TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m"

Transcription

1 1 TS Rappels sur les suites Cours I. Définitions Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m L image u(n) de l entier n est notée u n u n est appelé terme général de la suite ou terme d indice n La suite est notée (u n ) Deux façons de définir une suite : - Suite définie par la donnée de son terme général : u n = ( -1) n ou avec f la fonction - Suite définie par la donnée de son 1 er terme et d une relation de récurrence u o = 1 u n + 1 = 1 + u n La suite ( est définie par : et pour tout entier naturel, Calculer et conjecturer la valeur de

2 II. Sens de variations d une suite Définitions Une suite est croissante si pour tout 2 Une suite est décroissante si pour tout : Une suite est constante si pour tout : Méthode : pour étudier le sens de variations d une suite Calculer la différence et étudier son signe. Si tous les termes sont strictement positifs, comparer et 1 Si la suite est définie par, on étudie les variations de la fonction sur Remarque : certaines suites ne sont pas monotones, la suite de terme général par exemple Déterminer le sens de variations de la suite a. b. pour c.

3 III. Suite arithmétiques 3 Soit (u n ) une suite arithmétique de 1 er terme u 0, raison : relation Expression Sens de variations Pour tout, Relation de récurrence : en fonction de et r Formule explicite : en fonction de n et Relation entre deux termes et Pour tout Pour tout Dans un repère, les points de coordonnées ( ) sont alignés sur une droite de coefficient directeur.. Pour démontrer qu une suite est arithmétique 1. On calcule l expression de u n+1 2. On calcule u n+1 - u n 3.- On montre que cette différence est une constante qui est la raison r de la suite Soit la suite ( par : On considère la suite naturel. Démontrer que la suite ( raison définie pour tout entier pour tout entier est arithmétique de Somme des n entiers naturels : n= Somme des termes d une suite arithmétique : n+1 termes nombre de termes premier terme dernier terme Soit une suite arithmétique de premier terme et de raison 2. Calculer la somme ;

4 4 IV. Suites géométriques Soit (u n ) une suite géométrique de 1 er terme u 0, raison q : relation Expression Sens de variations Pour tout, Relation de récurrence : en fonction de et q Formule explicite : en fonction de n et Relation entre deux termes et Pour tout Pour tout Pour démontrer qu une suite est géométrique : 1. On calcule l expression de en fonction de 2. On identifie l éventuelle raison de la suite : s il existe un réel (indépendant de ) tel que pour tout entier, alors ce réel est la raison de la suite. Soit ( ) la suite définie par : { On pose pour tout entier Démontrer que la suite ( ) est géométrique Somme des puissances successives d un nombre. Somme des termes d une suite géométrique de raison q : Nombre de termes n+1 termes premier terme Exemples : Calculer les sommes A= ; B=

5 5 II Limites de suites 1. Définitions a. Limite finie Dire qu un réel l est limite d une suite (u n ) signifie que tout intervalle ouvert contenant l contient tous les termes de la suite à partir d un certain rang On note : = l On dit que la suite (u n ) est convergente de limite l, ou qu elle converge vers l. Cette définition traduit l accumulation de termes autour de l Remarque : lorqu elle existe, la limite d une suite est unique. Exemples : les suites définies par : u n = 1 n ; v n = 1 n² ; w n = 1 n 3 ; t n = 1 n ont pour limite. Conjecturer à l aide la calculatrice la limite de la suite (u n ) définie par : u n = 3n-1 n+1 Déterminer un entier n 0 tel que pour tout n > n 0 u n appartienne à l intervalle ]2,99 ; 3,01 [ b. Limite infinie

6 Définition Dire qu une suite (u n ) a pour limite signifie que tout intervalle ouvert de la forme [A ; [ contient tous les termes de la suite à partir d un certain rang 6 On note : Cette définition traduit l idée que les termes arrivent à dépasser tout nombre A, aussi grand soit-il Les suite définies sur par ont pour limite + Remarques : Limite en - : Suites n ayant pas de limite : on dit qu une suite diverge lorsqu elle n a pas de limites ex : 2. Limite et comparaison ) sont deux suites. Si à partir d un certain rang, u n v n et lim n v n = Alors lim n u n = Si à partir d un certain rang, u n v n et si lim n v n = - Alors lim n u n = - Preuve : ROC

7 7 des gendarmes ( admis ) (u n ), (v n ) et (w n ) sont 3 suites et l est un réel. Si à partir d un certain rang : w n u n v n et si lim n v n = lim n w n = l Alors : lim n u n = l II s sur les limites 1. Suites du type u n = f(n) Exemples : f est une fonction définie sur un intervalle ]b ; [ et (u n ) est la suite définie par u n = f(n). l est un réel, ou Si lim f( x ) = l, alors lim x 1. Limite de u n = 2n²+5n+1 n²+n 2. Limite de v n = n - n 2. Suites du type u n = f(v n ) n u n = l f est une fonction définie sur un intervalle I ; (v n ) est une suite dont tous les termes appartiennent à I. Les lettres b et c désignent soit un réel soit Si lim n v n = b et si Alors : lim n f( v n ) = c lim x b f( x ) = c Exemples : 1. limite de la suite (v n ) définie par v n = 3n+2 n+1

8 2. limite de la suite (w n ) définie par w n = 3 ( 0,2 )n 1 (0,2) n s de comparaison Rappel : Les théorèmes sur les opérations de limites pour les fonctions en + suites sont valables pour les Soit (u n ), (v n ) et (w n ) 3 suites ; l est un réel. Si à partir d un certain rang : w n u n v n et si lim n v n = lim n w n = l Alors : lim n u n = l limite de sin(n) n+1 : Si à partir d un certain rang, u n v n et si lim n v n = Alors lim n u n = 4. Convergence Si à partir d un des certain suites rang monotones, u n v n et si lim n v n = - Alors lim u n = - n Rappel : suite majorée, minorée, bornée ( non majorée ) 1. Toute suite croissante non majorée a pour limite 2. Toute suite décroissante non minorée a pour limite - Preuve : Soit (u n ) une telle suite. la suite est non majorée, donc quel que soit le réel A,il existe un rang N tel que u N > A la suite est croissante, donc pour tout entier n > N : u n u N > A A partir de l indice N, tous les termes de la suite sont dans ]A ; + [ et ce quelque soit le réel A. Donc la suite (u n ) tend vers + Toute suite croissante majorée est convergente Toute suite décroissante minorée converge (exemple : u o = 0 et u n+1 = 5 + u n à la calculatrice ) Preuve ( pas à connaître )

9 9 Exemples : 1. u est la suite définie par u 0 = 1 et pour tout entier naturel n, u n+1 = 0,6 u n + 50 a) Démontrer par récurrence que pour tout entier n, u n 125 b) Démontrer que la suite (u n ) est convergente et déterminer sa limite ( la : 0,6 l + 50 = l ie f( l ) = l ) 2. u est la suite définie par u 0 = 1 et pour tout entier naturel n, u n+1 = exp(u n ) 2 a) Démontrer que la suite (u n ) est décroissante et minorée (récurrence pour décroissant, u n > - 2 ) b) Que peut-on en déduire pour la suite (u n ) c) On note l la limite de la suite (u n ) Justifier que -2 l 1 A l aide d un graphique obtenu à l écran de la calculatrice, lire une valeur approchée de l.( intersection x 2 ) 3. On considère la suite (u n ) définie pour n 1 par : n u n = 1 k² k = 1 a) Montrer que (u n ) est croissante b) Montrer que 1 k² 1 k-1-1 k pour k 2 c) En déduire que la suite (u n ) est convergente

10 10

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie.

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie. TS Limites de suites Cours I. Définitions 1. Limite infinie Définition Dire qu une suite (u n ) a pour limite + signifie que tout intervalle ouvert de la forme [A ; + [ contient tous les termes de la suite

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: RAISONNEMENT PAR RECURRENCE Montrons par récurrence que pour tout n N *, P (n) : i=n i = 1 + + 3 +...+ ( n -1) + n = n n1 n n1 Initialisation : pour n = 1 i =1 et = 111 =1 donc P(1) est vraie.

Plus en détail

Terminale ES Rappels sur les suites I Qu est-ce qu une suite? Définition : liste ordonnée de nombres réels,

Terminale ES Rappels sur les suites I Qu est-ce qu une suite? Définition : liste ordonnée de nombres réels, I Qu est-ce qu une suite? Définition : Rappels sur les suites Une suite de nombres réels est une liste ordonnée de nombres réels, finie ou infinie. On note ( ) la suite u 0, u 1, u 2,..,, +1, Le nombre

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée SUITE I ) Rappels et dénition 1. N est l'ensemble des entiers naturels : 0,1,2... Une suite numérique est une fonction de N (ou une partie de N) dans R u : N R n u n Exemple : suite de Fibonnacci : 1,

Plus en détail

Fonction homographique - tangente à une courbe - suite récurrente

Fonction homographique - tangente à une courbe - suite récurrente f est la fonction définie sur D = ]- ;3[ ]3 ;+ [ par f(x) = x + 1 3 - x. 1) a) Etudier les variations de f sur D, ses limites aux bornes de D puis construire sa représentation graphique C f dans un repère

Plus en détail

Giuseppe Peano ( )

Giuseppe Peano ( ) Giuseppe Peano (1858-1932) Mathématicien et philosophe italien, il est l'un des premiers à avoir compris l'importance de fonder les mathématiques sur quelques axiomes précis, et d'en déduire ensuite théorèmes...

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

Convergence des suites

Convergence des suites Convergence des suites Cours maths Terminale S Dans ce module consacré à l étude de la convergence d une suite, on commence par redéfinir rigoureusement la notion de limite finie d une suite. Ensuite,

Plus en détail

RAPPELS CHAPITRE 4 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES.

RAPPELS CHAPITRE 4 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES. 1 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES. I) RAPPELS DE COURS : Caractérisation par une relation de récurrence Caractérisation par une formule explicite Représentation graphique sur un axe Suites

Plus en détail

Généralités sur les suites

Généralités sur les suites 1 Chapitre 3 Généralités sur les suites I. Définition, mode de génération d'une suite et représentation graphique : 1) Définition : Une suite est une fonction définie de IN ou d'une partie de IN dans IR.

Plus en détail

TERMINALE S Chapitre 1 : Les suites

TERMINALE S Chapitre 1 : Les suites Généralités 1. Mode de génération ( ) ( ) La La ( ) définie par ( ) définie par 2. Monotonie REMARQUE5 Si une suite ( ) est définie de maniére explicite telle que ( ) suivent celles de f =f(n) pour tout

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

Terminale S Suites numériques

Terminale S Suites numériques Terminale S Suites numériques Raisonnement par récurrence. Introduction En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel n. Par exemple, la n(n + ) somme des entiers naturels

Plus en détail

UFR Mathématiques Année CAPES. Suites numériques

UFR Mathématiques Année CAPES. Suites numériques Université de Rennes 1 Ronan Quarez UFR Mathématiques Année 2008-2009 CAPES 1 Critère de Cauchy 1.1 QCM Suites numériques a) Toute suite de Cauchy, d entiers relatifs, converge dans Z? b) Toute suite de

Plus en détail

Les suites. u : N R. n u(n) = e ln(n+1)+2 Compléter le tableau de valeurs (les images) par la suite u : n u n.

Les suites. u : N R. n u(n) = e ln(n+1)+2 Compléter le tableau de valeurs (les images) par la suite u : n u n. Les suites 1 Suites généralités 1.1 Définition Une suite u est une fonction de l ensemble des entiers naturels N dans l ensemble des nombres réels R : Le terme u(n) est plus souvent noté u n. 1. Soit la

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Mathématiques 11ème Sciences Production de Mathematikos Votre Ticket pour l Excellence en Maths. Exemple. Exemple

Mathématiques 11ème Sciences Production de Mathematikos Votre Ticket pour l Excellence en Maths. Exemple. Exemple Classe : 11 ème Sciences CHAPITRE 5 SUITES NUMÉRIQUES Domaine : Sciences, Mathématiques et Technologies Compétences : Résoudre une situation problème Composantes : Diagnostiquer la situation problème,

Plus en détail

Limite de suites. I Introduction 1. II Définitions 1 1 Limite finie Limite infinie III Limites usuelles 2

Limite de suites. I Introduction 1. II Définitions 1 1 Limite finie Limite infinie III Limites usuelles 2 Limite de suites Table des matières I Introduction II s Limite finie............................................ 2 Limite infinie.......................................... III Limites usuelles 2 IV Opérations

Plus en détail

Suites. 1 Généralité. 1.1 Définition. 1.2 Variations d une suite. Terminale L ES

Suites. 1 Généralité. 1.1 Définition. 1.2 Variations d une suite. Terminale L ES Suites 1 Généralité 1.1 Définition Une suite u est une fonction définie dans l ensemble des entiers naturels N : La suite u peut être notée (u) n N, u : N R n u(n) Le terme u(n), image de n par u, est

Plus en détail

SUITES I. GENERALITES. a. Définition et notations. b. Différentes façons de définir une suite

SUITES I. GENERALITES. a. Définition et notations. b. Différentes façons de définir une suite SUITES I. GENERALITES a. Définition et notations On appelle suite numérique, toute application de IN dans IR Une suite se note (u n ) n IN, (u n ) n 0 ou (u n ) On dit que u n est le terme général de la

Plus en détail

1 RECURRENCE - SUITES BORNEES

1 RECURRENCE - SUITES BORNEES I - Rappels - Généralités 1. Définitions 1 RECURRENCE - SUITES BORNEES Une suite est une application de IN dans IR qui associe à tout entier n un unique réel. On note (u n ) la suite et u n le terme de

Plus en détail

( ) de premier terme

( ) de premier terme Suites arithmétiques Suites géométriques I Suites arithmétiques 1 Définition Une suite arithmétique est une suite obtenue en ajoutant au terme précédent toujours un même nombre, appelé raison Pour tout

Plus en détail

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés Chapitre I Suites Exercices 8, 9, 0, 3, 4, 6, 3, 3, 34 page 34 pour revoir les notions de première sur les suites (récurrence, sens de variation...) Suite géométrique. Définition Définition Une suite u

Plus en détail

Suites numériques. Exemples élémentaires de suites

Suites numériques. Exemples élémentaires de suites MTA - ch5 Page 1/12 Suites numériques Notion de suite : Une suite numérique est une application de N (ou parfois de N ) à valeurs dans R ou dans C. La suite u : N C est notée de plusieurs façons : n u(n)

Plus en détail

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut:

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut: Suites - Récurrence 1. Définitions - Rappels 1.1.Modes de définition d une suite La suite 0 =0 1 = =4 3 =6 peut être définiededeuxmanières: Définition explicite : ½ = Définition récurrente : 0 =0 +1 =

Plus en détail

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ).

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ). Exercice 75 p 55 exercices sur les suites Symbole Belin 0 On s intéresse aux suites définies sur V et vérifiant la relation de récurrence u n+ = + u n². Une telle suite sera déterminée par son premier

Plus en détail

Exercice 1. Exercice 2. Exercice 3. Compléments sur les suites - Récurrence Exercices - Corrigé

Exercice 1. Exercice 2. Exercice 3. Compléments sur les suites - Récurrence Exercices - Corrigé Compléments sur les suites - Récurrence Exercices - Corrigé Exercice Pour n N nn + ), on pose Hn) : k := + + 3 + + n =. k= Pour n =, les deux membres de l égalité valent et donc H) est vraie. Soit ensuite

Plus en détail

SUITES NUMERIQUES. Rem : Comme pour les fonctions, on omet souvent de préciser l ensemble de définition attention.

SUITES NUMERIQUES. Rem : Comme pour les fonctions, on omet souvent de préciser l ensemble de définition attention. ) GENERALITES A ) DEFINITION et NOTATIONS SUITES NUMERIQUES On appelle suite numérique toute application de IN dans IR. Une suite se note u, ( ) n IN, ( ) n 0 ou ( ), qui est la notation la plus utilisée.

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Terminale Scientifique (S) : Cours de mathématiques (Terminale S) I. Chapitre 01 : Les suites 1. Etude globale d une suite A. Les suites majorées, minorées, bornées La suite ( ) est majorée si et seulement

Plus en détail

Chapitre 4. Suites. Objectifs du chapitre : item références auto évaluation. définir et représenter graphiquement une suite

Chapitre 4. Suites. Objectifs du chapitre : item références auto évaluation. définir et représenter graphiquement une suite Chapitre 4 Suites Objectifs du chapitre : item références auto évaluation définir et représenter graphiquement une suite étudier une suite arithmétique étudier une suite géométrique étudier le sens de

Plus en détail

Etude de limites de suites définies par

Etude de limites de suites définies par Etude de limites de suites définies par récurrence u n+1 = f(u n ) I) Généralités 1) Définition Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence,

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

Première STMG. Suites numériques. sguhel

Première STMG. Suites numériques. sguhel Première STMG Suites numériques sguhel ... 0 Chapitre 3 : Suites numériques... 2 1 Introduction... 2 1.1 Activité 1... 2 1.2 Activité 2... 2 2 Modes de génération d une suite... 4 2.1 Suite numérique...

Plus en détail

Méthodes sur les suites

Méthodes sur les suites Méthodes sur les suites G. Petitjean Lycée de Toucy 19 juin 2007 G. Petitjean (Lycée de Toucy) Méthodes sur les suites 19 juin 2007 1 / 41 1 Déterminer par le calcul et graphiquement les premiers termes

Plus en détail

Exercices de mathématiques sur les suites numériques en terminale : Guesmi.B

Exercices de mathématiques sur les suites numériques en terminale : Guesmi.B le Baccalauréat S. les suites Exercices de maths en terminale Exercices de mathématiques sur les suites numériques en terminale : Guesmi.B les suites numériques : exercices de maths en terminale S. La

Plus en détail

SUITES ET RÉCURRENCE

SUITES ET RÉCURRENCE SUITES ET RÉCURRENCE En première : une suite ( ) est une fonction particulière : son ensemble de définition est constitué d'entiers, on peut donc parler (contrairement aux fonctions en général) de l'image

Plus en détail

Cours 5: Une introduction aux suites numériques

Cours 5: Une introduction aux suites numériques Cours 5: Une introduction aux suites numériques Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012-2013 1 Généralités sur les suites

Plus en détail

Modes de générations de suites

Modes de générations de suites I Généralités sur les suites Généralités Une suite u de nombres réels est une fonction dont la variable est un entier naturel. L image par u d un entier naturel n est notée un et se lit «u indice n». un

Plus en détail

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013 Suites numériques Christophe ROSSIGNOL Année scolaire 01/013 Table des matières 1 Suites géométriques : Rappels et compléments 1.1 Définition, exemples........................................... 1. Expression

Plus en détail

A quoi servent les suites numériques?

A quoi servent les suites numériques? FICHE METHODE SUITES NUMERIQUES A quoi servent les suites numériques? a) Illustrations : 1 Ce mois ci ( dans 0 mois ) il a 150 euros sur son compte et il en ajoute 0 par mois! On note U n la valeur de

Plus en détail

LES SUITES. Une suite peut être définie de deux manières différentes :

LES SUITES. Une suite peut être définie de deux manières différentes : LES SUITES I. Rappels : A. Généralités sur les suites : Nous avons vu qu'une suite de nombres peut être notée avec une lettre ( en général u, v ou w ). Chaque nombre ayant sa place dans la suite, à la

Plus en détail

Généralités sur les suites

Généralités sur les suites Généralités sur les suites. Définitions Exemple : Posons U 0 = 0, U =, U =, U 3 = 9, U = 6, U 5 = 5, U 6 = 36,..., U n = n Dans ce cas, (U n ) est appelée une suite. Définition : Une suite (U n ) est la

Plus en détail

LES SUITES 3. II Utilisation de la calculatrice Représentation Graphique Représentation graphique (n ;u n ) 4

LES SUITES 3. II Utilisation de la calculatrice Représentation Graphique Représentation graphique (n ;u n ) 4 LES SUITES 3 I Généralités 3 1.1 Définitions 3 Exemple : 3 1. Différentes façons de définir une suite 3 a ) Par une formule explicite 3 3 3 b ) Par récurrence 4 ex 4 II Utilisation de la calculatrice Représentation

Plus en détail

Suites. d 1 = 1 e 1 = 20 a 2 = 4 b 2 = 1 2. c 2 = 1,75= 7 4. d 2 = 3 e 2 = 4 a 3 = 9 b 3 = 1 3. c 3 = 1,875= c 4 = 1,9375= 31.

Suites. d 1 = 1 e 1 = 20 a 2 = 4 b 2 = 1 2. c 2 = 1,75= 7 4. d 2 = 3 e 2 = 4 a 3 = 9 b 3 = 1 3. c 3 = 1,875= c 4 = 1,9375= 31. 1 Exemples simples Exercice 1.1 Á partir de leurs premiers termes On connaît les premiers termes de quelques suites. Suites Suite a n ) Suite b n ) Suite c n ) Suite d n ) Suite e n ) a 0 = 0 c 0 = 1 e

Plus en détail

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N Lycée Dominique Villars ECE COURS ETUDE des SUITES RECURRENTES On appelle suite récurrente toute suite (u n ) n N telle qu il existe une fonction réelle f : I R telle que : n N, u n+ = f(u n ) On va voir

Plus en détail

Suites. =3v n pour = 5.

Suites. =3v n pour = 5. Suites 1 Généralités 11 Définition Définition : On appelle suite une fonction sur N ou sur une partie de N dans R Exemples: Les fonctions: u : n n+1 ; v : n n sont des suites Notation Vocabulaire : Soit

Plus en détail

Exercice n 114 page 128

Exercice n 114 page 128 Jeudi 28 Février 2013 DM de Maths Exercice n 114 page 128 1) a) Voir papier millimétré 1) b) D après la représentation graphique des premiers termes de la suite (u n ), on peut conjecturer qu elle est

Plus en détail

Leçon 41 : Suites arithmétiques, suites géométriques

Leçon 41 : Suites arithmétiques, suites géométriques Leçon 41 : Suites arithmétiques, suites géométriques Pré-requis : Raisonnement par récurrence, limites de suite, résolution d'un système d'équations, notions de suites (définition, étude de monotonie),

Plus en détail

CHAPITRE 6 SUITES NUMÉRIQUES

CHAPITRE 6 SUITES NUMÉRIQUES CHAPITRE 6 SUITES NUMÉRIQUES I Généralités sur les suites 1) d'une suite numérique Une suite u associe à tout entier naturel n un nombre réel noté u n. Les nombres réels u n sont les termes de la suite.

Plus en détail

Suites numériques. I) Modes de génération d une suite numérique. 1) Définitions et notations : Exemple 2 : On définit la suite ( par:

Suites numériques. I) Modes de génération d une suite numérique. 1) Définitions et notations : Exemple 2 : On définit la suite ( par: Suites numériques I) Modes de génération d une suite numérique 1) Définitions et notations : Une suite numérique est une application de dans. est le terme de rang (ou indice ) On note aussi la suite dont

Plus en détail

N K, n 0 < n 1 < n 2 <

N K, n 0 < n 1 < n 2 < Chapitre 1 Suites réelles et complexes Dans ce chapitre, K désigne le corps R des nombres réels, ou le corps C des nombres complexes. Pour x K, nous noterons x le module de x (égal à la valeur absolue

Plus en détail

DS n 5 Correction 31 janvier 2007

DS n 5 Correction 31 janvier 2007 DS n 5 Correction 3 janvier 2007 Exercice Le gérant d'un magasin de matériel informatique a acheté un stock de disquettes. 5% des boîtes sont abîmées. Le gérant estime que: 60% des boîtes abîmées contiennent

Plus en détail

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ A. Limites d'une fonction I. Limite en et en. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ où a R. DÉFINITIONS Soit l un réel.

Plus en détail

Principe d une démonstration par récurrence :

Principe d une démonstration par récurrence : Chapitre Suites 1 Démonstration par récurrence Exemples introductif : Imaginons que des ouvriers construisant un immeuble aient toutes les instructions nécessaires pour construire un étage d immeuble sur

Plus en détail

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1 SUITES NUMÉRIQUES 1 Généralités 1.1 Définition Définition 1.1 On appelle suite réelle toute famille d éléments de R indexée sur N ou, de manière équivalente, toute application de N dans R. L ensemble des

Plus en détail

TS - Maths - D.S.3 - CORRECTION

TS - Maths - D.S.3 - CORRECTION TS - Maths - DS3 - CORRECTION Samedi 4 Novembre 20-2h Exercice Les parties A et B sont indépendantes Un site internet propose des jeux en ligne On donnera une valeur approchée à 0 2 près des résultats

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

Chaque fois qu on est confronté à une situation d évolutions successives d une grandeur de t%, on peut définir une suite géométrique de raison 1+ t

Chaque fois qu on est confronté à une situation d évolutions successives d une grandeur de t%, on peut définir une suite géométrique de raison 1+ t I SUITES GÉOMÉTRIQUES 1 DÉFINITION Dire qu une suite (u n ) est géométrique signifie qu il existe un nombre réel q non nul tel que, pour tout entier n, u n+1 = qu n Le réel q est appelé la raison de la

Plus en détail

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités Sujet Asie 203 EXERCICE. [5 pts] Probabilités Dans cet exercice, les probabilités seront arrondies au centième. Partie A Une grossiste achète des boîtes de thé chez deux fournisseurs. Il achète 80% de

Plus en détail

Chapitre 2 - Suites et récurrence

Chapitre 2 - Suites et récurrence Lycée Jaufré RUDEL - BLAYE 14 septembre 016 Les suites, c'est quoi déjà? Suites arithmétiques Suites géométriques Suites arithmétiques Dénition Terme général Somme de N termes consécutifs Sommes Suite

Plus en détail

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A.

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A. 16 Proposition : La somme des n premiers termes d une suite géométrique de raison q 1 est : n 1 u 0 q k 1 q n = u 0 1 q k=0 Il suffit de calculer (1 q) n 1 k=0 qk = n 1 k=0 qk n 1 k=0 qk+1 = n 1 k=0 qk

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 4 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

55 questions incontournables

55 questions incontournables 55 questions incontournables 1 On considère la suite (u n ) définie par u 0 = 1 et pour tout entier naturel n par : u n+1 = u n + 1. Montrer que la suite est à termes positifs et qu elle est croissante.

Plus en détail

Cours d Analyse I : les réels et les fonctions

Cours d Analyse I : les réels et les fonctions Introduction à R Suites numériques Cours d Analyse I : les réels et les fonctions Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 FRANCE Automne 2014 - Licence L1 Introduction à R Suites numériques

Plus en détail

Aide mémoire : Suites et limites

Aide mémoire : Suites et limites Aide mémoire : Suites et limites www.phymaths.ch - Résumé RM-1011G 19 septembre 010 Table des matières 1 Avant-propos 3 1.1 L étude des suites............................. 3 1. Qu est-ce qu une suite..........................

Plus en détail

Exercices supplémentaires : Suites

Exercices supplémentaires : Suites Exercices supplémentaires : Suites Partie A : Calculs de termes et représentation graphique Exercice On considère la suite définie par 4 pour tout N. Calculer,, et Exercice On considère la suite définie

Plus en détail

Des outils pour les suites

Des outils pour les suites Des outils pour les suites Suites arithmético-géométriques Définition : ppelle suite arithmético-géométrique toute suite récurrente de la forme : où a et b sont des nombres réels. Quelques cas particuliers

Plus en détail

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application.

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. Pré-requis : Suites : définition, bornées, convergentes,

Plus en détail

Suites numériques (exercices)

Suites numériques (exercices) Suites numériques (exercices) Exercice 1 : u est la suite définie sur IN par u n = n 2-4n+5. 1. Déterminer une fonction f telle que :pour tout n IN u n = f(n) 2. Dans un repère tracer la courbe représentative

Plus en détail

Limites de suites, cours, terminale S

Limites de suites, cours, terminale S F.Gaudon 6 octobre 206 Table des matières Convergence de suites 2 2 Convergence de suites de référence 3 3 Divergence de suites 3 4 Opérations sur les limites de suites 4 5 Inégalités et limites de suites

Plus en détail

Limites de suites. Christophe ROSSIGNOL. Année scolaire 2013/2014

Limites de suites. Christophe ROSSIGNOL. Année scolaire 2013/2014 Limites de suites Christophe ROSSIGNOL Année scolaire 2013/2014 Table des matières 1 Limite d une suite 2 1.1 Limite finie................................................ 2 1.2 Limite infinie...............................................

Plus en détail

Chapitre 03 : Suites et Séries de fonctions

Chapitre 03 : Suites et Séries de fonctions Chapitre 03 : Suites et Séries de fonctions I. Suites de fonctions : Soient l un des corps ou et une partie non vide de. Une suite de fonctions de dans K est une application de dans l ensemble des fonctions

Plus en détail

SUITES - RECURRENCE - SOMMES

SUITES - RECURRENCE - SOMMES SUITES - RECURRENCE - SOMMES Chapitre 1 I Généralités sur les suites Définition I.1 Une suite réelle est une fonction d une partie A de N dans R. u : A R n u(n) := u n l intervalle de définition peut donc

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de et v n Déterminer si possible, ( +

Plus en détail

Exercices d entrainement pour le chapitre 02 (récurrence et suites)

Exercices d entrainement pour le chapitre 02 (récurrence et suites) Exercices d entrainement pour le chapitre 0 récurrence et suites 0. Énoncés Exercice. Démontrer l inégalité n > n pour tout entier naturel n. Exercice. On définit, pour tout entier n, le n ième nombre

Plus en détail

LES SUITES NUMERIQUES

LES SUITES NUMERIQUES LES SUITES NUMERIQUES I Définition Une suite est une fonction qui a tout entier naturel n associe, au plus, un réel noté U(n) ou encore U n. Remarque C est une fonction particulière car définie dans É.

Plus en détail

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

Chapitre VII. Les Suites

Chapitre VII. Les Suites Chapitre VII Les Suites 1. Notion de Suite Ch VII - Les Suites 1. Notion de Suite D1 : Une suite réelle est une fonction de IN dans IR. notation : (u 0, u 1, u n, ) ou (u n ) n IN. 1. Notion de Suite D1

Plus en détail

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan Pour démarrer la classe de terminale S Tout ce qu il faut savoir de la 1 re S Paul Milan 8 novembre 015 Table des matières 1 Second degré 7 1 Forme canonique............................. 7 Racines du

Plus en détail

CHAPITRE 4 : Etudes de fonctions

CHAPITRE 4 : Etudes de fonctions CHAPITRE 4 : Etudes de fonctions 1 Sens de variation d une fonction... 2 2 Fonctions de référence... 3 2.1 Fonctions affines... 3 2.2 Fonction carré... 4 2.3 Fonction inverse... 5 2.4 Fonction valeur absolue...

Plus en détail

Suites 4 : Raisonnement par récurrence

Suites 4 : Raisonnement par récurrence Suites 4 : Raisonnement par récurrence C' est au mathématicien italien Giuseppe Peano (1858 ; 193) que l'on attribue le principe du raisonnement par récurrence. Par contre, le nom de récurrence a vraisemblablement

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions Limites de suites et de fonctions Le chapitre précédent traitait des suites numériques. On avait, en particulier, dit qu elles avaient des variations tout comme les fonctions. Il est rare de devoir calculer

Plus en détail

Terminale ES L'essentiel sur les suites pour traiter les problèmes.

Terminale ES L'essentiel sur les suites pour traiter les problèmes. Terminale ES L'essentiel sur les suites pour traiter les problèmes. Sens de variations d'une suite : ) est strictement croissante, on prouve que : n, u n+1 >u n ou que n, u n+1 >0. ) est strictement décroissante,

Plus en détail

Soit une suite. On dit qu elle est géométrique si, partant du

Soit une suite. On dit qu elle est géométrique si, partant du Suites géométriques I) Définition Soit est un nombre entier naturel. Soit une suite. On dit qu elle est géométrique si, partant du TERME INITIAL, pour passer d un terme au suivant, on MULTIPLIE toujours

Plus en détail

Fiche de cours 2 - Suites de réels.

Fiche de cours 2 - Suites de réels. Licence de Sciences et Technologies EM1 - Analyse Fiche de cours - Suites de réels. Généralités sur les suites. Définition : Une suite est une fonction u : N R, définie à partir dun certain rang au moins.

Plus en détail

LES SUITES. 1 Dénitions générales

LES SUITES. 1 Dénitions générales LES SUITES Objectifs Connaître les dénitions générales. Savoir calculer une limite. Connaître les théorèmes généraux de convergence. Connaître les notions de suites négligeables et de suites équivalentes.

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - notion de suite, représentation graphique, suites arithmétiques, suites géométriques : toutes sections - somme de termes, limite de suites arithmétique et

Plus en détail

Propriétés fondamentales de R et suites numériques réelles

Propriétés fondamentales de R et suites numériques réelles Propriétés fondamentales de R et suites numériques réelles Denis Vekemans Ordre total compatible En algèbre générale, un groupe ordonné est la donnée d une ensemble G, muni d une loi de composition interne

Plus en détail

Novembre 2008 Nouvelle Calédonie

Novembre 2008 Nouvelle Calédonie Novembre 2 Nouvelle Calédonie Pondichéry Avril 2 Centres étrangers Juin 2 Amérique du nord juin 2 Inde Pondichéry avril 2ds vos annales p 6) Sujets : Novembre 2 Nouvelle Calédonie PARTIE A On considère

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

Cours d analyse - Résumé sur les suites 2015/2016

Cours d analyse - Résumé sur les suites 2015/2016 Cours d analyse - Résumé sur les suites 2015/2016 CPUS I. Les suites numériques I.1. Premières définitions. Définition. Une suite réelle est une fonction dont l ensemble de départ est une partie de N du

Plus en détail

Suites. Une suite est une... suite de nombre. Définition 1. Une suite de nombres réels est une fonction a: N R

Suites. Une suite est une... suite de nombre. Définition 1. Une suite de nombres réels est une fonction a: N R Convergence Suites Une suite est une... suite de nombre. Définition. Une suite de nombres réels est une fonction a: N R {a n } n 0 a 0, a, a 2, a 3, Convergence d une suite Définition 2. La suite {a n

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

BACCALAUREAT BLANC GENERAL. Epreuve: MATHEMATIQUES. Série : S Durée : 4 heures Coefficient : 9 SPECIALITE

BACCALAUREAT BLANC GENERAL. Epreuve: MATHEMATIQUES. Série : S Durée : 4 heures Coefficient : 9 SPECIALITE BACCALAUREAT BLANC GENERAL Epreuve: MATHEMATIQUES Série : S Durée : 4 heures Coefficient : 9 SPECIALITE Avant de composer, le candidat s'assurera que le sujet comporte bien 4 pages numérotées de 1 à 4.

Plus en détail