Convergence et limite de suites numériques

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Convergence et limite de suites numériques"

Transcription

1 Covergece et limite de sites mériqes 1. Covergece d e site 1.1. Défiitio Ue site de ombres réels est covergete et admet comme limite ombre réel l si, qelqe soit le ombre ε > 0 assi petit soit-il, il existe etier N tel qe, por les rags > N, o ait l < ε. La site ( ) coverge vers l et o ote lim = l Ue site qi e coverge pas est appelée site divergete : c est e site qi a pas de limite o e site dot la limite est égale à l ifii lim = ± Ne pas cofodre covergece et mootoie d e site. Ue site pet être covergete et o mootoe (i croissate, i décroissate) vidéo cors sites covergetes 1.2. Exemples a) sites covergetes ,,,, α Les sites 2 3 a > 0 lim a = 1 b) sites divergetes avec α > 0, 1 a avec a > 1 sot décroissates et lim = 0 Les sites ( ), ( ² ), ( 3 ), ( ), ( α ) avec α > 0, a avec a > 1, ( l ) et ( e ) sot croissates et lim = + La site = ( - 1 ) a pas de limite. c) sites covergetes o divergetes a > 0 la site = a coverge vers 0 si a < 1 et diverge si a > 1 2. Détermiatio de la limite 2.1. Théorème d poit fixe Soit f e foctio cotie, stable sr itervalle I ( f(i) I) et ( ) e site récrrete défiie par 0 I et la relatio +1 = f ( ), si ( ) coverge vers l alors l vérifie f (l ) = l et l est poit fixe de f. Exemple : Soit la site ( ) défiie par 0 = 1 = 2 1 cette site est décroissate et miorée. Cors Covergece Limites de Sites 1 / 5 P 2012 Aleth Chevalley

2 Motros qe sr l itervalle [ 0, 1 ], elle coverge vers e valer l qe l o précisera? La site coverge doc vers l R Soit f : [ 0, 1 ] [ 0, 1 ] telle qe f ( x ) = x / 2 l vérifie f ( l ) = l doc l = l / 2 d où l = 0 MT19 3. Opératios sr les sites covergetes Soiet ( ) et ( v ) dex sites covergeat respectivemet vers l et l et soit réel λ La site ( + v ), somme des sites ( ) et ( v ) coverge vers l + l Si lim = l et lim v = l alors lim ( v ) + = l + l La site (λ ), prodit de la site ( ) par le réel λ coverge vers λ l Si lim = l et λ R, alors lim λ = λ l La site ( x v ), prodit des sites ( ) et ( v ) coverge vers l x l Si lim = l et lim v = l alors lim. v = l l Si tos les termes de la site (v ) e sot pas ls aisi qe sa limite l, alors la site sites ( ) et ( v ) coverge vers l l ' v qotiet des dex Si lim = l et lim v = l ' avec l ' 0, alors lim = v l l ' La site, valer absole de la site ( ) coverge vers l Si lim = l alors lim = l La réciproqe est fasse. Exemple : = ( - 1 ) cette site est divergete mais lim = 1 4. Propriétés des sites covergetes 4.1. Si e site est covergete, sa limite est iqe Tote site covergete est borée. Remarqe : Il existe des sites borées o covergetes = ( - 1 ) Cors Covergece Limites de Sites 2 / 5 P 2012 Aleth Chevalley

3 4.3. Tote site croissate majorée est covergete 4.4. Tote site décroissate miorée est covergete 5. Sites extraites 5.1. Défiitio Soit e site ( ), o appelle site extraite de ( ) tote site ( v ) avec v = φ () où φ : N N est e applicatio strictemet croissate. Ue site extraite de la site ( ) est costrite e émérat les termes de ( ) saf certais q o laisse de côté; aisi o e garde q e partie de l iformatio Exemples a) soit la site ( ), ( 2 ) est e site formée par les termes de rag pair et ( 2+1 ) est e site formée par les termes de rag impair. b) ( 2 ) et ( ² ) sot dex sites extraites de ( ). Si ( ) N * est défiie par défiie par v = ² est la site 2 1 N * 1 =, alors ( v ) N * c) ( ² - ) est pas e site extraite car l applicatio est pas strictemet croissate. φ ( 0 ) = 0 et φ ( 1 ) = Propriétés Si e site ( ) admet e limite (fiie o ifiie) alors tote site extraite ( φ () ) admet la même limite. Si lim = l alors tote site extraite de ( ), coverge vers l Remarqe : La réciproqe est e gééral fasse. Exemple : = ( - 1 ) ( 2 ) est la site costate égale à 1 et doc elle coverge vers 1 ; ( 2+1 ) est la site costate égale à 1 et doc elle coverge vers 1 alors qe la site ( ) e coverge pas. Si les sites ( 2 ) et ( 2+1 ) admettet la même limite, alors tote la site ( ) admet assi cette limite comme. O pet doc rameer l étde de covergece d e site à celle des sites de rags pair et impair qi pevet s avérer pls simples. 6. Théorème de comparaiso Soiet ( ) et ( v ) dex sites telles qe il existe etier N, tel qe por tot etier N, v Si ( ) diverge vers + alors ( v ) diverge vers + Si ( v ) diverge vers - alors ( ) diverge vers - Cors Covergece Limites de Sites 3 / 5 P 2012 Aleth Chevalley

4 7. Théorème des gedarmes (o d ecadremet) 7.1. Défiitio Soiet ( ), ( v ) et ( w ) trois sites telles qe : v w à partir d certai rag ( " N) ( ) et ( w ) coverget vers e même limite l alors ( v ) coverge vers l Exemples Motros qe les sites sot covergetes et doos ler limite : v si = v ( ) 1 = (sites alterées) 8. Site complexe 8.1. Défiitio Ue site complexe ( ), coverge vers l C si et selemet si ( Re ( )), site réelle, coverge vers Re ( l ) R et (Im ( )), site réelle, coverge vers Im ( l ) R Exemple Soit ( ) défiie par 0 = a C ( fixé) 1 = ( ) 5 Motros qe lim = Re (a)? Cors Covergece Limites de Sites 4 / 5 P 2012 Aleth Chevalley

5 Alors ( ) est défiie par 0 = a C ( fixé) 1 = (5 Re( 1 ) + i.im( 1 )) = Re( 1 ) + 1/ 5. i.im( 1 ) 5 MT19 Doc 0 = a et 1 = Re (a ) + i / 5. Im ( a ) 2 = Re (a ) + i / 5 ². Im ( a ) etc et par récrrece = Re (a ) + i / 5. Im ( a ) Il est maiteat évidet qe - Re (a ) = i / 5. Im ( a ) qi ted vers 0 lorsqe ted vers + doc lim = Re ( a ) Cors Covergece Limites de Sites 5 / 5 P 2012 Aleth Chevalley

Propriété Limites de suites convergentes usuelles. 1 lim 0 où k *

Propriété Limites de suites convergentes usuelles. 1 lim 0 où k * SUITES NUMERIQUES Le pricipe de récrrece Soit e propositio P dépedat d etier atrel. Por démotrer qe P est raie por tot etier 0, il sffit de motrer qe : La propositio est raie a rag 0 ; por etier qelcoqe

Plus en détail

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI Ξ 2 Suites umériques 2016-2017 Résumé du cours de MPSI I/ Défiitio, propriétés globales 1/ Défiitio Ue suite de complexes u est ue applicatio de N das C Notatios : L'image d'u etier par u se ote u( ou

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

Elle est associative, commutative et son élément neutre est la suite nulle notée 0

Elle est associative, commutative et son élément neutre est la suite nulle notée 0 Chapitre 9 : Sites mériqes-résmé de cors 1. Gééralités 1.1 Défiitio et exemples Déf: O appelle site tote applicatio de das. Si la site est otée, l'image de est oté pltôt qe (). O otera idifféremmet la

Plus en détail

Synthèse de cours PanaMaths (TS) Suites numériques

Synthèse de cours PanaMaths (TS) Suites numériques Sythèse de cours PaaMaths (TS) Suites umériques Das ce chapitre, le terme «suite» désige ue suite umérique (c'est-à-dire, das le cadre du programme de Termiale S, ue suite de réels). Ue telle suite sera

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

12 Cours - Suites.nb 1/11. Suites

12 Cours - Suites.nb 1/11. Suites 12 Cours - Suites.b 1/11 Suites I) Gééralités 1) Défiitio 2) Notatio 3) Commet peut être défiie ue suite 4) Suites et ordre 5) Propriété vraie à partir d u certai rag 6) Exercice 7) Suites arithmétiques,

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013 Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, 202/203 ANALYSE 2 Fiche de Mathématiques 4 - Séries umériques Soit E u espace vectoriel sur le corps K = R ou C Pour toute famille fiie

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

Fiche 1 : les suites

Fiche 1 : les suites Fiche Cors Nº : 3 Fiche : les sites Pla de la fiche I - Défiir e site II - Comortemet global d e site III - Comortemet asymtotiqe d e site IV - Oératios et limites V - Théorèmes de comaraiso VI - Comortemet

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

on note cette suite par ( u. Exemple concret:on peut considérer une suite comme une suite infinie de nombres réels : n+1 u n = un

on note cette suite par ( u. Exemple concret:on peut considérer une suite comme une suite infinie de nombres réels : n+1 u n = un I-Défiitios, vocablaire I- : Notio de site : Défiitio : e site d élémets d esemble A est e foctio de N vers R dot l esemble de défiitio est d type A R Si AR, o dit alors qe cette site est e site réelle

Plus en détail

arlesrsuitesraurbacr2013r==corriges=z

arlesrsuitesraurbacr2013r==corriges=z arlesrsuitesraurbacrr==corriges=z Frace métropolitaie septembre 5 poits 7 La foctio x x, ratioelle, est dérivable sr tot itervalle cote das so esemble x de défiitio * doc f est dérivable sr ] ; + [ et,

Plus en détail

Suites généralités. u est une fonction qui à tout entier naturel n associe un nombre réel, noté u

Suites généralités. u est une fonction qui à tout entier naturel n associe un nombre réel, noté u Sites gééralités A Sites mériqes Notio de site Défiitio : Ue site ( qe : : a La site se ote o avec des parethèses ( est e foctio qi à tot etier atrel associe ombre réel, oté tel Le terme iitial de la site

Plus en détail

Cours I : SUITES NUMERIQUES. I Quelques rappels

Cours I : SUITES NUMERIQUES. I Quelques rappels Agrocampus Ouest ENIHP ère aée p. Cours I : SUITES NUMERIQUES / Défiitio I Quelques rappels Défiitio : Ue suite u est ue applicatio de l esemble N ou ue partie de N das R qui à chaque élémet de N associe

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n.

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n. Lycée secodaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math Exercice Das chacu des cas suivats, calculer la limite de la suite ( U ) lorsque + ) U = 3 + ; ) U = si π =

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

Lycée Pilote de L Ariana SUITES REELLES 4 ème Math MR: LATRACH: COURS 2010/2011

Lycée Pilote de L Ariana SUITES REELLES 4 ème Math MR: LATRACH: COURS 2010/2011 Lycée Pilote de L Ariaa SUITES REELLES 4 ème Math 1)Rappel et complémet : a) Activité 1.. b)activité : Soit u la suite défiie sur IN par :u = cos a)exprimer u 2 et u 2+1 e foctio de.. b)détermier lim(u

Plus en détail

Centres étrangers juin n + 2.

Centres étrangers juin n + 2. Cetres étragers ji 3 EXERCICE poits Comm à tos les cadidats O défiit, por tot etier atrel >, la site ( ) de ombres réels strictemet positifs par = Por tot etier atrel >, o pose v = a Motrer qe v = b Motrer

Plus en détail

S n = u u n. S = u k. k=0

S n = u u n. S = u k. k=0 Chapitre 3 Séries umériques 3. Défiitios et exemples 3.. Défiitios Défiitio 3.. Soit (u ) ue suite réelle. O lui associe (S ) ue ouvelle suite défiie par S = u 0 + + u. O appelle série de terme gééral

Plus en détail

MVA101 - Analyse et calcul matriciel T. Horsin

MVA101 - Analyse et calcul matriciel T. Horsin MVA101 - Aalyse et calcul matriciel 2012 2013 T. Horsi (thierry.horsi@cam.fr) Attetio: Ce documet est ue base de travail qui peut coteir des coquilles. Les zoes e bleus sot, de loi, hors programme, et

Plus en détail

La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie.

La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie. NOM Tle S-A/B/C DS - Mathématiqes - Ldi 26 septembre 206 La présetatio, le soi et la riger des résltats etrerot por e part importate das l évalatio de la copie Exercice : sr 8 poits Cet exercice est costité

Plus en détail

Algorithmes type BAC sur les suites

Algorithmes type BAC sur les suites Algorithmes type BAC sr les sites 1. Algorithme permettat de détermier rag à partir dqel e site croissate de limite ifiie est spériere à ombre réel A O cosidère la site ( ) défiie par 0 = et por tot etier,

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

SUITES - Cours. a a. C est donc une liste de nombres. On peut noter les éléments de la liste comme suit :... On appelle u. u (avec n N ).

SUITES - Cours. a a. C est donc une liste de nombres. On peut noter les éléments de la liste comme suit :... On appelle u. u (avec n N ). Cors de Mathématiqe S CHAPITRE N Partie : Algebre & Aalyse SUITES - Cors D abord qelqes petits rappels : a = a = a m m a a = a + ( )( ) a m = m a a = b b a + a a = a si a, alors a a a a = + a m = a m Notio

Plus en détail

SUITES. ) définie pour tout entier naturel n par : =. Calculer les trois premiers termes de la suite. ) définie par : MATHOVORE.FR

SUITES. ) définie pour tout entier naturel n par : =. Calculer les trois premiers termes de la suite. ) définie par : MATHOVORE.FR SUITES I Calcls de termes Exercice : O cosidère la site ( ) défiie por tot etier atrel par : a) Calcler,, b) Calcler,, c) Calcler les trois premiers termes de la site 5 Exercice : O cosidère la site (

Plus en détail

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand?

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand? Exercice : Détermier la limite de chaque suite (u ). a) u = si π b) u = () c) u = + d) 0,5 + cos(π) Exercice 2 : la costate d Apéry Pour tout etier, u = 3 + + 2 3 +. + 3 ) Doer u miorat de cette suite.

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

Terminale S Les ROC d analyse à connaître.

Terminale S Les ROC d analyse à connaître. Termiale S Les ROC d aalyse à coaître Vos troverez ici les démostratios qe vos avez officiellemet des faire e cors (das le programme) Il est importat de préciser qe cela e sigifie e ac cas q il e faille

Plus en détail

SERIES NUMERIQUES réelles ou complexes

SERIES NUMERIQUES réelles ou complexes UE7 - MA5 : Aalyse SERIES NUMERIQUES réelles ou complexes I. Gééralités Défiitio Etat doée ue suite (u ) de ombres réels ou complexes, o appelle série de terme gééral u la suite (S ) défiie par : () S

Plus en détail

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne.

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne. 1 Séries umériques Das toute cette sectio, si cela est pas précisé, E désigera l espace R m, m 1, et la orme euclidiee. 1.1 Gééralités Défiitio 1.1. Soit (x ) N ue suite de E et pour chaque N, o défiit

Plus en détail

BAC BLANC de MATHEMATIQUES TS

BAC BLANC de MATHEMATIQUES TS BAC BLANC de MATHEMATIQUES TS Décembre 205 Lycée Jea Calvi - Noyo Exercice Das cet exercice, les probabilités serot arrodies a cetième. Partie A U grossiste achète d soja chez dex forissers. Il achète

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =?

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =? COURS L2, 200-20. SUITES, SÉRIES, INTÉGRALES IMPROPRES Séries umériques. série géométrique et série téléscopique + 2 + 4 + 8 + 6 +? Figure. quelle est la logueur? Soit q > 0 (das l exemple ci-dessus q

Plus en détail

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose :

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose : T Exercices sr les limites de sites () Por tot etier atrel, o pose : O cosidère la site ( ) défiie sr N par so premier terme récrrece ( ) = + por tot etier atrel ) Démotrer par récrrece qe, por tot etier

Plus en détail

Séries à termes positifs

Séries à termes positifs UFR SFA, Licece 2 e aée, MATH326 Séries à termes positifs Das ce chapitre, u Ø 0, pour tout, et o étudie q u. O a S S = u Ø 0 : (S ) est croissate!. Gééralités. Propositio. Soit (u ) Ø0 ue suite de réels

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1 [http://mp.cpgedupuydelome.fr] édité le 8 décembre 6 Eocés Séries umériques Nature de séries umériques Exercice [ ] [Correctio] Détermier la ature des séries dot les termes gééraux sot les suivats : a

Plus en détail

Correction du TD 3 : Séries numériques

Correction du TD 3 : Séries numériques Mme Marceli - Lycée Clemeceau Séries umériques Correctio du TD : Séries umériques Exercice A chaque fois, puisqu'o demade la covergece et la valeur, o reviet à la somme partielle : esuite, soit o recoaît

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

Analyse mathématique II

Analyse mathématique II UNIVERSITÉ IBN ZOHR Faculté des Scieces Juridiques Écoomiques et Sociales Corrigés des QCM Aalyse mathématique II FILIÈRE SCIENCES ÉCONOMIQUES ET GESTION PREMIERE ANNÉE Sessio ormale 03/04 40 questios

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques «I» : Suites arithmétiques 1/ Défiitio Suites arithmétiques et géométriques La suite (u ) est arithmétique de raiso r sigifie que : Pour tout etier aturel : u +1 = u + r Exemple : La suite ( ; 5 ; 8 ;

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

Chapitre 5 : Suites classiques

Chapitre 5 : Suites classiques Chapitre 5 : Suites classiques Objectifs : Révisios sur les suites arithmétiques et géométriques. Révisio du théorème de croissace comparée. Savoir exprimer e foctio de les termes d ue suite récurrete

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN Das ce qui suit, o utilisera des argumets élémetaires et o e suppose aucue coaissace des foctios exp et l Ce qui suit sert à les défiir comme

Plus en détail

Suites réelles ou complexes

Suites réelles ou complexes 3 Suites réelles ou complexes 3. Prérequis L esemble R des ombres réels est supposé costruit avec les propriétés suivates : c est u corps commutatif totalemet ordoé ; il cotiet l esemble Q des ombres ratioels

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

Cours de Mathématiques Séries numériques ou vectorielles Sommaire

Cours de Mathématiques Séries numériques ou vectorielles Sommaire Sommaire Sommaire I Gééralités sur les séries......................... 2 I. Espace vectoriel des séries, Sous-espace des Séries covergetes.... 2 I.2 Critère de Cauchy. Espace des séries ormalemet covergetes....

Plus en détail

TS Exercices sur les limites de suites (1)

TS Exercices sur les limites de suites (1) TS Exercices sur les limites de suites () Soit u ue suite géométrique de premier terme u 0 et de raiso q. Das chacu des cas suivats, doer la limite de la suite u. ) u0 ; q ) u 0 ; q ) 0 4 ) u0 6 ; q )

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

Cours de mathématiques P.S.I.*

Cours de mathématiques P.S.I.* Cours de mathématiques PSI* D'après les cours de M Guillaumie Heriet Queti Séries umériques Das tout le chapitre, K désige le corps R ou C, et o désige par u ue suite de K Gééralités Vocabulaire Défiitio

Plus en détail

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )]

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )] PC - DS N 6 - U corrigé Questios de cours QC..a L assertio a. est fausse. Par exemple, la suite + ted vers 0, alors que la série harmoique + est divergete. QC..b L assertio b. est vraie. Supposos que la

Plus en détail

X 1 = { X si X est impair 0 sinon

X 1 = { X si X est impair 0 sinon Corrigé ECRICOME 998 par Pierre Veuillez Das tout le problème, X désige ue variable aléatoire défiie sur u espace probabilisé (Ω, A, P et à valeurs das N et E(X l espérace de X si elle eiste. O ote A l

Plus en détail

LES SUITES. 1 Suites. 1.1 Suites numériques Approche.

LES SUITES. 1 Suites. 1.1 Suites numériques Approche. UMN04 : Sites COURS Ji 000 LES SUITES. Sites.. Sites mériqes... Approche. O observe das e etreprise, qe les bééfices e millios de fracs réalisés a bot de x aées de foctioemet pevet être modéliser par la

Plus en détail

SUITES DE NOMBRES RÉELS

SUITES DE NOMBRES RÉELS SUITES DE NOMBRES RÉELS. Défiitio d'ue suite.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique (que l'o ote

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

1. Convergence des Séries Numériques

1. Convergence des Séries Numériques Séries umériques 8 - Sommaire. Covergece des Séries Numériques.. Nature d ue série umérique.......2. Séries géométriques............ 2.3. Coditio élémetaire de covergece. 2.4. Suite et série des différeces.......

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours tifawtcom Exo7 Suites Exercices de Jea-Louis Rouget * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour travailler et mémoriser le cours Exercice ***IT

Plus en détail

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème Exercices Limites de suites Exercice Limite d ue suite Das les exercices suivats, détermier la limite de la suite (u ) e précisat le théorème utilisé. ) u = + + + + ) u = cos(), N 3) u = + cos 4 3 4) u

Plus en détail

Nous définissons une suite numérique de la manière suivante : «A chaque étape n, on associe, u

Nous définissons une suite numérique de la manière suivante : «A chaque étape n, on associe, u Vdoie Termiale S Chapitre Sites mériqes et comportemet asymptotiqe Nos défiissos e site mériqe de la maière siate : «A chaqe étape, o associe, le ombre de carrés écessaires à la fabricatio de l escalier»

Plus en détail

SUITES SE RAMENANT AUX SUITES ARITHMETIQUES OU GEOMETRIQUES - EXERCICES CORRIGES

SUITES SE RAMENANT AUX SUITES ARITHMETIQUES OU GEOMETRIQUES - EXERCICES CORRIGES Cors et exercices de mathématiqes SUITES SE RAMENANT AUX SUITES ARITHMETIQUES OU GEOMETRIQUES - EXERCICES CORRIGES Exercice O cosidère la site défiie par O pose Motrer qe ( est e site géométriqe Exprimer

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ).

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ). Colle PC Semaie 3 0-03 Séries Etières Voir : http://www.mimaths.et/img/pdf/s5.pdf http://www.mimaths.et/img/pdf/sem5.pdf EXERCICE :. Doer u exemple de série etière de rayo de covergece π.. Détermier le

Plus en détail

I. Suites géométriques

I. Suites géométriques Chapitre : Les sites géométriqes TES - Recoaître et exploiter e site géométriqe das e sitatio doée - Coaître la formle doat +q++q avec q - Détermier la limite d e site géométriqe de raiso strictemet positive

Plus en détail

3 Compléter la phrase suivante : «Chaque terme est obtenu en multipliant le précédent par. puis en ajoutant» Calculer alors u

3 Compléter la phrase suivante : «Chaque terme est obtenu en multipliant le précédent par. puis en ajoutant» Calculer alors u Chaitre : Sites (Termiales ES sécialité) Activités réaratoires Activité. :. Voici les remiers termes d e site ( ) ; 4 ; ; 4 ; Comléter la hrase sivate : «Chaqe terme est obte e mltiliat le récédet ar.

Plus en détail

Corrigé : EM Lyon 2005

Corrigé : EM Lyon 2005 Corrigé : EM Lyo 5 Optio écoomique Eercice :. Par défiitio de E, la famille (I,J,K) est ue famille géératrice de E. Cette famille est-elle libre? O cherche tous les réels a, b et c tels que : ai +bj +ck

Plus en détail

230. Séries numériques. Comportement des restes ou sommes partielles. Exemples.

230. Séries numériques. Comportement des restes ou sommes partielles. Exemples. 23. Séries umériques. Comportemet des restes ou sommes partielles. Exemples. Pierre Lissy December 8, 29 Das tout ce qui suit, K désige R ou C Covergece d'ue série. Déitio et modes de covergece[3] Déitio.

Plus en détail

Suites et séries réelles

Suites et séries réelles Suites et séries réelles Ue suite umérique est ue famille de ombres réels ou complexes idicées par les etiers aturels. O ote ue suite u idifféremmet (u ) N, ou (u ) 0, ou simplemet (u ). L esemble des

Plus en détail

CORRIGÉ DE LA FEUILLE 2

CORRIGÉ DE LA FEUILLE 2 CORRIGÉ DE LA FEUILLE. Exercice Soiet u et v deux séries à termes positifs.. Si ue des séries est divergete, alors la série de terme gééral u + v est divergete C est vrai. E effet, supposos que la série

Plus en détail

CHAPITRE 1 SÉRIES NUMÉRIQUES

CHAPITRE 1 SÉRIES NUMÉRIQUES CHAPITRE SÉRIES NUMÉRIQUES Gééralités Défiitio Soit ue suite de ombres réels, o pose : S = u 0 + u ++ = La limite de S est appelée série de terme gééral S est appelée suite des sommes partielles de la

Plus en détail

Séries numériques. n 3. 6) a n ) 1 + ( 1)n n. 1! + 2! n!. (n + 2)! 12) 15) n + ( 1) (ln n)n n ln n. 18) 1. ( 1) n + n α, ( ) a et.

Séries numériques. n 3. 6) a n ) 1 + ( 1)n n. 1! + 2! n!. (n + 2)! 12) 15) n + ( 1) (ln n)n n ln n. 18) 1. ( 1) n + n α, ( ) a et. Séries umériques Exercice. Étude de covergece Étudier la covergece des séries de terme gééral : + e. ch α sh α. 3 l 3 + 3 l +. 4 +. 5 arccos 3 + 3. 6 a + + a. 7 +. 8 l. 9 +. 0 3.4.6.... l + siπ/3. 4 6

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. 2) (**) n + 2 n. 1 pn

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. 2) (**) n + 2 n. 1 pn Exo7 Séries Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice Nature

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

Chapitre 8 : Séries. Introduction. 1 Dénitions. ECE3 Lycée Carnot. 2 décembre 2010

Chapitre 8 : Séries. Introduction. 1 Dénitions. ECE3 Lycée Carnot. 2 décembre 2010 Chapitre 8 : Séries ECE3 Lycée Carot 2 décembre 200 Itroductio Reveos pour itroduire ce chapitre quelques siècles e arrière, au temps de Zéo d'élée, philosophe grec du ciquième siècle avat J-C. Celui-ci

Plus en détail

Feuille d exercices 11

Feuille d exercices 11 Mathématiques Aalyse I M. Samy Modeliar Feuille d eercices Itégratio Correctio Eercice Détermier, si elle eiste, la ite e + de la suite de terme gééral si ( π + ) d + Correctio. Pour tout etier, la foctio

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

Séries numériques. 1 q n+1 1 q. si q 1 ; n + 1 si q = 1. q k = k=0. , posons U n = k. α. k=1

Séries numériques. 1 q n+1 1 q. si q 1 ; n + 1 si q = 1. q k = k=0. , posons U n = k. α. k=1 Séries umériques Défiitios et premières propriétés. Défiitios Défiitio (Série umérique) Soit () N ue suite complexe. Pour tout N o pose : U = ( ème somme partielle). La suite (U ) N est alors appelée la

Plus en détail

( ) soit vraie, et on démontre ( ) elle est vraie. ( ) est vraie pour tout entier naturel n n 0

( ) soit vraie, et on démontre ( ) elle est vraie. ( ) est vraie pour tout entier naturel n n 0 Chapitre 1 : Les suites umériques I. Le raisoemet par récurrece 1. Présetatio Soit P( ) la propriété : «7 + 2 est divisible par 3». O veut vérifier que cette propriété est vraie pour tout etier aturel.

Plus en détail

Exercices sur les suites arithmétiques (2)

Exercices sur les suites arithmétiques (2) ère S Exercices sr les sites arithmétiqes () Soit la site arithmétiqe de premier terme et de raiso Exprimer e foctio de r Soit la site arithmétiqe de premier terme 0 et de raiso Détermier tel qe 09 r Soit

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

Chapitre 1 METHODES SUR LES SUITES

Chapitre 1 METHODES SUR LES SUITES Chapitre 1 METHODES SUR LES SUITES Nous allos voir commet : 1) Cojecturer le comportemet d ue suite ) Raisoer par récurrece 3) Utiliser les suites arithmétiques et géométriques 4) Étudier le comportemet

Plus en détail

1S 1 : DEVOIR SURVEILLÉ N 8 (2 heures)

1S 1 : DEVOIR SURVEILLÉ N 8 (2 heures) S : DEVOIR SURVEILLÉ N 8 ( heres) Exercice ( poits) Calcler les sommes sivates : S + + 3 +... + + et S + + 3 +... + 8 +. Exercice (3 poits) La site ( ) est arithmétiqe de raiso r. O sait qe 5 46 et 86..

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h ECOLE DE HUTES ETUDES COMMERCILES DU NORD Cocors d'admissio sr classes préparatoires MTHEMTIQUES Optio scietifiqe Mardi 9 mai 6 de 8h à h La présetatio, la lisibilité, l'orthographe, la qalité de la rédactio,

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

II Exemples 2 II.A Série géométrique... 2 II.B Série exponentielle... 3 II.C Série harmonique... 4 II.D Série harmonique alternée...

II Exemples 2 II.A Série géométrique... 2 II.B Série exponentielle... 3 II.C Série harmonique... 4 II.D Série harmonique alternée... Séries umériques I Défiitios et otatios II Exemples 2 II.A Série géométrique....................................... 2 II.B Série expoetielle...................................... 3 II.C Série harmoique.......................................

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

Fonctions réelles d une variable réelle dérivables (exclu études de fonctions)

Fonctions réelles d une variable réelle dérivables (exclu études de fonctions) Eo7 Foctios réelles d ue variable réelle dérivables (eclu études de foctios) Eercices de Jea-Louis Rouget Retrouver aussi cette fice sur wwwmats-fracefr * très facile ** facile *** difficulté moyee ****

Plus en détail