation en France L obje de la présene éude es d apprécier l incidence sur l inflaion d une modificaion de l écar de PIB. Les qualiés explicaives e prédicives des six indicaeurs d écar de producion calculés pour la France

Plus en détail

Solvency II, IFRS : l impact des modèles d actifs retenus

Solvency II, IFRS : l impact des modèles d actifs retenus Les normes IFRS en assurance Solvency II, IFRS : l impac des modèles d acifs reenus 31 e journée de séminaires acuariels ISA-HEC Lausanne e ISFA Lyon Pierre THÉROND pherond@winer-associes.fr 18 novembre

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

Claudio Araujo, CERDI 1

Claudio Araujo, CERDI 1 0/09/03 Macroéconomérie I. Naissance de la modélisaion macroéconomérique : Cowles Commission and London chool Economics Claudio Arauo CERDI, Universié d Auvergne Clermon-Ferrand, France www.cerdi.org hp://www.cerdi.org/claudio-arauo/perso/

Plus en détail

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002 Universié Paris IX Dauphine UFR Economie Appliquée Maîrise Economie Appliquée ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 00 Noes de Cours Auorisées, Calcularices sans Mémoire Auorisées Durée :

Plus en détail

Etude de risque pour un portefeuille d assurance récolte

Etude de risque pour un portefeuille d assurance récolte Eude de risque pour un porefeuille d assurance récole Hervé ODJO GROUPAMA Direcion ACTUARIAT Groupe 2, Bd Malesherbes 75008 Paris Tél : 33 (0 44 56 72 46 herve.odjo@groupama.com Viviane RITZ GROUPAMA Direcion

Plus en détail

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1.

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1. Les premières consaaions sur l inapiude des produis indusriels à assurer les foncions qu ils éaien censés remplir pendan un emps suffisan remonen à la seconde guerre mondiale. En France cee prise de conscience

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Impact de l appréciation de l euro sur le Sénégal et la Côte d Ivoire

Impact de l appréciation de l euro sur le Sénégal et la Côte d Ivoire Un Peuple - Un Bu Une Foi MINISTERE DE L ECONOMIE ET DES FINANCES DIRECTION DE LA PREVISION ET DES ETUDES ECONOMIQUES Documen d Eude Impac de l appréciaion de l euro sur le Sénégal e la Côe d Ivoire DPEE

Plus en détail

L évaluation immobilière. Michel Baroni 27/11/2009

L évaluation immobilière. Michel Baroni 27/11/2009 L évaluaion immobilière Michel Baroni 27/11/2009 Méhodes exisanes Méhodes des comparables Dépend de la base de données; méhode hédonique évenuellemen possible Méhodes de capialisaion Dépend de la base

Plus en détail

Chapitre 15 c Circuits RL et RC

Chapitre 15 c Circuits RL et RC Chapire 15 c Circuis L e C en régime impulsionnel Sommaire Circuis en régime impulsionnel Signal impulsionnel Mesure d'un circui C en régime impulsionnel Applicaion praique Eude du circui C en régime impulsionnel

Plus en détail

Panorama des méthodes de coûtenance

Panorama des méthodes de coûtenance Recherche en Managemen de Proje Panorama des méhodes de coûenance Pour réduire les coûs de vos projes e augmener vos marges, quelle méhode choisir? François GAGNÉ, FGF Consulan Les Renconres 2005 du Managemen

Plus en détail

Documents de Travail du Centre d Economie de la Sorbonne

Documents de Travail du Centre d Economie de la Sorbonne Documens de Travail du Cenre d Economie de la Sorbonne D un muliple condiionnel en assurance de porefeuille : CAViaR pour les gesionnaires? Benjamin HAMIDI, Emmanuel JURCZENKO, Berrand MAILLET 2009.33

Plus en détail

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt»

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt» Exercice du Gesion Financière à Cour Terme «Cas FINEX Gesion du risque de aux d inérê» Ce cas raie des différens aspecs de la gesion du risque de aux d inérê liée à la dee d une enreprise : analyse d emprun,

Plus en détail

GUIDE DES INDICES BOURSIERS

GUIDE DES INDICES BOURSIERS GUIDE DES INDICES BOURSIERS SOMMAIRE PRESENTATION DES INDICES... 2 LA GAMME D INDICES : L INDICE TUNINDEX ET LES INDICES SECTORIELS... 3 REGLE GENERALE RELATIVE A LA COMPOSITION DES INDICES... 3 REGLE

Plus en détail

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE UNIVERSITE DE TUNIS Faculé des sciences économiques e de gesion de Tunis MODELE DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE Ezzeddine MBAREK 2010 1 INTRODUCTION Le modèle que je propose

Plus en détail

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE 009-01 EFFICIENCE INFORMATIONNELLE DES MARCHES DE L OR A PARIS ET A LONDRES, 1948-008 UNE VERIFICATION ECONOMETRIQUE DE LA FORME FAIBLE Thi Hong Van HOANG Efficience informaionnelle des marchés de l or

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

LES HISTORIQUES DE COURS ET L ANALYSE TECHNIQUE

LES HISTORIQUES DE COURS ET L ANALYSE TECHNIQUE LES HISTORIQUES DE COURS ET L ANALYSE TECHNIQUE 1 Origines e principes de base de l analyse echnique 2 Les ouils de l analyse graphique radiionnelle 3 Les ouils de l analyse saisique A) LES ORIGINES ET

Plus en détail

1 Le hacheur série. 30 mars 2005

1 Le hacheur série. 30 mars 2005 e hacheur série A. Campo 30 mars 2005 1 e hacheur série 1.1 Généraliés e hacheur es un disposiif permean d obenir une ension coninue de valeur moyenne réglable à parir d

Plus en détail

Procédé thermocyclique de régulation de température

Procédé thermocyclique de régulation de température - 1 - Innovaion echnologique dans le domaine de la régulaion de empéraure, le procédé hermocyclique foncionne selon un principe unique en son genre qui n a rien en commun avec les régulaions par hermosa

Plus en détail

Evaluation des Options avec Prime de Risque Variable

Evaluation des Options avec Prime de Risque Variable Evaluaion des Opions avec Prime de Risque Variable Lahouel NOUREDDINE Correspondance : LEGI-Ecole Polyechnique de Tunisie, BP : 743,078 La Marsa, Tunisie, Insiu Supérieur de Finance e de Fiscalié de Sousse.

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Université d été Solvabilité 2 Juillet 2011

Université d été Solvabilité 2 Juillet 2011 LES INDICATEURS OPERATIONNELLES LIÉS À L ORSA Version 1.0 Universié d éé Solvabilié 2 Juille 2011 Frédéric PLANCHET Acuaire Associé fplanche@winer-associes.fr Marc JUILLARD Acuaire mjuillard@winer-associes.fr

Plus en détail

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0.

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0. # $ %& 1. La VAN. Les aures crières 3. Exemple. Choix d invesissemen à long erme 5. Exercices!" '* '( Un proje ne sera mis en œuvre que si sa valeur acuelle nee ou VAN, définie comme la somme acualisée

Plus en détail

Fonds spéculatifs : évolution de l exposition au risque et de l effet de levier 1

Fonds spéculatifs : évolution de l exposition au risque et de l effet de levier 1 Parick McGuire +41 61 28 8921 parick.mcguire@bis.org Eli Remolona +852 2878 715 eli.remolona@bis.org Kosas Tsasaronis +41 61 28 882 ksasaronis@bis.org Fonds spéculaifs : évoluion de l exposiion au risque

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

A la Recherche des Facteurs Déterminants de l Intégration Internationale des Marchés Boursiers : une Analyse sur Données de Panel

A la Recherche des Facteurs Déterminants de l Intégration Internationale des Marchés Boursiers : une Analyse sur Données de Panel A la Recherche des Faceurs Déerminans de l Inégraion Inernaionale des Marchés Boursiers : une Analyse sur Données de Panel AROURI Mohamed El Hedi EconomiX Universié Paris X Nanerre Bâ G, 200, av. de la

Plus en détail

DECISION N 2010-03 RELATIVE AUX CONDITIONS TARIFAIRES DE SENELEC POUR LA PERIODE 2010-2014

DECISION N 2010-03 RELATIVE AUX CONDITIONS TARIFAIRES DE SENELEC POUR LA PERIODE 2010-2014 REPUBLIQUE DU SENEGAL Un Peuple - Un Bu Une Foi Commission de Régulaion du Seceur de l Elecricié DECISION N 21-3 RELATIVE AUX CONDITIONS TARIFAIRES DE SENELEC POUR LA PERIODE 21-214 LA COMMISSION DE REGULATION

Plus en détail

La persistance des chocs de volatilité sur le marché des changes s est-elle modifiée depuis le début des années quatre-vingts?

La persistance des chocs de volatilité sur le marché des changes s est-elle modifiée depuis le début des années quatre-vingts? La persisance des chocs de volailié sur le marché des changes s es-elle modifiée depuis le débu des années quare-vings? Michel BEINE * Sébasien LAURENT Ce aricle vise à déerminer si la persisance des chocs

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Introduction aux produits dérivés

Introduction aux produits dérivés Chapire 1 Inroducion aux produis dérivés de crédi Le risque de crédi signifie les risques financiers liés aux incapaciés d un agen (un pariculier, une enreprise ou un éa souverain) de payer un engagemen

Plus en détail

Académie Européenne Interdisciplinaire des Sciences Colloque Théories et Modèles en Sciences Sociales 28-29 novembre 2011.

Académie Européenne Interdisciplinaire des Sciences Colloque Théories et Modèles en Sciences Sociales 28-29 novembre 2011. RISQUE EXTREME ET REGULARITE FRACTALE EN FINANCE Académie Européenne Inerdisciplinaire des Sciences Colloque Théories e Modèles en Sciences Sociales 28-29 novembre 2011 Lauren Emmanuel Calve Lauren Emmanuel

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

L ajustement microéconomique des prix des carburants en France

L ajustement microéconomique des prix des carburants en France L ajusemen microéconomique des prix des carburans en France Erwan GAUTIER (LEMNA-TEPP, Universié de Nanes e Banque de France. Email : erwan.gauier@univ-nanes.fr) Ronan LE SAOUT (CREST e Ecole Polyechnique)

Plus en détail

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures niversié de Paris X Nanerre École Docorale MP DA conomie Inernaionale, Modélisaion e Analyse des Poliiques Économiques Année 2004-2005 XAMN FINAL Économie Monéaire Inernaionale 27 janvier 2005 2 heures

Plus en détail

MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Internationale, Monnaie, Finance

MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Internationale, Monnaie, Finance UNIVERSITE DE PARIS-DAUPHINE Février 2004 MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Inernaionale, Monnaie, Finance Noes de Cours Auorisées, seules les

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux ECO434, Ecole polyechnique, 2e année PC 5 Flux de Capiaux Inernaionaux e Déséquilibres Mondiaux Exercice 1 : Flux de capiaux dans le modèle de croissance néoclassique Le modèle es en emps coninu. On considère

Plus en détail

DOCUMENT DE RECHERCHE EPEE

DOCUMENT DE RECHERCHE EPEE DOCUMENT DE RECHERCHE EPEE CENTRE D ETUDE DES POLITIQUES ECONOMIQUES DE L UNIVERSITE D EVRY Comporemen du banquier cenral en environnemen incerain Sanvi AVOUYI-DOVI & Jean-Guillaume SAHUC 07-05 www.univ-evry.fr/epee

Plus en détail

Essai sur les Modèles du Taux de Change. Incorporant la Règle de Taylor

Essai sur les Modèles du Taux de Change. Incorporant la Règle de Taylor Universié de Monréal Essai sur les Modèles du Taux de Change Incorporan la Règle de Taylor Par Houria Aoufi Sous la direcion de Mme Marine Carrasco Déparemen des Sciences Économiques Faculé des ars e des

Plus en détail

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau Ecole des HEC Universié de Lausanne FINANCE EMPIRIQUE Eric Jondeau FINANCE EMPIRIQUE La prévisibilié des rendemens Eric Jondeau L hypohèse d efficience des marchés Moivaion L idée de base de l hypohèse

Plus en détail

df( t) P( t T t dt) ft ( ) lim

df( t) P( t T t dt) ft ( ) lim I APPROCHE DE LA FIABILITE PAR LES PROBABILITES : Définiion selon la NF X 6 5 : la fiabilié es la caracérisique d un disposiif exprimée par la probabilié que ce disposiif accomplisse une foncion requise

Plus en détail

Bien que l investissement des entreprises françaises ait tardé à se redresser

Bien que l investissement des entreprises françaises ait tardé à se redresser Le prix du foncier n aurai pas d effe direc sur l invesissemen en acifs producifs Yaëlle Hauseux Berrand Marc Déparemen de la conjoncure David Audenaer Charles-Marie Chevalier Déparemen des éudes économiques

Plus en détail

budgétaire et extérieure

budgétaire et extérieure Insiu pour le Développemen des Capaciés / AFRITAC de l Oues / COFEB Cours régional sur la Gesion macroéconomique e les quesions de dee Dakar, Sénégal du 4 au 5 novembre 203 Séance S-4 : Souenabilié budgéaire

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1.

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1. Pourcenages MATHEMATQUES 1ES 5. Lors de l acha d un aure aricle, je dois verser un acompe de 15%, e il me resera alors POURCENTAGES à débourser 1 700. CORRGES EXERCCES Prix de l aricle : 1 700 = 85% du

Plus en détail

Sous-évaluation des prix d options par le modèle de Black & Scholes.

Sous-évaluation des prix d options par le modèle de Black & Scholes. Sous-évaluaion des prix d opions par le modèle de Black & Scholes. Mise en évidence par une dynamique combinan mouvemen brownien e processus à saus. Marc Debersé ocobre 6 Résumé S il es bien connu que

Plus en détail

LA PERTINENCE DES ACTIFS INCORPORELS AVEC LES IFRS

LA PERTINENCE DES ACTIFS INCORPORELS AVEC LES IFRS LA PERTINENCE DES ACTIS INCORPORELS AVEC LES IRS Gaëlle LENORMAND-TOUCHAIS IREJE Universié de Breagne-Sud (rance) Lionel TOUCHAIS CREM-IAE de Rennes Universié de Rennes1 (rance) RESUME : Ce aricle s inerroge

Plus en détail

Les nouveautés de Word 2013

Les nouveautés de Word 2013 WORD 2013 Office 2013 - Word, Excel, PowerPoin e Oulook Les nouveaués de Word 2013 Aciver/désaciver les repères d'alignemen Les repères d'alignemen permeen, lors du déplacemen ou du redimensionnemen d'un

Plus en détail

Rentabilité et profitabilité du capital : le cas de six pays industrialisés

Rentabilité et profitabilité du capital : le cas de six pays industrialisés COMPARAISONS INTERNATIONALES Renabilié e profiabilié du capial : le cas de six pays indusrialisés Arnaud Sylvain* On compare sur la période 1965-1999 les rendemens brus du capial aux Éas-Unis, au Japon

Plus en détail

CHAPITRE III LA PREVISION

CHAPITRE III LA PREVISION CHAPITRE III LA PREVISION Prévoir ce qui va se passer dans le fuur es d'une imporance capiale pour la plupar des enreprises. En effe, la producion es selon le ype d'acivié un processus plus ou moins long,

Plus en détail

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou ELECRICIE Analyse des signaux e des circuis élecriques Michel Piou Chapire 9 Valeur moyenne des signaux périodiques. Ediion //24 able des maières POURQUOI E COMMEN?... 2 INERE DE LA NOION DE VALEUR MOYENNE....2

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

Estimation composite par régression pour l Enquête sur la population active du Canada avec plan de sondage à renouvellement de panel

Estimation composite par régression pour l Enquête sur la population active du Canada avec plan de sondage à renouvellement de panel Techniques d enquêe, juin 00 35 Vol. 7, N o, pp. 35 48 Saisique Canada, N o 00 au caalogue Esimaion composie par régression pour l Enquêe sur la populaion acive du Canada avec plan de sondage à renouvellemen

Plus en détail

Production d un son par les instruments de musique

Production d un son par les instruments de musique Producion d un son par les insrumens de musique ACTIVITÉ 1 : Recherche documenaire : Les foncions d un insrumen de musique Objecif : découvrir commen les insrumens de musique acousique peuven remplir leurs

Plus en détail

France : la consommation privée bridée par la faiblesse des revenus en sortie de crise

France : la consommation privée bridée par la faiblesse des revenus en sortie de crise N 150 21 juille 2010 France : la consommaion privée bridée par la faiblesse des revenus en sorie de crise La consommaion des ménages en France a neemen freiné depuis la crise financière. La récession qui

Plus en détail

Un modèle intégré de la demande totale d énergie Application à la province de Québec RÉSUMÉ

Un modèle intégré de la demande totale d énergie Application à la province de Québec RÉSUMÉ Un modèle inégré de la demande oale d énergie Applicaion à la province de Québec par JeanThomas Bernard Tiulaire de la Chaire en économique de l'énergie élecrique Déparemen d'économique Universié Laval

Plus en détail

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite DOCUMENT DE TRAVAIL 2003-12 Impac du vieillissemen démographique sur l impô prélevé sur les rerais des régimes privés de reraie Séphane Girard Direcion de l analyse e du suivi des finances publiques Ce

Plus en détail

ANNEXE 2 - REGLES DE CALCUL DU TAUX DE RENTABILITE DES EXTENSIONS DE RESEAU

ANNEXE 2 - REGLES DE CALCUL DU TAUX DE RENTABILITE DES EXTENSIONS DE RESEAU ANNEXE 2 - REGLES DE CALCUL DU TAUX DE RENTABILITE DES EXTENSIONS DE RESEAU SOMMAIRE ARTICLE 1 - Définiion du aux de renabilié ARTICLE 2 - Seuil minimum de renabilié ARTICLE 3 - Evaluaion de la recee acualisée

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie

Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie Copules e dépendances : applicaion praique à la déerminaion du besoin en fonds propres d un assureur non vie David Cadoux Insiu des Acuaires (IA) GE Insurance Soluions 07 rue Sain-Lazare, 75009 Paris FRANCE

Plus en détail

E9904 Optimisation d un sondage à probabilité proportionnelle à la taille. Le cas des CA3. Christian HESSE, Benoît MERLAT

E9904 Optimisation d un sondage à probabilité proportionnelle à la taille. Le cas des CA3. Christian HESSE, Benoît MERLAT E9904 Opimisaion d un sondage à probabilié proporionnelle à la aille Le cas des CA3 Crisian HESSE, Benoî MERLAT 3 Opimisaion d un sondage à probabilié proporionnelle à la aille Le cas des CA3 Crisian

Plus en détail

Les Générateurs de Scénarios Économiques : quelle utilisation en assurance? 1

Les Générateurs de Scénarios Économiques : quelle utilisation en assurance? 1 Les Généraeurs de Scénarios Économiques : quelle uilisaion en assurance? 1 Alaeddine FALEH 2 Frédéric PLANCHET 3 Didier RULLIERE 4 ISFA- Universié Lyon I 5 Caisse des Dépôs e Consignaions 6 RÉSUMÉ Dans

Plus en détail

Mémoire soutenu pour l Institut des Actuaires le 15 décembre David Sudries Introduction

Mémoire soutenu pour l Institut des Actuaires le 15 décembre David Sudries Introduction Modélisaion e exrapolaion de l évoluion de la moralié française à parir de modèles sochasiques Analyse des qualiés prédicives de ces modèles Applicaions praiques Mémoire souenu pour l Insiu des Acuaires

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX Obje de la séance 9: défini le risque de aux e présener

Plus en détail

4.9 Calcul de la maçonnerie portante soumise à une charge verticale

4.9 Calcul de la maçonnerie portante soumise à une charge verticale La radioacivié évenuellemen émise dans les consrucions es due, principalemen, à la présence de Radium (Ra 226) e/ou Thorium (Th 232) dans le sous-sol e dans les maériaux uilisés. Parmi ceux-ci, le béon

Plus en détail

pour un régime de rentiers

pour un régime de rentiers Les Crières normes d allocaion IFRS en assurance d acifs pour un régime de reniers 1 er juille 2004 Frédéric PLANCHET Acuaire associé Pierre THEROND Acuaire 1 er juille 2004 Page 1 Conexe (1) La déerminaion

Plus en détail

L effet des activités hors bilan sur la rentabilité et la volatilité des revenus des banques canadiennes

L effet des activités hors bilan sur la rentabilité et la volatilité des revenus des banques canadiennes L effe des aciviés hors bilan sur la renabilié e la volailié des revenus des banques canadiennes Nicolas Pellerin * Déparemen des Sciences Adminisraives Universié du Québec en Ouaouais Essai du D.E.S.S.

Plus en détail

L effet richesse en France et aux États-Unis

L effet richesse en France et aux États-Unis L effe richesse en France e aux Éas-Unis Cécile CHATAIGNAULT David THESMAR Division Synhèse conjoncurelle Pierre-Olivier BEFFY Brieuc MONFORT Division Croissance e poliiques macroéconomiques Enre ocobre

Plus en détail

UN INDICE D ÉVOLUTION EN VOLUME DU STOCK DE RESSOURCES NATURELLES

UN INDICE D ÉVOLUTION EN VOLUME DU STOCK DE RESSOURCES NATURELLES UN INDICE D ÉVOLUTION EN VOLUME DU STOCK DE RESSOURCES NATURELLES 15e Colloque de l Associaion de Compabilié Naionale Novembre 2014 Pierre-Alain Pionnier OCDE Indicaeurs phares de l OCDE pour une croissance

Plus en détail

Formalisme des processus aléatoires

Formalisme des processus aléatoires HAPITRE Formalisme des processus aléaoires. - Signal déerminise e signal aléaoire.. - Signal déerminise Les signaux déerminises son connus par leur représenaion emporelle e specrale. Dans le domaine emporel,

Plus en détail

Pricing des produits dérivés de crédit dans un modèle

Pricing des produits dérivés de crédit dans un modèle Pricing des produis dérivés de crédi dans un modèle à inensié Nordine Bennani & Cyril Sabbagh Table des maières 1 Présenaion générale des dérivés de crédi 3 1.1 Inroducion...................................

Plus en détail

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Site Value-at-Risk

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Site Value-at-Risk MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Universié d Orléans Sie Value-a-Risk p://93.49.79.89/esa_prof/index.pp Sous la Direcion de Crisope Hurlin Année Universiaire 006-007 Maser Economérie e

Plus en détail

Centre d Analyse Théorique et de Traitement des données économiques

Centre d Analyse Théorique et de Traitement des données économiques Cenre d Analyse Théorique e de Traiemen des données économiques CATT WP No. 9. January 2011 L IMPACT DU TAUX DE CHANGE SUR LES EXPORTATIONS DE L ALLEMAGNE ET DE LA FRANCE HORS ZONE EURO Serge REY CATT-UPPA

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

DOCUMENT DE TRAVAIL FLORENT FREMIGACCI YANNICK L HORTY N 51. novembre 2005

DOCUMENT DE TRAVAIL FLORENT FREMIGACCI YANNICK L HORTY N 51. novembre 2005 DOCUMENT DE TRAVAIL LA QUALITÉ DE L EMPLOI L EN FRANCE : TENDANCE ET CYCLE FLORENT FREMIGACCI YANNICK L HORTY N 51 novembre 2005 «LE DESCARTES I» 29, PROMENADE MICHEL SIMON 93166 NOISY-LE-GRAND CEDEX TÉL.

Plus en détail

TP Mesures de la vitesse du son

TP Mesures de la vitesse du son TP Mesures de la viesse du son Bu du TP. Lors de cee séance de ravaux praiques, l éudian es amené à mesurer la viesse de propagaion du son dans l air e dans l eau. 1 Inroducion Qu es-ce qu un son? Un son

Plus en détail

( ) et est alors représenté par le graphe ci-

( ) et est alors représenté par le graphe ci- LE SIGNAL SINUSOIDAL : PRODUCTION ET OBSERVATION Le bu de ce premier TP es d une par la prise en main du maériel nécessaire pour l observaion des ondes lors de la prochaine séance (uilisaion de l oscilloscope),

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES DT 2/2005 Croissance économique e consommaion d énergie au Congo : une analyse en ermes de causalié Samuel AMBAPOUR Chrisophe MASSAMBA BAMSI

Plus en détail

Calcul économique et risque. Comment intégrer le risque dans le calcul économique?

Calcul économique et risque. Comment intégrer le risque dans le calcul économique? Calcul économique e risque Commen inégrer le risque dans le calcul économique? Chrisian Gollier Universié de Toulouse (IDEI e LERNA) Février 25 Résumé : Dans ce aricle, j explique pourquoi il es raisonnable

Plus en détail

Abstract. Classification JEL: C22 ; G01 ; G15 Mots clés : contagion financière ; cointégration et ecm asymétrique; modèles TAR, M-TAR

Abstract. Classification JEL: C22 ; G01 ; G15 Mots clés : contagion financière ; cointégration et ecm asymétrique; modèles TAR, M-TAR Modélisaion de la conagion des marchés financiers basée sur la coinégraion asymérique : le cas des marchés américain, français, anglais e japonais. Absrac Le bu de ce aricle es d analyser la conagion des

Plus en détail

CHAPITRE 6 CONSOMMATION ET CALCUL INTERTEMPOREL : L HYPOTHESE DU REVENU PERMANENT

CHAPITRE 6 CONSOMMATION ET CALCUL INTERTEMPOREL : L HYPOTHESE DU REVENU PERMANENT icence Sciences Economiques 3ème année er semesre MICROECONOMIE APPROFONDIE ET CACU INTERTEMPORE CHAPITRE 6 CONSOMMATION ET CACU INTERTEMPORE : HYPOTHESE DU REVENU PERMANENT Vision simplifiée du schéma

Plus en détail

Les générateurs de scénarios économiques Problématiques et modélisation des indices financiers. Le 29 Mars 2012

Les générateurs de scénarios économiques Problématiques et modélisation des indices financiers. Le 29 Mars 2012 Les généraeurs de scénarios économiques Problémaiques e modélisaion des indices financiers Le 29 Mars 202 Les généraeurs de scénarios économiques Inroducion Un généraeur de scénarios économiques perme

Plus en détail

de rentiers en cours de service

de rentiers en cours de service Les Allocaion normes d acifs IFRS d un en assurance régime de reniers en cours de service 27 e journée de séminaires acuariels ISFA Lyon e ISA-HEC Lausanne Frédéric PLANCHET Pierre THEROND 3 décembre 2004

Plus en détail

Les deux déficits, budgétaire et du compte courant, sont-ils jumeaux? Une étude empirique dans le cas d une petite économie en développement

Les deux déficits, budgétaire et du compte courant, sont-ils jumeaux? Une étude empirique dans le cas d une petite économie en développement Les deux déficis, budgéaire e du compe couran, sonils jumeaux? Une éude empirique dans le cas d une peie économie en développemen (Version préliminaire) Aueur: Wissem AJILI Docorane CREFED Universié Paris

Plus en détail

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé ENSAE 3 eme année Romain Burgo & Tchim Silué Synhèse de l aricle : Noe sur l évaluaion de l opion de remboursemen anicipé Mémoire de gesion ALM Juin 2006 Résumé Depuis 1979, la loi offre à l empruneur

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Les nouveautés d Excel 2016

Les nouveautés d Excel 2016 EXCEL 2016 Office 2016 - Excel, Word, PowerPoin e Oul ook Les nouveaués d Excel 2016 Uiliser la sélecion muliple dans les filres à segmen Les segmens, uilisés dans des ableaux de données ou des ableaux

Plus en détail