Comportement asymptotique

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Comportement asymptotique"

Transcription

1 Comportemet asymptotique NB: Les phrases écrites etre guillemets e italique sot écessaires à la compréhesio de la otio de ite, mais sot peu utilisées das la pratique où l o fait plutôt appel au propriétés des ites des foctios usuelles aisi qu au théorèmes cocerat les ites et les opératios. I) Limite e + Cela écessite que la foctio soit défiie sur u itervalle du type : [ a ; + [. ) Limite ifiie e + f () = + sigifie que : «f() deviet plus grad que importe quel ombre fié à l avace, à coditio de choisir suffisammet grad..» Ce que l o peut aussi éocer sous la forme : «Pour tout réel b (aussi grad que l o veut), l itervalle [ b ; + [ cotiet toutes les images f() lorsque est suffisammet grad.» Eemples : Les foctios usuelles,, d eposat etier strictemet positif, aisi que les foctios lorsque ted vers +. et toutes les foctios puissaces, ot pour ite + f () = Eemples : Les foctios lorsque ted vers +. sigifie que: [ f ()] = +,,,, ot pour ite ) Limite fiie e + f () = l où l r sigifie que : «f() deviet aussi proche que l o veut du ombre l, à ue distace fiée à l avace aussi petite que l o veut, à coditio de choisir suffisammet grad.» Ce que l o peut aussi éocer sous la forme : «Tout itervalle ouvert coteat l cotiet toutes les images f() lorsque est suffisammet grad..» Eemples : Les foctios suivates ot pour ite e + :,,. Il e est de même pour toutes les foctios iverses des foctios puissaces d eposat etier strictemet positif et pour les foctios:,. NB : Les résultats cocerat les ites des foctios usuelles doées das les eemples ci-dessus sot à coaître par cœur. Ceu pour lesquels la ite est peuvet être utilisés pour ue ite l r grâce au théorème (évidet) éocé page suivate : B.Sicard - E:\math\Cours\S\ites\comportemet_asymptotique.doc - -

2 Théorème : f () =l équivaut à : [ f () l ] = Qui peut aussi s eprimer : f () =l équivaut à : f () =l + ϕ() où ϕ est ue foctio telle que : ϕ() = Eemple : + = car : =. Das cet eemple : f () = +, ϕ ( ) = et l =. ) Pas de ite e +. Ue foctio a pas écessairemet de ite e +. Eemple : si a pas de ite e + car : La foctio sius est borée (majoré par et mioré par ) : elle e peut avoir i +, i comme ite e +. De plus, sur tout itervalle d amplitude π, si pred toutes les valeurs réelles etre et, doc, même pour aussi grad que l o veut, si e peut de rapprocher d aucue valeur fiie à cause de so oscillatio perpétuelle etre et. II) Limite e Cela écessite que la foctio soit défiie sur u itervalle du type : ] ; a ] O peut éocer des défiitios aalogues au I), mais aussi s y rameer, grâce à la propriété : f () = [ f ( ) ] Remarque : Si la foctio f est paire ou impaire, la coclusio est immédiate! Eemples : Les foctios usuelles, et toutes les foctios puissaces d eposat impair strictemet positif, ot pour ite lorsque ted vers. 4 Les foctios usuelles, et toutes les foctios puissaces d eposat pair strictemet positif, aisi que la foctio ot pour ite + lorsque ted vers. Les foctios,, et toutes les foctios iverses des foctios puissaces d eposat etier strictemet positif, aisi que la foctio ot pour ite lorsque ted vers. B.Sicard - E:\math\Cours\S\ites\comportemet_asymptotique.doc - -

3 III) Asymptote horizotale Das u repère (O, i, j ), si (C) est la courbe d équatio y = f(), et (D) la droite d équatio y =l, la distace MN etre u poit M de (C) et u poit N de (D) de même abscisse est : MN = f () l. Si f( ) =l, alors cette distace MN a pour ite e +. Vocabulaire : Si f () = a, la droite d équatio y = a est asymptote horizotale à(c) e +. Si f () = a, la droite d équatio y = a est asymptote horizotale à(c) e. Eemple : E et e +, o a: = =. Doc, l ae des abscisses d équatio y = est asymptote à l hyperbole d équatio : y = IV) Asymptote oblique Das u repère (O, i, j ), si (C) est la courbe d équatio y = f(), et (D) la droite d équatio y = a + b, la distace MN etre u poit M de (C) et u poit N de (D) de même abscisse est : MN= f() (a +b). Si [f () (a + b)] =, alors cette distace MN a pour ite e Vocabulaire : Si [f () (a + b)] =, la droite d équatio y = a + b est asymptote oblique à(c) e +. Si [f () (a + b)] =, la droite d équatio y = a + b est asymptote oblique à(c) e. Eemple: f est la foctio défiie sur r * par : f () = Sa représetatio graphique est la courbe (C) ci-cotre. E poitillés est tracée la droite (D) d équatio y =. O sait que : = = + Doc, la droite (D) d'équatio y = est asymptote oblique à la courbe (C) représetative de f e + et e. B.Sicard - E:\math\Cours\S\ites\comportemet_asymptotique.doc - -

4 V) Limite e u poit (ite e u réel a) Cela écessite que la foctio soit défiie pour = a, ou, sio, que le ombre a soit l ue des bores d u itervalle où la foctio est défiie. ) Limite ifiie e u poit a r : f() = + sigifie que: a «f() deviet plus grad que importe quel ombre réel fié à l avace, à coditio de choisir suffisammet proche de a.» Ce que l o peut aussi éocer sous la forme : «Pour tout réel b (aussi grad que l o veut), l itervalle [ b ; + [ cotiet toutes les images f() lorsque est suffisammet proche de a.» Das ce cas, la foctio est pas défiie e = a ( car + est pas u ombre ), et l o est souvet obligé d étudier séparémet les ites à gauche ou à droite de a. Propriétés (admises) : = + > > = + et plus gééralemet : = + où *. > > = +. = + et plus gééralemet, lorsque N* avec pair : = +. < < = + = +, car la ite est la même à gauche et à droite. De même, lorsque * avec pair : = + et = +. = +, car le problème de la ite à gauche e se pose pas das ce cas-là!.. < f() = sigifie que: a «f() deviet iférieur à importe quel ombre réel fié à l avace, à coditio de choisir suffisammet proche de a.» Ce que l o peut aussi éocer sous la forme : «Pour tout réel b (aussi petit que l o veut), l itervalle ] ; b [ cotiet toutes les images f() lorsque est suffisammet proche de a.» Propriété : [ f()] = a Doc : = < équivaut à : [ f() ] = + car a = < > = B.Sicard - E:\math\Cours\S\ites\comportemet_asymptotique.doc De même, lorsque * avec impair : =. <.

5 ) Limite fiie e u poit a r: f( ) =l où l r sigifie que : a «f() deviet aussi proche que l o veut du ombre l, à ue distace fiée à l avace aussi petite que l o veut, à coditio de choisir suffisammet proche de a.» Ce que l o peut aussi éocer sous la forme : «Tout itervalle ouvert coteat l cotiet toutes les images f() lorsque est suffisammet proche de a..» a) Si f est défiie e a r. Propriété (admise): Si ue foctio f est défiie sur u itervalle coteat a R, Si f est ue foctio polyôme, ratioelle, irratioelle, valeur absolue, trigoométrique.. (catégorie des foctios cotiues : programme de TS), Alors : f() = f(a) a Eemple: f() = défiie sur r (foctio polyôme) avec f() = 9. Doc : ( ) = 9 b) Si f est pas défiie e a r. Propriété (admise): Si f est ue foctio qui est pas défiie e = a, mais telle que, pour tout réel de so esemble de défiitio o ait f() = g() où g est ue foctio défiie e = a et du même type de celles de la propriété ci-dessus, Alors : f() g() = g(a) a = a Eemple: Si f est défiie sur r {} par : f () = et g() = +. Pour tout r {}, o a f() = g() et g est défiie sur r, doc e =. Doc : f() = g() = g() = Remarque : cette propriété ituitive a été implicitemet utilisée lors de l étude des ombres dérivés. ) Pas de ite e u poit : O peut avoir: Ue ite à gauche et ue ite à droite différetes. Pas de ite du tout ( Ni à gauche, i à droite). Notatios: Lorsque ces ites eistet, o écrit: Limite à gauche de a: f() a < a a > a abrégée parfois e: Limite à droite de a: f() abrégée parfois e: a a + f() f() B.Sicard - E:\math\Cours\S\ites\comportemet_asymptotique.doc - 5 -

6 Eemple: La foctio f est défiie sur r {} par: f() =. Pour tout ] ; [, o a : f() = et pour tout ] ; + [, o a : f() = +. O a doc : f () = ( ) = < < et f () = ( + ) =. Les ite de f à gauche et à droite de sot doc différetes. La foctio a doc pas de ite e. Le graphique ci-dessous illustre cette situatio. > > Eemple: La foctio f est défiie sur r* par: f() = si. Lorsque ted vers zéro par valeurs positives, pred des valeurs de plus e plus grades. Mais, sur tout itervalle d amplitude π, la foctio sius pred toutes les valeurs réelles de l itervalle [ ; ]. Aisi, f() pred toutes les valeurs réelles de l itervalle [ ; ] lorsque ted vers zéro. f() e ted doc vers aucue valeur réelle de cet itervalle [ ; ]. Afi d observer ce phéomèe, faire des zooms successifs au voisiage de zéro sur votre calculatrice graphique. VI) Asymptote verticale Das u repère orthoormal (O, i, j), lorsqu ue foctio f admet ue ite ifiie (,+, à gauche, à droite, ou des deu côtés ) e u poit a r, o dit que : La droite d équatio = a est asymptote verticale à la courbe représetative de la foctio f. Das u repère orthoormal (O, i, j), la droite d équatio = a est doc asymptote verticale à la courbe représetative de la foctio f das chacu des cas suivats : f() = + a ou f() = a ou f() = + a a ou > a a > f() = ou f() = + a a ou < a a < f() = Eemple: L ae des ordoées ( d équatio = ) est asymptote verticale au courbes représetatives des foctios : où *, c est à dire au représetatios graphiques des foctios iverses des puissaces d eposat etier strictemet positif. B.Sicard - E:\math\Cours\S\ites\comportemet_asymptotique.doc - 6 -

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

DÉRIVÉES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako

DÉRIVÉES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako DÉRIVÉES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Techique Bamako I- Foctio dérivable e u poit : Nombre dérivé d ue foctio e u poit : a Défiitio : O dit qu ue foctio f est dérivable

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES ) PUISSANCES D'EXPOSANTS REELS A ) La otatio a Si est u etier aturel, la otatio a a u ses pour tout réel a Das le cas où est u

Plus en détail

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI Ξ 2 Suites umériques 2016-2017 Résumé du cours de MPSI I/ Défiitio, propriétés globales 1/ Défiitio Ue suite de complexes u est ue applicatio de N das C Notatios : L'image d'u etier par u se ote u( ou

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Propriété Limites de suites convergentes usuelles. 1 lim 0 où k *

Propriété Limites de suites convergentes usuelles. 1 lim 0 où k * SUITES NUMERIQUES Le pricipe de récrrece Soit e propositio P dépedat d etier atrel. Por démotrer qe P est raie por tot etier 0, il sffit de motrer qe : La propositio est raie a rag 0 ; por etier qelcoqe

Plus en détail

I- Nombre dérivé de f en a

I- Nombre dérivé de f en a I- Nombre dérivé de f e a Défiitio 1: Soit f ue foctio défiie sur u itervalle I, a I et h R* tel que a+h I f est dérivable e a I, si, et seulemet si, ( a + h) f ( a) Cette limite est le ombre dérivé de

Plus en détail

Chapitre 4 Séries trigonométriques

Chapitre 4 Séries trigonométriques MVA Aalyse et calcul matriciel Chapitre 4 Séries trigoométriques Foctios périodiques Soit f ue foctio défiie sur R. Le ombre θ est ue période de f si f (t + θ) = f (t) quel que soit t R. Quad f admet ue

Plus en détail

2. Correction : Limites, continuité, dérivabilité

2. Correction : Limites, continuité, dérivabilité Correctio : Limites, cotiuité, dérivabilité Exercices de base U algorithme a est la valeur de la variable x pour laquelle o cherche ( x ), p est la précisio utilisée das le calcul : plus o avace das la

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

12 Cours - Suites.nb 1/11. Suites

12 Cours - Suites.nb 1/11. Suites 12 Cours - Suites.b 1/11 Suites I) Gééralités 1) Défiitio 2) Notatio 3) Commet peut être défiie ue suite 4) Suites et ordre 5) Propriété vraie à partir d u certai rag 6) Exercice 7) Suites arithmétiques,

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

Fiche 6 : Nombres complexes

Fiche 6 : Nombres complexes Nº : 3006 Fiche 6 : Nombres complexes Pla de la fiche I - Esemble des ombres complexes II - Nombre complexe cojugué III - Module et argumet IV - Les différetes écritures d u ombre complexe o ul V - Equatio

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

Chapitre 1 METHODES SUR LES SUITES

Chapitre 1 METHODES SUR LES SUITES Chapitre 1 METHODES SUR LES SUITES Nous allos voir commet : 1) Cojecturer le comportemet d ue suite ) Raisoer par récurrece 3) Utiliser les suites arithmétiques et géométriques 4) Étudier le comportemet

Plus en détail

CHAPITRE IV. Rappels et compléments sur les suites

CHAPITRE IV. Rappels et compléments sur les suites CHPITRE IV Rappels et complémets sur les suites SUITES NUMÉRIQUES 1 Sommaire I Notio de suite...................................... 30 Exemples.......................................... 30 B Défiitio..........................................

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

Synthèse de cours PanaMaths (TS) Suites numériques

Synthèse de cours PanaMaths (TS) Suites numériques Sythèse de cours PaaMaths (TS) Suites umériques Das ce chapitre, le terme «suite» désige ue suite umérique (c'est-à-dire, das le cadre du programme de Termiale S, ue suite de réels). Ue telle suite sera

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique.

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique. Suites 6 AU CŒUR DE LA TOILE Objectif Notios utilisées Traduire, à l aide d ue suite, u processus géométrique itératif et redre compte de so évolutio. Mettre e place les premiers pricipes d étude d ue

Plus en détail

Sommaire. 2. Séries réelles ou complexes. Méthodes : L essentiel ; mise en œuvre

Sommaire. 2. Séries réelles ou complexes. Méthodes : L essentiel ; mise en œuvre 1. Espaces vectoriels ormés A. Normes et distaces............. 8 B. Étude locale des applicatios Cotiuité..... 19 C. Cotiuité des applicatios liéaires....... 25 D. Espaces vectoriels ormés de dimesio fiie...

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Suites. =3v n pour = 5.

Suites. =3v n pour = 5. Suites 1 Gééralités 11 Défiitio Défiitio : O appelle suite ue foctio sur N ou sur ue partie de N das R Exemples: Les foctios: u : +1 ; v : sot des suites Notatio : Soit u ue suite défiie sur D partie de

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

Définition un nombre complexe est un nombre de la forme x + i y, où x et y sont deux nombres réels et i est un nombre imaginaire vérifiant i 2 = 1.

Définition un nombre complexe est un nombre de la forme x + i y, où x et y sont deux nombres réels et i est un nombre imaginaire vérifiant i 2 = 1. Nombres complexes TS 1. Nombre complexe Représetatio Défiitio u ombre complexe est u ombre de la forme x + i y, où x et y sot deux ombres réels et i est u ombre imagiaire vérifiat i = 1. L esemble des

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

MATHEMATIQUES 2. Fonctions de matrices

MATHEMATIQUES 2. Fonctions de matrices SESSION 2004 EPREUVE SPECIFIQUE FILIERE MP MTHEMTIQUES 2 Durée : 4 heures Les calculatrices sot iterdites * * * NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio

Plus en détail

Statistiques à deux variables

Statistiques à deux variables Statistiques à deux variables. Approche des séries statistiques à deux variables.. Nuage de poits Sur ue classe de BTSA, le professeur a relevé les moyees de élèves e mathématiques et e agroomie. Les otes

Plus en détail

Comportement d une suite

Comportement d une suite CHAPITRE 6 Comportemet d ue suite ACTIVITÉS Activité L aire ajoutée (celle d u carré compese exactemet l aire elevée a p 6 ; p 5 ; p 6 6 b La suite (p est géométrique de raiso car la logueur de la lige

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

3. Propriétés fondamentales des nombres réels

3. Propriétés fondamentales des nombres réels CQFD 5 e : corrigé (6P/S) http://maths.deboeck.com De Boeck Educatio s.a., 04. Propriétés fodametales des ombres réels Epliciter les savoirs et les procédures. Eiste-t-il? Supposos u il eiste a R 0 : R

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 7 Ce sujet comporte 7 pages umérotées de 1 à 7 Ce sujet écessite l utilisatio d ue feuille de papier

Plus en détail

Chapitre A1 - Nombres - récurrences - Sommes. Table des matières

Chapitre A1 - Nombres - récurrences - Sommes. Table des matières Chapitre A1 - Nombres - récurreces - Sommes Table des matières 1 Esembles de ombres 2 1.1 Déitios................................................... 2 1.2 Itervalles d'etiers..............................................

Plus en détail

Fiche Diagonalisation des Matrices 2x2

Fiche Diagonalisation des Matrices 2x2 Fiche Diagoalisatio des Matrices x MOSE 1003 4 Septembre 014 Table des matières Motivatio, puissaces d ue matrice 1 Diagoalisatio Vérificatio avec Scilab 3 Puissace 4 Motivatio, puissaces d ue matrice

Plus en détail

MVA101 - Analyse et calcul matriciel T. Horsin

MVA101 - Analyse et calcul matriciel T. Horsin MVA101 - Aalyse et calcul matriciel 2012 2013 T. Horsi (thierry.horsi@cam.fr) Attetio: Ce documet est ue base de travail qui peut coteir des coquilles. Les zoes e bleus sot, de loi, hors programme, et

Plus en détail

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé Bac blac TS No spécialité maths L usage de la calculatrice est autorisé EXERCICE : (5 poits) Le pla complee est rapporté au repère orthoormal direct (O ; u, v ) O cosidère le poit I d affie i et le poit

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

Chapitre 5 : Suites classiques

Chapitre 5 : Suites classiques Chapitre 5 : Suites classiques Objectifs : Révisios sur les suites arithmétiques et géométriques. Révisio du théorème de croissace comparée. Savoir exprimer e foctio de les termes d ue suite récurrete

Plus en détail

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence Chapitre 1 Déombremet Objectifs du chapitre 1. A travers l axiomatisatio de Peao de N, rappeller les pricipes de récurrece forte et faible. 2. Défiir la otio de cardial et les opératios sur les cardiaux.

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

CH5 Algèbre : Suites numériques

CH5 Algèbre : Suites numériques ème Scieces CH5 Algèbre : Suites umériques Décembre 9 A LAATAOUI I Présetatio des suites umériques : Défiitio d ue suite : Ue suite (u ) est ue foctio défiie sur l'esemble N qui à tout etier aturel associe

Plus en détail

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013 Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, 202/203 ANALYSE 2 Fiche de Mathématiques 4 - Séries umériques Soit E u espace vectoriel sur le corps K = R ou C Pour toute famille fiie

Plus en détail

Séries entières. Préparation au Capes de Mathématiques

Séries entières. Préparation au Capes de Mathématiques Séries etières Préparatio au Capes de Mathématiques I - Covergece des séries etières Notatios Pour tout élémet r de R +, o ote D r = fz 2 C / jzj < rg et D r = fz 2 C / jzj rg Déitio 1 O appelle série

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

Sommaire. Chapitre 1. Notions de base Chapitre 2. Nombres complexes Polynômes... 33

Sommaire. Chapitre 1. Notions de base Chapitre 2. Nombres complexes Polynômes... 33 Sommaire Chapitre. Notios de base.................... 7 A. Démostratio par récurrece..................... 8 B. Esembles............................. 9 C. Applicatios............................ 2 D. Calcul

Plus en détail

TS Exercices sur les limites de suites (1)

TS Exercices sur les limites de suites (1) TS Exercices sur les limites de suites () Soit u ue suite géométrique de premier terme u 0 et de raiso q. Das chacu des cas suivats, doer la limite de la suite u. ) u0 ; q ) u 0 ; q ) 0 4 ) u0 6 ; q )

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2016

Baccalauréat S Centres étrangers 10 juin 2016 Baccalauréat S Cetres étragers 0 jui 206 Exercice I (4 poits) Pour chacue des quatre affirmatios suivates, idiquer si elle est vraie ou fausse, e justifiat la répose. il est attribué u poit par répose

Plus en détail

FONDEMENTS MATHÉMATIQUES ET MATHÉMATIQUES PRÉ-CALCUL 10 E ANNÉE. Mesure

FONDEMENTS MATHÉMATIQUES ET MATHÉMATIQUES PRÉ-CALCUL 10 E ANNÉE. Mesure FONDEMENTS MATHÉMATIQUES ET MATHÉMATIQUES PRÉ-CALCUL 10 E ANNÉE [C] Commuicatio [CE] Calcul metal et estimatio Mesure 1. Résoudre des problèmes comportat la mesure liéaire à l aide : d uités de mesure

Plus en détail

SERIES NUMERIQUES réelles ou complexes

SERIES NUMERIQUES réelles ou complexes UE7 - MA5 : Aalyse SERIES NUMERIQUES réelles ou complexes I. Gééralités Défiitio Etat doée ue suite (u ) de ombres réels ou complexes, o appelle série de terme gééral u la suite (S ) défiie par : () S

Plus en détail

Corrigé : EM Lyon 2005

Corrigé : EM Lyon 2005 Corrigé : EM Lyo 5 Optio écoomique Eercice :. Par défiitio de E, la famille (I,J,K) est ue famille géératrice de E. Cette famille est-elle libre? O cherche tous les réels a, b et c tels que : ai +bj +ck

Plus en détail

IV. La fonction logarithme népérien

IV. La fonction logarithme népérien 04_fct _LDOC /5 IV La foctio logarithme épérie / Défiitio et premières propriétés a) Défiitio La foctio logarithme épérie, otée l est l uique foctio défiie sur ]0; [ dot la dérivée est et qui s aule e

Plus en détail

Introduction aux tests statistiques

Introduction aux tests statistiques Itroductio aux tests statistiques Philippe Boeau 27 septembre 2006 Chapitre 1 Élémets de probabilités Exercice 1 O ote E l esemble des etiers aturels iférieurs ou égaux à 12 et A (respectivemet B et C)

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 )

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 ) Exercice Suites umériques u O cosidère la suite ( u ) défiie pour tout par u = et u = + u + O admettra que pour tout etier aturel, u >. a) Calculer u et u b) Cette suite est-elle arithmétique? Est-elle

Plus en détail

X 1 = { X si X est impair 0 sinon

X 1 = { X si X est impair 0 sinon Corrigé ECRICOME 998 par Pierre Veuillez Das tout le problème, X désige ue variable aléatoire défiie sur u espace probabilisé (Ω, A, P et à valeurs das N et E(X l espérace de X si elle eiste. O ote A l

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques «I» : Suites arithmétiques 1/ Défiitio Suites arithmétiques et géométriques La suite (u ) est arithmétique de raiso r sigifie que : Pour tout etier aturel : u +1 = u + r Exemple : La suite ( ; 5 ; 8 ;

Plus en détail

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème Exercices Limites de suites Exercice Limite d ue suite Das les exercices suivats, détermier la limite de la suite (u ) e précisat le théorème utilisé. ) u = + + + + ) u = cos(), N 3) u = + cos 4 3 4) u

Plus en détail

par Robert Rolland n=1

par Robert Rolland n=1 EXEMPLE DE LÉOPOLD FEJÉR par Robert Rollad Résumé. Paul Du Bois-Reymod a doé e 873 u exemple de foctio cotiue périodique dot la série de Fourier diverge au poit. L exemple suivat doé par Léopold Fejér

Plus en détail

Corrigé du baccalauréat ES Asie 23 juin 2016

Corrigé du baccalauréat ES Asie 23 juin 2016 Corrigé du baccalauréat ES Asie jui 16 A.. M. E.. EXERCICE 1 Commu à tous les cadidats 6 poits Das u repère orthoormé du pla, o doe la courbe représetative C f d ue foctio f défiie et dérivable sur l itervalle

Plus en détail

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite.

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite. ECG JP A 00-00 F. FRANZOSI & A. WENGER http://math.aki.ch 5. Défiitio et gééralités Défiitio : Ue suite réelle est ue applicatio de * N das R, doc si U est ue telle suite, o aura : U : N * R U ( ) U U

Plus en détail

MATHEMATIQUES Terminale Scientifique

MATHEMATIQUES Terminale Scientifique MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi e-mail : lescoursi@cours-icom site : htt://wwwcours-icom siège

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

2 Nombre et calcul. = a ; m n m. ( ) = où m et n sont des entiers relatifs où a et b sont des nombres non nuls b et m et n des entiers relatifs.

2 Nombre et calcul. = a ; m n m. ( ) = où m et n sont des entiers relatifs où a et b sont des nombres non nuls b et m et n des entiers relatifs. Nombre et calcul 1. Coaître et utiliser la valeur des chiffres e foctio de leur rag das l'écriture etier ou décimal.. Associer diverses désigatios d u ombre décimal : écriture à virgule, fractios décimales..

Plus en détail

Racines n-ièmes d un nombre complexe. Racines de l unité. Applications.

Racines n-ièmes d un nombre complexe. Racines de l unité. Applications. DOCUMENT 14 Racies -ièmes d u ombre complexe. Racies de l uité. Applicatios. Das u documet précédet, o a itroduit le corps des ombres complexes afi que tout ombre réel ait ue racie carrée. O va voir ici

Plus en détail

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN Das ce qui suit, o utilisera des argumets élémetaires et o e suppose aucue coaissace des foctios exp et l Ce qui suit sert à les défiir comme

Plus en détail

Présentation du programme et des épreuves 6

Présentation du programme et des épreuves 6 SOMMAIRE Présetatio du programme et des épreuves 6 Algos à foiso 8 2 Le raisoemet par récurrece 3 Les suites géométriques 2 4 Ce qui est importat pour ue suite 4 5 Ce qu est la limite d ue suite 6 6 Détermier

Plus en détail

Les suites C H A P I T R E

Les suites C H A P I T R E C H A P I T R E Les suites Leoardo FIBONACCI :Né à Pise e 75 et mort e 50. De ses voyages e Égypte, e Syrie, e Sicile, et e Provece pour le compte de so père, il recotre divers mathématicies, et rapporte

Plus en détail

ESTIMATION Exercices

ESTIMATION Exercices ESTIMATION Exercices EERCICE : Les variables aléatoires cosidérées das cet exercice sot défiies sur u espace probabilisable, AP, Soit a u réel strictemet positif et ue variable aléatoire de loi uiforme

Plus en détail

Suites. Suites arithmétiques. Suites géométriques

Suites. Suites arithmétiques. Suites géométriques CHAPITRE Suites Suites arithmétiques Suites géométriques ACTIVITÉS Activité a) 8 + 7 coureurs b) x 9 + 0 d où x 78 L équipe a reçu les dossards umérotés de 9 à 78 x + d où x 6 0 0 + aées (page 8) a) itervalles,

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

BAC BLANC de MATHEMATIQUES TS

BAC BLANC de MATHEMATIQUES TS BAC BLANC de MATHEMATIQUES TS Décembre 205 Lycée Jea Calvi - Noyo Exercice Das cet exercice, les probabilités serot arrodies a cetième. Partie A U grossiste achète d soja chez dex forissers. Il achète

Plus en détail

Suites réelles ou complexes

Suites réelles ou complexes 3 Suites réelles ou complexes 3. Prérequis L esemble R des ombres réels est supposé costruit avec les propriétés suivates : c est u corps commutatif totalemet ordoé ; il cotiet l esemble Q des ombres ratioels

Plus en détail

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne.

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne. 1 Séries umériques Das toute cette sectio, si cela est pas précisé, E désigera l espace R m, m 1, et la orme euclidiee. 1.1 Gééralités Défiitio 1.1. Soit (x ) N ue suite de E et pour chaque N, o défiit

Plus en détail

Exo7. Fractions rationnelles. 1 Fractions rationnelles. 2 Décompositions en éléments simples. Corrections de Léa Blanc-Centi.

Exo7. Fractions rationnelles. 1 Fractions rationnelles. 2 Décompositions en éléments simples. Corrections de Léa Blanc-Centi. Exo7 Fractios ratioelles Correctios de Léa Blac-Ceti. Fractios ratioelles Exercice Existe-t-il ue fractio ratioelle F telle que ( F() ) = ( + ) 3? Idicatio Correctio Vidéo [006964] Exercice Soit F = P

Plus en détail

Août 2015 (2 heures et 30 minutes) et C =

Août 2015 (2 heures et 30 minutes) et C = Août 015 ( heures et 30 miutes) 1 a) Soit IN 0 \ {1} Défiir : boule ouerte de IR sous-esemble compact de IR b) Soiet les sous-esembles suiats de IR : A = {(x,y) IR : x y }, B = ] 1,3 [ xir0 et C = {(x,y)

Plus en détail

Liban 2012 BAC S Correction

Liban 2012 BAC S Correction Liba 0 BAC S Correctio / 8 Exercice Partie A. Les foctios polyomiale et l sot dérivables sur ]0 ;+ [. Par coséquet la foctio g l est aussi. g (x) 6x² + x. Pour tout x >0, 6x² >0 et > 0. Doc g (x) > 0 sur

Plus en détail

Toutes calculatrices autorisées. Le sujet comporte un total de 4 exercices par élève.

Toutes calculatrices autorisées. Le sujet comporte un total de 4 exercices par élève. Lycée Féelo Saite-Marie Aée 2011-2012 Durée : 3 heures BAC BLANC avril Toutes calculatrices autorisées. Classe de Termiale ES Mathématiques Le sujet comporte u total de 4 exercices par élève. EXERCICE

Plus en détail

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =?

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =? COURS L2, 200-20. SUITES, SÉRIES, INTÉGRALES IMPROPRES Séries umériques. série géométrique et série téléscopique + 2 + 4 + 8 + 6 +? Figure. quelle est la logueur? Soit q > 0 (das l exemple ci-dessus q

Plus en détail

Feuille d exercices 11

Feuille d exercices 11 Mathématiques Aalyse I M. Samy Modeliar Feuille d eercices Itégratio Correctio Eercice Détermier, si elle eiste, la ite e + de la suite de terme gééral si ( π + ) d + Correctio. Pour tout etier, la foctio

Plus en détail

I ECRITURE FRACTIONNAIRE

I ECRITURE FRACTIONNAIRE LES FRACTIONS OBJECTIFS : Compredre l écriture fractioaire Simplifier les fractios Additioer des fractios Soustraire des fractios 5 Multiplier des fractios 6Diviser des fractios I ECRITURE FRACTIONNAIRE

Plus en détail

Correction du baccalauréat S Nouvelle-Calédonie novembre 2007

Correction du baccalauréat S Nouvelle-Calédonie novembre 2007 Durée : 4 heures Correctio du baccalauréat S Nouvelle-Calédoie ovembre 007 EXERCICE 1 Commu à tous les cadidats 4 poits 1 Avec z = x+ iy, z+ z = 9+i x+ iy+ x iy = 9+i x+ iy = 9+i et par ideticatio x =,

Plus en détail

Solutions de Laurent Chéno (Lycée Dorian, Paris 11 e ), Michel Lafond (Dijon), Jean Lefort (Wintzenheim), Joël Payen (Gagny), Sophie Toursel (Lycée

Solutions de Laurent Chéno (Lycée Dorian, Paris 11 e ), Michel Lafond (Dijon), Jean Lefort (Wintzenheim), Joël Payen (Gagny), Sophie Toursel (Lycée Solutios de Lauret Chéo (Lycée Doria, Paris 11 e ), Michel Lafod (Dijo), Jea Lefort (Witzeheim), Joël Paye (Gagy), Sophie Toursel (Lycée Fourcade, Gardae) Plusieurs lecteurs otet l ambiguïté de la uestio

Plus en détail

Cours I : SUITES NUMERIQUES. I Quelques rappels

Cours I : SUITES NUMERIQUES. I Quelques rappels Agrocampus Ouest ENIHP ère aée p. Cours I : SUITES NUMERIQUES / Défiitio I Quelques rappels Défiitio : Ue suite u est ue applicatio de l esemble N ou ue partie de N das R qui à chaque élémet de N associe

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail