Exercices supplémentaires : ln

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Exercices supplémentaires : ln"

Transcription

1 Exercices supplémentaires : ln Partie A : Propriétés algébriques Exprimer en fonction de ln2 : Exercice 2 Simplifier les expressions suivantes ln 1 2 ; ln8 ; ln64 ; ln2 ; ln64 ; ln 32 ; ln 2 ; ln 32 ln 5 2 ln 5 2 ; ln 5 2 ln 5 2 ; ln 5 2 ln 5 2 Partie B : Equations, inéquations Résoudre les équations suivantes Exercice 2 Résoudre les inéquations suivantes ln2 5 0 ln2 5 1 ln2 5 2 ln 2 ln 32 6 ln2 ln ln2 ln2 7 ln4 9 ln3 ln 1 ln4 1 2 ln2 ln ln ln2 ln4 8 0 ln4 8 ln3 ln4 8 1 ln 2 ln ln 2 ln2 1 ln 1 ln4 1 2 ln2 ln 2 2 ln3 ln ln ln 2 ln 0 Partie C : Etude de fonctions On considère la fonction :. 1) Déterminer l ensemble de définition de. 2) Déterminer les ites de aux bornes de son ensemble de définition. 3) Etudier les variations de et dresser son tableau de variations.

2 Exercice 2 Partie A On considère la fonction définie sur 0; par 1 ln. 1) Etudier les ites de en 0 et en. 2) Etudier les variations de. 3) Montrer que est positif et en déduire le signe de. Partie B On considère la fonction définie sur 0; par 1) Déterminer les ites de en 0 et en. 2) Démontrer que et en déduire les variations de sur 0;. 3) Démontrer que la droite d équation est une asymptote oblique à en. 4) Etudier la position relative de et. Exercice 3 On considère la fonction définie par ln 13. 1) Déterminer l ensemble de définition de. 2) Déterminer les ites de aux bornes de son ensemble de définition. 3) Etudier les variations de et dresser son tableau de variations. Exercice 4 1) On considère la fonction : ln définie sur 0;. Etudier les variations de. Calculer 1 et en déduire le signe de sur 0;. 2) En utilisant la question précédente, étudier les variations de la fonction définie sur 0; par ln 2. Exercice 5 On considère la fonction définie sur 0; par 2 ln ln 1) Etudier les ites de en et en 0. Déterminer les asymptotes éventuelles de. 2) Calculer et dresser le tableau de variations de sur 0;. 3) Préciser les abscisses des points d intersection de avec l axe des abscisses. 4) Déterminer une équation de la tangente à au point d abscisse. 5) On note la droite d équation avec 1. Montrer que pour tout réel 1, la droite coupe en deux points d abscisses respectives et. 6) Montrer que pour tout réel 1. Exercice 6 On considère la fonction définie sur 0; par 3 ln. 1) Etudier les ites de aux bornes de son ensemble de définition. 2) Etudier les variations de. Exercice 7 Partie A On considère la fonction définie sur 0; par 4 ln. 1) Etudier les variations de. Préciser 1. 2) En déduire le signe de sur 0;.

3 Partie B On considère la fonction définie sur 0; par ln. 1) Montrer que pour tout réel 0,. 2) Déterminer la ite de en (on pourra mettre en facteur dans l expression de ). En déduire la ite de en 0. 3) En utilisant la partie A, étudier le sens de variations de sur 0;. Exercice 8 On considère la fonction définie sur 3; par 1 ln 3. 1) Etudier les ites de aux bornes de son ensemble de définition. Préciser les asymptotes éventuelles. 2) Vérifier que pour 3, ln 3 3) Calculer et en déduire les variations de. 4) Etudier le signe de sur 3;. 5) Déterminer le tableau de variations de. 6) Calculer les coordonnées des points d intersections de avec l axe des abscisses.

4 Correction exercices supplémentaires : ln Partie A : Propriétés algébriques ln 1 ln2 2 ln8 ln2 3 ln2 ln64 ln2 6 ln2 ln2 ln2 ln 2 ln2 ln64 ln64 ln 6 ln2 1 ln ln ln2 5 2 ln2 ln 2 ln2 ln ln2 1 ln 32 ln32 ln 5 ln2 1 Exercice 2 ln 5 2 ln 5 2 ln ln5 2 ln ln 5 2 ln 5 2 ln ln ln 5 ln ln 5 2 ln 5 2 ln ln 5 4 ln1 0 Partie B : Equations, inéquations ln2 5 0 : Ensemble de résolution : donc on résout dans ; ln2 5 0 ln2 5 ln donc 2 Remarque : on pouvait aussi composer avec l exponentielle : ln ln2 5 1 : Ensemble de résolution : donc on résout dans ; ln donc ln2 5 2 : Ensemble de résolution : donc on résout dans ; ln donc 2 0 ln 2 ln 32 6 ln2 ensemble de résolution : donc on résout dans 32;. ln 2 ln 32 6 ln2 ln 2 32 ln ou 34 donc 34 car 0 n appartient pas à l ensemble de résolution. ln ln2 : ensemble de résolution : donc on résout dans ; 2 32; ln ln2 ln 2 32 ln2 0 ou 34 (résolution précédente)

5 Donc 0; ln2 7 ln4 9 ln3 : Ensemble de résolution : donc on résout dans 9 4 ; 7 2 ln2 7 ln4 9 ln3 ln2 7 ln3 ln4 9 ln32 7 ln ,5 donc ln 1ln412ln2 : Ensemble de résolution : ;11; Donc on résout dans 1; ln 1ln412ln2ln 1ln4ln41ln4 1ln : Δ64 donc et Finalement ln ln60 : Ensemble de résolution : 0; On pose ln et on résout 60 : Δ25 d où 3 et 2. On a donc ln3 ou ln2 et donc ou. Finalement ; 2 10 : Ensemble de résolution On pose et on résout 210 : Δ8 d où 1 2 et 1 2. On a donc 1 2 ou 1 2 ce qui est impossible ( est toujours positif ) d où ln1 2 et donc ln1 2 ln2 : ensemble de résolution 0; ln2 ln2ln2 donc Exercice 2 ln480 : Ensemble de résolution : 4802 donc on résout dans 2;. ln480ln48ln donc ; ln48ln3 : Ensemble de résolution : 4802 donc on résout dans 2; ln48ln34x83x donc 2; ln481 : Ensemble de résolution : 4802 donc on résout dans 2; ln481ln48ln48 donc ; ln2ln : Ensemble de résolution : donc on résout dans 2;00; ln2ln 2 20 : Δ9 donc 2 est du signe de 1 sauf entre les racines 1 et 2. On trouve donc que doit être inférieur à 1 ou supérieur à 2. A l aide de l ensemble de résolution, on obtient : 2;12; ln2ln21 : Ensemble de résolution : donc on résout dans 2; ln2ln donc ln 1ln412ln2 : Ensemble de résolution : ou 1 donc on résout dans 1;

6 ln 1ln412ln2ln 1ln41ln2 ln 1ln : Δ4 donc est du signe de 1 sauf entre les racines et. L expression est donc négative sur ; et donc 1; ln 22ln3 : Ensemble de résolution : 20 1 ou 2 (on résout la 30 3 première inéquation avec le calcul de Δ 9 ) Finalement, on résout dans ; 1 2; 3. ln 2 2 ln3 ln 2 ln donc ; 1 2; ln ln 6 0 : Ensemble de résolution : 0 donc on résout dans 0;. On pose ln et on résout 6 0 : Δ 25 donc 6 est du signe de 1 sauf entre les racines 3 et 2 donc 2; 3. Pour revenir à, on a donc 2 ln 3 et en composant avec exponentielle qui est strictement croissante, donc ; 6 0 : on résout dans et on pose en multipliant par strictement positif Δ 32 donc 6 1 est du signe de 1 sauf entre les racines On doit donc avoir ou Pour en revenir à : ln ou ln donc ou Finalement, ; ; et : Ensemble de résolution : 0 2 ln 0 0 ln 2 0 donc on résout dans 0; ;. On va ensuite construire un tableau de signe : 1 ln 0 ln 1 et 2 ln 0 ln 2 0 Signe de 1 ln 0 Signe de 2 ln 0 Signe de 0 Finalement ; Partie C : Etude de fonctions 0 1) Ensemble de définition : ln donc 0; 1 1; 2) En 0 : En 1 : ln et par quotient, 0 ln 0 donc par quotient et de la même manière, En : ln donc par quotient 0 3) est de la forme avec ln dérivable et non nul sur l ensemble de définition donc est dérivable sur son ensemble de définition et

7 Sur l ensemble de définition, est positif et ln est bien sûr positif également donc est négatif et la fonction est décroissante sur chaque intervalle où elle est définie. Exercice 2 Partie A 1) En et ln donc par soustraction En, on met en facteur : 1 1 ln 1 1 ; 0 ; donc par multiplication 0 donc par opérations 1 1 ln mais aussi 2) est de la forme avec 1 dérivable sur 0; et ln dérivable sur 0; donc est dérivable sur 0; et 2. Le dénominateur est clairement positif donc est du signe de 2 1 dont les racines sont et Signe de 0 Variations de 2 2 3) 1 ln 1 ln ln 2 et comme 2 1, on peut dire que ln 2 est positif et par somme est positif. Comme il s agit du minimum de, on a donc que est positif sur 0; Partie B 1) En 0 ln 0 ; ln donc par quotient et par addition En : ln et 0 donc par addition 2) est de la forme avec dérivable sur 0;, ln dérivable sur 0; et dérivable sur 0; et non nul donc est dérivable sur 0; et 1 1 ln 1 ln Le dénominateur est clairement positif et est positif d après la partie A donc est positif et est croissante sur 0;. 3) En : et d après les détails des ites précédentes, ce rapport à pour ite 0 en donc est bien une asymptote oblique à en.

8 4) Pour étudier les positions relatives de et, on étudie le signe de donc de. Or le dénominateur est clairement positif sur 0; donc c est du signe de ln qui est négatif sur 0; 1 et positif sur 1;. Donc est en dessous de sur 0; 1 et au dessus de sur 1;. Exercice 3 1) Ensemble de définition : 13 0 et grâce à un tableau de signe, on trouve 1; 3 2) 13 0 et 13 0 et ln donc par composition ln donc par composition 3) est de la forme ln avec dérivable et strictement positif sur 1; 3 donc est dérivable sur et Le dénominateur est positif sur (c est comme cela qu est défini ) donc est du signe de 2 4. Exercice Signe de 0 0 Variations de 1) est définie et dérivable sur 0; et 1. Le dénominateur est clairement positif donc est du signe de 1 : 0 1 Signe de 0 1 Variations de Le maximum de est égal à 1 donc est négatif sur 0;. 2) est de la forme 2 avec ln dérivable sur 0; donc est dérivable sur 0; et ln 2 ln 2 2ln 2 2 Le dénominateur est clairement positif et est négatif d après la question précédente donc est négatif et donc la fonction est décroissante sur 0;. Exercice 5 1) Pour la ite en, on factorise par ln : ln 2 ln ln et 2 ln et par produit Pour la ite en 0 : ln donc ln et par soustraction, Cette dernière ite indique que la droite d équation 0 est une asymptote verticale à la courbe de. 2) est de la forme 2 avec ln dérivable sur 0; donc est dérivable sur 0; et ln 21 ln Le dénominateur est clairement positif donc est du signe de 1 ln. 1 ln 0 ln 1 2 ln ln

9 0 Signe de 0 1 Variations de 3) Intersection de avec l axe des abscisses : on résout 0 : 02lnln 0ln2ln0ln0 ou 2 ln 0 ln 0 ou ln 2 1 ou coupe l axe des abscisses en deux points d abscisse 1 et. 4) Une équation de la tangente à au point d abscisse est Or et 0 d où 2 5) Intersection de et avec 1 : on doit résoudre. Or d après le tableau de variations de, sur 0;, est continue, strictement croissante et est bien compris entre la ite de en 0 et 1 donc d après le théorème de la bijection, il existe une solution à l équation dans 0;. Un même raisonnement dans ;, on a une seconde solution à l équation. 6) On note la solution de qui appartient à 0; et celle de ;. On a donc or 2 ln m ln 2 ln ln 2ln ln ln ln 0 2 ln ln ln ln ln 0 2 ln ln ln 0 ln 2 ln 0 ln 0 ou 2 ln 0 1 ou ln 2 ou La première proposition est impossible au vue des intervalles auxquels appartiennent et donc Exercice 6 1) En 0 : 3 0 et ln 0 donc par soustraction 0 En, on factorise par : ln 1 ; 2) est dérivable sur 0; et 0 donc 1 3 ln 1 et donc ln ln ln Le signe de n étant pas évident à étudier, on calcule : Signe de 0 Variations de 3 ln2 Signe de Variations de 0

10 Exercice 7 Partie A 1) est de la forme avec dérivable et non nul sur 0; et 4ln dérivable sur 0; donc est dérivable sur 0; et Le dénominateur et le numérateur sont clairement positifs donc est positif et est croissante On en déduit que est négative sur 0;1 et positive sur 1;. Partie B 1) Pour 0 : ln 1 2) Pour ln ; ln 1 4 En 0, on pose : ln ln ln 0 ; 0 donc ln 0 et par addition mais aussi donc par produit et donc par composition 3) est de la forme avec, et dérivables sur 0; donc est dérivable sur 0; et ln ln ln 2 Le dénominateur est clairement positif donc est du signe de Exercice 8 1) En 3 14 ; En 0 1 Signe de 0 Variations de 30 doncln3 et par produit 1 ; 3 donc ln3 et donc La ite en 3 indique que la droite d équation 3 est une asymptote verticale à. 2) est de la forme avec 1 dérivable sur 3; et ln3 de la forme ln avec 3 dérivable et strictement positif sur 3; donc est dérivable sur 3; et ln ln31 3 3) 1 2

11 3 7 Signe de 0 Variations de ln42 Signe de Variations de 6) Intersection de avec l axe des abscisses : on résout 0 : 01ln3010ou ln ou ou 4 La première possibilité n appartient pas à l ensemble de définition de donc le seul point d intersection de et l axe des abscisses a pour coordonnées 4; 0.

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ;

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ; Sujets de bac : Ln Sujet n 1 : extrait de Liban juin 2004 Partie A Soit la fonction définie sur 0; par 2 ln. 1) Etudier les variations de sur 0; et préciser ses ites en 0 et en. a. Montrer que l équation

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Exercices supplémentaires Second degré

Exercices supplémentaires Second degré Exercices supplémentaires Second degré Partie A : Forme canonique, équations, inéquations, factorisation Mettre sous forme canonique les trinômes suivants 8 ; 3 1 ; 5 ; 3 4 Exercice On considère : 5 6

Plus en détail

Fonction logarithme - Correction

Fonction logarithme - Correction Eercice 1 Fonction logarithme - Correction Déterminer l ensemble de définition des fonctions suivantes : 1. f() = ln + ln(2 ) On sait, d après le cours que la fonction ln est définie sur R +. Autrement

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

Classe : TES1 Le 19/12/2003. MATHEMATIQUES Devoir N 3 ;0, 3 ;0. les tangentes à la courbe (C) aux points D et E sont parallèles à l axe des abscisses.

Classe : TES1 Le 19/12/2003. MATHEMATIQUES Devoir N 3 ;0, 3 ;0. les tangentes à la courbe (C) aux points D et E sont parallèles à l axe des abscisses. Classe : TES1 Le 19/12/200 MATHEMATIQUES Devoir N Calculatrice autorisée Durée : h Eercice 1:,5 points) Le plan est rapporté à un repère orthonormal. Sur le graphique ci-contre, la courbe C) représente

Plus en détail

Exercices supplémentaires : Etude de fonctions

Exercices supplémentaires : Etude de fonctions Exercices supplémentaires : Etude de fonctions Partie A : Avec les fonctions de référence Dans chacun des cas, comparer et sans utiliser la calculatrice ) =,40 et =,4 ) = 7 et = 4 ) = 0,5 et = 4) =,4 et

Plus en détail

Rappels de 3eme. A Factorisation et developpement. 1/ Somme produit. 2/ Développements

Rappels de 3eme. A Factorisation et developpement. 1/ Somme produit. 2/ Développements A Factorisation et developpement Rappels de 3eme 1/ Somme produit Un calcul est appelé somme si la dernière opération à effectuer est une addition. Chacun des nombres qui composent cette addition est appelé

Plus en détail

FONCTION LOGARITHME. ln = a.

FONCTION LOGARITHME. ln = a. FONCTION LOGARITHME I. DEFINITION DU LOGARITHME a) Définition Problème : Soit a un réel strictement positif. Démontrer que l équation e x = a admet une solution unique α dans IR. (théorème des valeurs

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation Ce que dit le programme : Nouveautés par rapport à la première : Dérivée de la composée et écriture différentielle (pour la physique)

Plus en détail

La fonction puissance

La fonction puissance La fonction puissance Table des matières Fonction puissance. Définition.................................. Propriétés.................................. Eercices.................................. Etude de

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE Ph DEPRESLE 29 juin 205 Table des matières Propriétés algébriques 2 2 Nouvelle notation 2 3 Étude de la fonction exponentielle 2 3. Variations et ites........................................

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

I - Équations à une inconnue

I - Équations à une inconnue 1/ Définition I - Équations à une inconnue Une équation à une inconnue est une égalité dans laquelle figure une lettre représentant une valeur inconnue que l on cherche à déterminer. s : (E 1 ) : x + 1

Plus en détail

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

Exercices : les fonctions exponentielles

Exercices : les fonctions exponentielles Eercices : les fonctions eponentielles Attention la rédaction présentée dans ces corrections d eercices est moins détaillée que celle que j attends de vous en devoir. Pour le modèle de la rédaction, regardez

Plus en détail

Fonctions Affines Problèmes du premier degré

Fonctions Affines Problèmes du premier degré Fonctions Affines Problèmes du premier degré Christophe ROSSIGNOL Année scolaire 2016/2017 Table des matières 1 Fonctions Affines 2 1.1 Définition Représentation graphique.................................

Plus en détail

Fonction exponentielle 1

Fonction exponentielle 1 Fonction eponentielle 1 Unicité de la solution de l équation différentielle Conséquences 1. Si f est une solution de l équation différentielle y = y, y(0) = 1, alors, pour tout réel, f( )f() = 1 et f()

Plus en détail

Fonctions à deux variables

Fonctions à deux variables Fonctions à deux variables Exercice 1 On note l'ouvert de défini par 1 3, 3 0,1 et l'application définie sur par :,, ² ² Montrer que est strictement négative sur., 1 1 Pour,, 1 0. Pour 01, 1 0. Comme et

Plus en détail

PRATIQUE DES FONCTIONS NUMÉRIQUES

PRATIQUE DES FONCTIONS NUMÉRIQUES UNIVERSITÉ DE CERGY U.F.R. Economie et Gestion Licence d Économie et Gestion L1 - S1 PRATIQUE DES FONCTIONS NUMÉRIQUES EXAMEN PREMIÈRE SESSION - Janvier 01 - heures Les exercices sont indépendants et peuvent

Plus en détail

4 Déterminer les limites suivantes. 1) lim x e1 2x. e x x+ 1 e 2x + 1 3) lim x 5 Montrer que l équation e 3x 6 = 0 admet une.

4 Déterminer les limites suivantes. 1) lim x e1 2x. e x x+ 1 e 2x + 1 3) lim x 5 Montrer que l équation e 3x 6 = 0 admet une. ANALYSE Logarithme népérien 5 Connaissances nécessaires à ce chapitre Connaître l allure de la courbe de la fonction exponentielle Connaître les propriétés algébriques de la fonction exponentielle Résoudre

Plus en détail

Études de signes, équations et inéquations, cours de seconde

Études de signes, équations et inéquations, cours de seconde Études de signes, équations et inéquations, cours de seconde F.Gaudon 6 janvier 2008 Table des matières 1 Résolution d équations produits ou quotients 2 1.1 Résolution d équations produits..................

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien I Introduction du logarithme népérien Définitions Définition Pour tout réel a strictement positif, l équation e y = a, d inconnue y, admet une unique solution. Cette solution

Plus en détail

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α.

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α. Eercice 1: (7 points) Nouvelle-Calédonie novembre 2010 TS4 DS5 19/01/11 Soit la fonction définie sur l intervalle [1 ; + [ par ϕ() = 1+ 2 2 2 ln(). 1. a. Étudier le sens de variation de la fonction ϕ sur

Plus en détail

En particulier : x, y R, e x+y = e x e y et e x = 1 e x.

En particulier : x, y R, e x+y = e x e y et e x = 1 e x. I. Propriétés algébriques La fonction logarithme néperien est dérivable et strictement croissante de R + sur R. Le théorème de la bijection, qu on abordera au chapitre 7, permet de prouver l existence

Plus en détail

Exercices supplémentaires : Suites

Exercices supplémentaires : Suites Exercices supplémentaires : Suites Partie A : Calculs de termes et représentation graphique Exercice On considère la suite définie par 4 pour tout N. Calculer,, et Exercice On considère la suite définie

Plus en détail

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie Corrigés des eercices de trigonométrie I. Résoudre algébriquement des équations, des inéquations Pour les eercices suivants, on utilisera le cercle trigonométrique Eercice 1 Résoudre dans l intervalle

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES)

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES) DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

Fonctions puissances Croissances comparées

Fonctions puissances Croissances comparées Fonctions puissances Croissances comparées Christophe ROSSIGNOL Année scolaire 200/20 Table des matières Puissances réelles 2. Définition Premières propriétés.................................... 2.2 Propriétés

Plus en détail

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire Terminale S Problème de synthèse n f est la fonction définie sur par f() = orthonormal (O; i ; j )(unité graphique : 2 cm). A. Etude de la fonction f + - et C sa courbe représentative dans un repère ²

Plus en détail

Nombres réels, bornes supérieures et inférieures

Nombres réels, bornes supérieures et inférieures Nombres réels, bornes supérieures et inférieures Exercice 1 : Si et sont des réels positifs ou nuls, montrer que Allez à : Correction exercice 1 : Exercice 2 : Déterminer les ensembles suivants, mettre

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

Novembre 2008 Nouvelle Calédonie

Novembre 2008 Nouvelle Calédonie Novembre 2 Nouvelle Calédonie Pondichéry Avril 2 Centres étrangers Juin 2 Amérique du nord juin 2 Inde Pondichéry avril 2ds vos annales p 6) Sujets : Novembre 2 Nouvelle Calédonie PARTIE A On considère

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation ) Définition et interprétation géométrique : Soient f une fonction définie sur un intervalle I de R et a I. La fonction est dérivable

Plus en détail

4 e série Exercices sur les études de fonctions

4 e série Exercices sur les études de fonctions e série Eercices sur les études de fonctions Pour les courbes, on vérifiera sur calculatrice graphique On rappelle également que les tableau de variations (tableau récapitulatifs) doivent comporter les

Plus en détail

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x.

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x. T ES Mathématiques DS 5 le 18/01/01 Exercice 1 (5,5 POINTS ) On considère une fonction f définie et dérivable sur l intervalle [- ; 4]. On note f la fonction dérivée de la fonction f. La courbe C f, tracée

Plus en détail

Equations, inéquations et fonctions affines

Equations, inéquations et fonctions affines Equations, inéquations et fonctions affines A) Fonctions affines 1 Définition d une fonction affine Définition : f est une fonction affine, si et seulement si, il existe deux réels a et b tels que : pour

Plus en détail

Exercices supplémentaires : Complexes

Exercices supplémentaires : Complexes Exercices supplémentaires : Complexes Partie A : Calculs et propriétés algébriques Exercice 1 Ecrire sous forme algébrique les nombres complexes suivants : 1 3 2 5 7 4 1 4 1 2 2 7 5 1 1 1 3 2 1 3 2 8 1

Plus en détail

Exercices : Étude de fonctions

Exercices : Étude de fonctions Eercices : Étude de fonctions Eercice : Calculer les limites suivantes : (. lim 3 2 +(ln) 3 ) 0 + 2. lim 3. lim ln(e +) ln 3 2 + 4. lim 5. lim 6. lim 7. lim e 2 3 2 e 3+ (ln) (e 4 3 ) + e2 ln+ ln+e 8.

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Fonctions Remise à Niveau Mathématiques Deuième partie : Fonctions Corrigés des eercices Page sur 0 RAN Fonctions Eercices corrigés - Rev 03 Mathématiques RAN - Fonctions DÉFINITIONS

Plus en détail

Fonction exponentielle TD Année

Fonction exponentielle TD Année Fonction exponentielle TD Année 009-010 Exercice 1 Sans l aide de la calculatrice, simplifier les nombres suivants : 1. ln(e 5 ) 3. ln( 5. eln+ln3. e ln7 4. e ln4 1 ) e 3 Exercice En utilisant notamment

Plus en détail

Etude de la fonction logarithme

Etude de la fonction logarithme Etude de la fonction logarithme Après un bref rappel des résultats vus dans le module de définition des fonctions logarithmes, nous menons l étude approfondie de la fonction logarithme népérien. 1/ Rappels

Plus en détail

La formule de Taylor et les développements limités

La formule de Taylor et les développements limités La formule de Taylor et les développements ités I) La formule f de Taylor 1.1 ) Formule de Taylor avec reste intégral On considère une fonction de classe (c est-à-dire 1 fois dérivables et à dérivées continues,

Plus en détail

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan.

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. Polynésie juin 005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. 1 a) Déterminer les limites de la fonction aux bornes de

Plus en détail

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln Eercice ) f ( ) = ln ; f () = ln + ) ln ln ln f ( ) = ; f () = = ² ² ) f ( ) = ( ln ) 4 ; f () = 4 ( ln ) 4) f ( ) = ; f () = = ln ln ² ln ² ) ( ln + ) ( ln ) ln f ( ) = ; f () = = ln + (ln + )² ( ln +

Plus en détail

Chapitre 9. La fonction exponentielle

Chapitre 9. La fonction exponentielle Chapitre 9. La fonction exponentielle Le chapitre sur la fonction exponentielle est quasiment indissociable du chapitre suivant sur la fonction logarithme népérien. I. Définition de la fonction exponentielle

Plus en détail

DERIVATION. ou f'(x 0 ) = lim. h 0

DERIVATION. ou f'(x 0 ) = lim. h 0 DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

EXERCICES VARIATIONS DE FONCTION

EXERCICES VARIATIONS DE FONCTION EXERCICES VARIATIONS DE FONCTION I ) Racine carré Exercice 1 : On a représenté graphiquement dans un repère les fonctions f, g, h et k définies par : f (x)= x+ 2 g (x)= 2 x h(x)= x 2 k(x)= x 2 + 1 Associer

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

REVISIONS POUR LES VACANCES. Généralités sur les fonctions

REVISIONS POUR LES VACANCES. Généralités sur les fonctions Année 2016-2017 PCSI ( Baggio ) REVISIONS POUR LES VACANCES Vous devez connaître parfaitement tous les résultats donnés ici sur les généralités de fonctions, sur les fonctions exponentielles et logarithmes

Plus en détail

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H S DEVOIR DE MATHEMATIQUES N SUJET A 5/0/0 H Nom prénom Exercice : Soit q un réel différent de,prouver l égalité : points + q + q + q 3 +...q n = qn+ q Exercice :. Calculer la somme des 00 premiers multiples

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES LIMITES EXERIES ORRIGES Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) 4 ) Déterminer la ite éventuelle en de chacune des onctions suivantes : 4) 5) 5 6) Déterminez les

Plus en détail

[ 9;7 ] et représentée graphiquement. Contrôle du 16 octobre (durée : 2h ) Sujet A /20. Nom : Prénom : Terminale S T08 Appréciation :

[ 9;7 ] et représentée graphiquement. Contrôle du 16 octobre (durée : 2h ) Sujet A /20. Nom : Prénom : Terminale S T08 Appréciation : Nom : Prénom : Terminale S T08 Appréciation : Contrôle du 16 octobre (durée : 2h ) Sujet A /20 Evaluation des compétences : Lecture graphique Limites Lecture graphique Dérivée Tracer une courbe, ses tangentes

Plus en détail

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en Chaudronnerie Industrielle Chapitre Fonctions de référence...3 I Fonctions affines...3 a) Signe d'une fonction affine...3 II

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

1. Généralités sur les fonctions et fonctions polynômes

1. Généralités sur les fonctions et fonctions polynômes Comment faire pour Généralités sur les fonctions et fonctions polnômes86 Repérage 88 Dérivation90 Comportements asmptotiques et étude de fonctions9 5 Calcul vectoriel et barcentre 96 6 Produit scalaire

Plus en détail

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes 1. Fonction du second degré 1.1 Définition Une fonction f définie sur R dont l expression peut se mettre sous la forme = ax 2 +bx +c (où a, b et c sont des réels avec a non nul) est une fonction du second

Plus en détail

Correction-Devoir maison n 8

Correction-Devoir maison n 8 Classe de TS2 pour le 4 novembre 20 Exercice : A - Étude d une fonction On considère la fonction f définie sur R par : Correction-Devoir maison n 8 f(x) = (x+)e x. On note (C) sa représentation graphique

Plus en détail

I Exercices I I I I I I I I I I I I I-4

I Exercices I I I I I I I I I I I I I-4 Chapitre 6 Logarithme TABLE DES MATIÈRES page -1 Chapitre 6 Logarithme Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

Chapitre 5 - Fonction logarithme népérien

Chapitre 5 - Fonction logarithme népérien Chapitre 5 - Fonction logarithme népérien I La fonction logarithme népérien TD1 : Fonction exponentielle et réciproque 1. Soit f la fonction définie sur R par f(x) = e x. On note C f sa courbe représentative.

Plus en détail

ou = La solution à retenir étant bien évidemment celle qui est positive.ainsi = 1+ 5

ou = La solution à retenir étant bien évidemment celle qui est positive.ainsi = 1+ 5 Terminale S Correction du Devoir Surveillé n 5 Exercice 1 : Partie A : Le Nombre d Or 1. =1+ 1+1+ 1+ =1+φ. On obtient l équation du second degré φ 1=0 Le discriminant est = 4=1 4 1 1=5 Il y a donc deux

Plus en détail

DS 9 Correction EXERCICE Etude d'une fonction auxiliaire.

DS 9 Correction EXERCICE Etude d'une fonction auxiliaire. DS 9 Correction EXERCICE On considère la fonction déterminée sur 0, par : ln On se propose dans cet exercice d'étudier la fonction et de la représenter relativement à un repère orthonormal,,, l'unité choisie

Plus en détail

Devoir de Mathématiques 1 : corrigé

Devoir de Mathématiques 1 : corrigé PCSI 0-04 Mathématiques Lycée Bertran de Born Devoir de Mathématiques : corrigé Exercice. Résolutions d inéquations (a) Disjonction de cas selon le signe de x. Si x [, ] alors x = x. Dans ce cas : x x

Plus en détail

e x lim f k (x) = (x + 1)e kx.

e x lim f k (x) = (x + 1)e kx. EXERCICE 4 (7 points ) (Commun à tous les candidats) Partie A. Restitution organisée de connaissances On suppose connu le résultat suivant : Démontrer que lim x + xe x =. e x lim x + x = +. Partie B. Restitution

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier.......................................... Fonctions affines............................................

Plus en détail

Chapitre XI : Fonction Logarithme Népérien

Chapitre XI : Fonction Logarithme Népérien Chapitre XI : Fonction Logarithme Népérien I : Définition I- : Fonction réciproque Définition : On appelle fonction logarithme népérien la fonction qui à tout réel strictement positif x associe l unique

Plus en détail

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2 Sujet Amérique du Nord 2013 EXERCICE 1. [5 pts] Géométrie On se place dans l espace muni d un repère orthonormé. On considère les points A(0 ; 4 ; 1), B(1 ; 3 ; 0), C(2 ; 1 ; 2) et D(7 ; 1 ; 4). 1. Démontrer

Plus en détail

1) Existe-t-il une position de M telle que l aire de la surface rose pale soit

1) Existe-t-il une position de M telle que l aire de la surface rose pale soit Exercice 1 : On considère un demi-cercle de diamètre AB = 5. M est un point du segment [AB]. On construit les demi-cercles de diamètres [AM] et [MB] comme l indique la figure ci-dessous. 1) Existe-t-il

Plus en détail

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques Classe de terminale ES Mathématiques Sujet abordé : exponentielle (lecture graphique) Exercice (BAC ES national ). Un nouveau modèle de mini-ordinateur portable est mis sur le marché. Soit x la quantité

Plus en détail

La fonction logarithme

La fonction logarithme La fonction logarithme Table des matières La fonction logarithme népérien. Fonction réciproque d une fonction monotone............. Définition................................. 3.3 Représentation de la

Plus en détail

Première S Exercices Comportements asymptotiques - études de fonction

Première S Exercices Comportements asymptotiques - études de fonction Exercices Comportements asymptotiques - études de fonction Exercice 1 : Recherche d'asymptote f est la fonction définie sur ]-2;+ [ par : f(x) = -x² + x + 3 x + 2 a) Déterminer trois réels a,b et c tels

Plus en détail

ÉQUATIONS et INÉQUATIONS

ÉQUATIONS et INÉQUATIONS ÉQUATIONS et INÉQUATIONS 1. Équations 1) Vocabulaire Une équation est une égalité dans laquelle figure une quantité inconnue (ou plusieurs). On désigne cette quantité inconnue par des lettres (x, y,...).

Plus en détail

Fonction exponentielle Résolutions d équations Exercices corrigés

Fonction exponentielle Résolutions d équations Exercices corrigés Fonction exponentielle Résolutions d équations Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : résoudre une équation de la forme Exercice 2

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Table des matières La fonction réciproque de la fonction eponentielle 2. Définition......................................................... 2.2 Propriété.........................................................

Plus en détail

2_ limites en, + en 3 en en + 5_ Ω ( 3)

2_ limites en, + en 3 en en + 5_ Ω ( 3) Exercice n 1. La fonction f est définie par f (x)= x2 +3 x 1 Méthode. On commence par tracer la fonction sur la calculatrice et on conjecture les réponses. Attention. N'oubliez pas les parenthèses en écrivant

Plus en détail

Fonction exponentielle

Fonction exponentielle Propriétés algébriques Exercice 1 Ecrire sous la forme d une puissance de les expressions suivantes : a) e7 e 2 b) (e-1 ) 4 c) (exp(e e 2 )) -3 d) e 2 exp(-3) e) e -3 exp(2) f) exp(1) exp(-2) Exercice

Plus en détail

Chapitre 2 : Limites et asymptotes

Chapitre 2 : Limites et asymptotes I Eercices 1 Limites sans indétermination Calculer les ites des fonctions suivantes, et préciser lorsque la courbe représentative de f (notée (C f )) admet une asymptote horizontale ou verticale. 1. f()

Plus en détail

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique

Plus en détail

NOM : Terminale ES Devoir n 9 Mardi 19 mai 2015

NOM : Terminale ES Devoir n 9 Mardi 19 mai 2015 NOM : Terminale ES Devoir n 9 Mardi 9 mai 5 Eercice. QCM sur 4 points Cet eercice est un questionnaire à choi multiples. Chaque question ci-après comporte quatre propositions de réponse. Pour chacune de

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

grouper les termes par puissances décroissantes de x : on ne doit avoir qu'un

grouper les termes par puissances décroissantes de x : on ne doit avoir qu'un Méthode 1 Développer et réduire une expression. Pour développer et réduire une expression repérer les parenthèses de l'expression traiter les opérations par ordre de priorité grouper les termes par puissances

Plus en détail

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé TS. Contrôle 4 -Correction 8 points ) Sur le graphique de l annee, on a tracé, dans le plan muni d un repère orthonormé la courbe représentative C d une fonction f définie et dérivable sur l intervalle

Plus en détail

NOM : DERIVATION 1ère S

NOM : DERIVATION 1ère S Exercice Dériver les fonctions suivantes : f(x) = x g(x) = 3x x 3 + 5x h(x) = ( x ) x k(x) = x + 5 x + D. LE FUR /?? Exercice Dériver les fonctions suivantes : f(x) = x 3x + g(x) = (x + 3)(3x 7) h(x) =

Plus en détail

x² - 6x = (x - )² - x² + 4x = (x + )² - x² + 8x = ( )² - x² + 3x = ( )² -

x² - 6x = (x - )² - x² + 4x = (x + )² - x² + 8x = ( )² - x² + 3x = ( )² - 1 ère ES1 Le second degré Introduction à la factorisation feuille n 1 Partie 1 : correction 1) Factoriser les expressions suivantes : x² - 8x + 16 x² + 6x + 9 16x² - 81 ( 4x 1 )² - 9 ( 2x 1 )² - ( x +

Plus en détail

2 : LIMITE ET CONTINUITE

2 : LIMITE ET CONTINUITE : LIMITE ET CONTINUITE LISTE DES COMPTENCES CODE L0 L0 L0 L04 L05 L06 L07 L08 L09 L0 DENOMINATION Savoir calculer la ite en un point d un monôme Savoir calculer la ite en l infini d un monôme Savoir calculer

Plus en détail

Relation d ordre et inéquation

Relation d ordre et inéquation I Ordre et comparaison : Relation d ordre et inéquation Comparer deux réels a et b, c est chercher lequel des deux est le plus grand ou s ils sont égaux. Propriété : Dire que a est strictement plus petit

Plus en détail

Fonction logarithme népérien.

Fonction logarithme népérien. 1. Généralités... p2 2. Propriété fondamentale de ln... p5 3. Étude et représentation graphique de la fonction logarithme népérien... p10 Copyright meilleurenmaths.com. Tous droits réservés 1. Généralités

Plus en détail

LPP ALBERT DE MUN B TRUCHETET 1/8

LPP ALBERT DE MUN B TRUCHETET 1/8 1/8 Limites de fonctions ln Dans les eercices suivants calculer les limites proposées Eercice 1 lim (ln 1) + Eercice lim (ln + ) + Eercice 3 lim ( ln ) + Eercice 4 4ln+ 3 lim ( ) + ln Eercice 5 lim (ln

Plus en détail

TES/TL spé maths Eléments de correction du Bac Blanc n 1 Jeudi 18 décembre 2014

TES/TL spé maths Eléments de correction du Bac Blanc n 1 Jeudi 18 décembre 2014 TES/TL spé maths Eléments de correction du Bac Blanc n Jeudi 8 décembre 4 Calculatrice autorisée - Aucun document n'est autorisé. Exercice. (5 points) Le barème est noté sur points. Partie : Fonctions

Plus en détail

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0 Théorème : Soit f une fonction définie sur un intervalle de IR, C la courbe représentative de f et x un élément de I. Si f est croissante sur un intervalle, alors f (x )> sur cet intervalle. Si f est décroissante

Plus en détail

Exercices supplémentaires : Application de la dérivation

Exercices supplémentaires : Application de la dérivation Exercices supplémentaires : Application la dérivation Partie A : On donne les courbes quatre fonctions en rouge et celles leurs dérivées en bleu. Associer chaque fonction à sa dérivée. Justifier. Dans

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien Introduction La fonction eponentielle est continue strictement croissante de R à valeurs dans ]0; + [. Le théorème des valeurs intermédiaires permet donc d affirmer que : Pour

Plus en détail

Concours externe pour le recrutement de contrôleurs stagiaires de l INSEE

Concours externe pour le recrutement de contrôleurs stagiaires de l INSEE Concours externe pour le recrutement de contrôleurs stagiaires de l INSEE Exercice 1 Partie A Correction (non officielle) de l épreuve de Mathématiques et de Statistiques du 29/01/2013 Nicolas ZERR 1)

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

Analyse 1 re année IUT GEA Notes de cours

Analyse 1 re année IUT GEA Notes de cours Analyse re année IUT GEA Notes de cours Jean-Marie Favreau Année 200 20 Remarque : l introduction de ce cours, présentée en quelques minutes, de manière interactive, permet de placer quelques rappels simples,

Plus en détail

Chapitre 4. Fonction exponentielle. Objectifs du chapitre : item références auto évaluation. propriétés numériques de la fonction exponentielle

Chapitre 4. Fonction exponentielle. Objectifs du chapitre : item références auto évaluation. propriétés numériques de la fonction exponentielle Chapitre 4 Fonction exponentielle Objectifs du chapitre : item références auto évaluation propriétés numériques de la fonction exponentielle propriétés de la fonction exponentielle calculs de ites avec

Plus en détail