Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce

Dimension: px
Commencer à balayer dès la page:

Download "Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce"

Transcription

1 Année Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce B. Monsuez

2 Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce But du projet Ce projet consiste à réaliser un outil capable de trouver le plus court trajet pour un commercial qui doit visiter n villes, les n villes étant placées sur un plan. une solution parmi les plus courtes C est un problème bien connu en recherche opérationnelle sous le nom de «Traveling Salesman Problem» ou TSP. Ce problème est NP-Complet. Diverses approches ont été proposées pour les résoudre : des approches exactes (l outil retourne effectivement le plus court trajet) et des approches approchées (l outil retourne un trajet proche du plus court). Ce problème a donné lieu à beaucoup de recherches et a fourni pas mal de résultats en algorithmique et en recherche opérationnelle. Tâches demandées Vous vous trouvez dans la situation où vous devez réaliser une analyse quant à la faisabilité du logiciel, proposer une architecture de ce logiciel et ensuite implanter un démonstrateur reposant sur cette analyse. 1. Analysez le problème, sachant qu il est souhaitable d avoir une solution évolutive, permettant d ajouter au fur et à mesure des fonctionnalités au logiciel, notamment progressivement étendre les règles du jeu. Il est notamment demandé de faire : a. Une analyse d usage du logiciel (use case analysis) b. Une analyse fonctionnelle du logiciel c. Une architecture gros grains du logiciel 2. Réalisez un démonstrateur pour valider l approche et les choix techniques et s assurer que ces derniers sont pertinents. Dans le cas d une approche évolutive, il sera possible tout d abord d implanter les premières phases (par exemple une stratégie de mutation et de sélection relativement simple ) et ensuite d ajouter les éléments supplémentaires (stratégie plus 1

3 avancée, évolution des meilleurs solutions à l'écran, critère d'arrêt). Il est notamment demandé de faire : a. Une description du modèle objet précis (par ex. sous UML) b. Eventuellement une liste des «design pattern» utilisés s il y a recours à des «design pattern». c. Une implantation documentée du logiciel. Pour le projet, vous aurez à réaliser les étapes 1 et 2 et à mettre en place et réaliser un axe d amélioration pour l étape 3. Ce projet peut alors être décomposé en 3 phases fonctionnelles : la première phase correspond à l acquisition des données soit au fait de représenter n villes dans un plan, la seconde phase correspond à la résolution de l algorithmique soit la recherche du trajet optimal, la troisième phase correspond à afficher le trajet optimal trouvé. Étape 1 : Analyse du problème Question A : Déterminez l architecture qui permet de faire évoluer les trois phases fonctionnelles (acquisition, algorithmique et affichage) indépendamment les unes des autres. Question B : En pensant aux états dans lequel se trouve votre système (avant l acquisition des données, après l acquisition et avant la résolution, après la résolution sachant que l affichage ne modifie pas le système), définissez l interface exportée par chaque partie du système pour effectuer les trois phases fonctionnelles. Pour la question B, une des personnes du projet peut travailler à l aide de diagrammes UML (c est simplement une option parmi d autres), pendant que les autres réfléchissent à ce qui peut bouger entre les différentes phases et comment ce sera exploité. Il faut voir que lors de l évolution de votre projet, l acquisition des données pourra être partiellement découplée de la recherche du meilleur trajet, et qu il est assez dur d anticiper sur le couplage acquisition/résolution. Certaines structures de données correspondant au résultat de l acquisition des n villes dans le plan sont plus adéquates que d autres pour l algorithmique. Ce couplage n est pas forcément visible au niveau de l interface que vous définirez. L analyse architecturale du projet étant terminée, voici une présentation succincte d algorithmes de type Algorithme Génétique permettant une résolution approchée du problème du voyageur de commerce. Représentation des villes 2

4 Nous représentons l ensemble des villes placées sur un plan par une matrice de coût. Cette matrice stocke la distance entre deux points. A H B F C G J E D I matrice de coût A B C D... I J A B C D I J La matrice de coût peut être symétrique ou non : Si elle est symétrique, cela signifie que d(x,y) = d(y,x) quelles que soient les villes concernées. La matrice de coût peut représenter une distance euclidienne, reflétant la propriété d(x,y)+d(y,z) d(x,z). Fonctionnement d un algorithme génétique Avant de pouvoir utiliser un algorithme générique, il est nécessaire de pouvoir définir pour le problème donné : Une méthode permettant de représenter la solution sous une forme manipulable par la machine, la plupart du temps, il s agit d un vecteur de valeurs booléennes. Une fonction permettant de calculer la qualité d une solution. 1. Initialisation Un ensemble de plusieurs solutions est engendré de manière aléatoire. Cet ensemble constitue ce qui est appelé la population initiale. La taille de la population initiale dépend de la nature du problème et surtout de l existence de nombreux optima locaux. Typiquement, les populations peuvent contenir plusieurs milliers de solution possible. Habituellement, la population initiale est engendrée de manière aléatoire afin de couvrir complètement le domaine des solutions possibles. 2. Sélection A une époque donnée, un échantillon de la population existante est sélectionné afin d engendre la nouvelle génération. La sélection s effectue selon un processus de sélection des solutions ayant la meilleure adéquation. Plusieurs fonction de sélection sont possibles, la plus simple consisté à sélectionner les solutions ayant la meilleur adéquation, d autres fonctions stochastiques de sélections sont moins sélectives et ont pour but de préserver des solutions ayant une «médiocre adéquation» afin d éviter une convergence vers un optimum local. 3. Reproduction L étape suivante consiste à construire un nouvel ensemble de solutions à partie de l ensemble des solutions venant d être sélectionné. Des nouvelles solutions peuvent être engendrées à partir de solutions courantes par deux techniques, soit par le croisement d une paire de solutions, soit par la mutation de deux solutions. a. Croisement 3

5 Une paire de solutions parmi les solutions précédemment est sélectionnée. Chacune des solutions est en fait un vecteur de bits, et,. Nous choisissons au hasard un point de coupure tel que et. Un premier descendant des solutions, et, est construit en concaténant aux premiers bits de la première solutions les derniers bits de la seconde solution. De même un deuxième descendant en concaténant aux premiers bits de la seconde solutions les derniers bits de la première solution. Au final la paire de solutions s écrit comme suit :, et, b. Mutation La mutation standard dans le cadre d un algorithme génétique consiste en la probabilité qu un bit appartenant à une séquence de bits représentant une solution possible puisse changer d état, c est-àdire passer de zéro à un ou passer de un à zéro. La méthode standard consiste à générer une variable aléatoire pour chacun des bits dans une séquence. Cette variable aléatoire va permettre de déterminer si le bit doit être modifier ou non. 4. Terminaison Le processus générationnel continue tant qu une condition de terminaison n est pas atteinte. Les conditions de terminaison sont plus diverses et parmi les conditions de terminaisons les plus courantes nous pouvons citer : Une solution vérifie un critère d adéquation Le nombre maximal d itérations est atteint Le temps d exécution maximal est atteint La qualité des meilleures solutions a atteint un plateau et les itérations successives ne semblent plus produire de meilleurs résultats. Bien entendu, ces conditions de terminaisons peuvent être combinées entre elles. 5. Description de l algorithme en pseudo-code Sélection la population initiale Repeat Sélectionne une partie de la population en fonction de leur adéquation Sélectionne les paires des meilleures solutions pour construire de nouvelles solutions. Produit une nouvelle génération en combinant les paires des meilleures solutions et en introduisant des mutations. 4

6 Until la condition de terminaison est vérifiée Étape 2 : Réalisation du démonstrateur Question C : Implanter une façon d effectuer l acquisition des données pour un démonstrateur. Il est possible de stocker le résultat dans une matrice de coût, mais vous pouvez utiliser tout autre représentation. Question D : Définissez et implantez la notion de trajet pour le voyageur de commerce. Définissez les fonctions de fitness associés à la notion de trajet Question E : Implantez un algorithme génétique manipulant des populations formées de trajet pour un voyageur de commerce. Question F : Evaluez les performances de l algorithme pour un nombre conséquent de villes. Question G : Visualisez et estimez le temps que vous avez passé pour atteindre ce premier objectif. Conservez l ensemble des fichiers du projet. Étape 3 : Amélioration de l outil Vous avez le choix pour améliorer votre outil, mais n oubliez pas de conserver le résultat de l étape 2, il est possible notamment de modifier la fonction de fitness, les croisements de population, etc. Pour ce faire, n hésitez pas à laisser libre court à votre imagination et à consulter les références mises sur la page WEB associée à ce projet, tout en restant dans le domaine du réalisable dans le temps que vous avez décidé de consacrer au projet. 5

Voyageur de commerce et solution exacte

Voyageur de commerce et solution exacte Voyageur de commerce et solution exacte uteurs :. Védrine,. Monsuez e projet consiste à réaliser un outil capable de trouver le plus court trajet pour un commercial qui doit visiter n villes, les n villes

Plus en détail

Plateforme de capture et d analyse de sites Web AspirWeb

Plateforme de capture et d analyse de sites Web AspirWeb Projet Java ESIAL 2A 2009-2010 Plateforme de capture et d analyse de sites Web AspirWeb 1. Contexte Ce projet de deuxième année permet d approfondir par la pratique les méthodes et techniques acquises

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Chapitre 1. L algorithme génétique

Chapitre 1. L algorithme génétique Chapitre 1 L algorithme génétique L algorithme génétique (AG) est un algorithme de recherche basé sur les mécanismes de la sélection naturelle et de la génétique. Il combine une stratégie de survie des

Plus en détail

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI)

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Chapter 1 Groupe Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Nous avons choisi d implémenter le projet avec le langage Javascript. L avantage offert

Plus en détail

La recherche locale. INF6953 La recherche locale 1

La recherche locale. INF6953 La recherche locale 1 La recherche locale INF6953 La recherche locale 1 Sommaire Recherche locale et voisinage. Fonction de voisinage, optimum local Fonction de voisinage et mouvements Fonction de voisinage et mouvements Exemples

Plus en détail

Problème du voyageur de commerce par algorithme génétique

Problème du voyageur de commerce par algorithme génétique Problème du voyageur de commerce par algorithme génétique 1 Problème du voyageur de commerce Le problème du voyageur de commerce, consiste en la recherche d un trajet minimal permettant à un voyageur de

Plus en détail

Variable Neighborhood Search

Variable Neighborhood Search Variable Neighborhood Search () Universite de Montreal 6 avril 2010 Plan Motivations 1 Motivations 2 3 skewed variable neighborhood search variable neighborhood decomposition search 4 Le probleme d optimisation.

Plus en détail

Visual Paradigm Contraintes inter-associations

Visual Paradigm Contraintes inter-associations Visual Paradigm Contraintes inter-associations Travail de Bachelor d'informaticien de gestion Partie C Présentation de Visual Paradigm 1 Présentation de Visual Paradigm For UML L objet du travail de Bachelor

Plus en détail

2.1. Les fonctions. Les fonctions se définissent de la manière suivante : NomDeLaFonction(param1, param2,...)= { \\ Code de la fonction

2.1. Les fonctions. Les fonctions se définissent de la manière suivante : NomDeLaFonction(param1, param2,...)= { \\ Code de la fonction TP1, prise en main de Pari/GP et arithmétique Le programme que nous allons utiliser pour les TP se nomme PARI/GP dont le point fort est la théorie des nombres (au sens large). Il est donc tout à fait adapter

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Développement de logiciels par objets avec UML (Unified Modeling Language) Pr. Jean-Marc Jézéquel IRISA - Univ. Rennes I

Développement de logiciels par objets avec UML (Unified Modeling Language) Pr. Jean-Marc Jézéquel IRISA - Univ. Rennes I 1 Développement de logiciels par objets avec UML (Unified Modeling Language) Pr. Jean-Marc Jézéquel IRISA - Univ. Rennes I Campus de Beaulieu F-35042 Rennes Cedex Tel : +33 299 847 192 Fax : +33 299 842

Plus en détail

IFT6580 Devoir 3. 1 Introduction. Eric Buist (buisteri@iro.umontreal.ca) 26 avril 2006

IFT6580 Devoir 3. 1 Introduction. Eric Buist (buisteri@iro.umontreal.ca) 26 avril 2006 IFT6580 Devoir 3 Eric Buist (buisteri@iro.umontreal.ca) 26 avril 2006 Résumé Le problème du voyageur de commerce a été traité par un très grand nombre d auteurs et avec différents algorithmes et heuristiques.

Plus en détail

AURELIE Gestion Commerciale Mode d emploi pour Gestion des cartes de fidélité 1/ But :... 2 2/ Pré-Requis :... 2 3/ Fiches à créer au préalable :...

AURELIE Gestion Commerciale Mode d emploi pour Gestion des cartes de fidélité 1/ But :... 2 2/ Pré-Requis :... 2 3/ Fiches à créer au préalable :... 1/ But :... 2 2/ Pré-Requis :... 2 3/ Fiches à créer au préalable :... 2 3.1/ Bons d achats :... 2 3.1.1/ Comment y aller?... 2 3.1.2/ Les différents types :... 3 3.2/ Articles de type remise :... 7 3.2.1/

Plus en détail

Création d un catalogue en ligne

Création d un catalogue en ligne 5 Création d un catalogue en ligne Au sommaire de ce chapitre Fonctionnement théorique Définition de jeux d enregistrements Insertion de contenu dynamique Aperçu des données Finalisation de la page de

Plus en détail

MODALITES DE SUIVI DU PROJET ANNUEL DU MASTER 2 SOLUTIONS INFORMATIQUES LIBRES

MODALITES DE SUIVI DU PROJET ANNUEL DU MASTER 2 SOLUTIONS INFORMATIQUES LIBRES MODALITES DE SUIVI DU PROJET ANNUEL DU MASTER 2 SOLUTIONS INFORMATIQUES LIBRES Département Informatique UFR Sciences 2 Boulevard Lavoisier 49045 Angers Cedex 01 Auteur : Jean-Michel Richer Email : jean-michel.richer@univ-angers.fr

Plus en détail

TS214 - Compression/Décompression d une image binaire

TS214 - Compression/Décompression d une image binaire Filière Télécommunications, 2 ème année TS214 - Compression/Décompression d une image binaire De nombreux télécopieurs utilisent la recommandation T.4 Groupe 3 de l International Telecommunications Union

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 1 - Introduction Qu est-ce qu un

Plus en détail

Série 2 Premiers programmes

Série 2 Premiers programmes Licence pro. GTSBD 2013-2014 Structures de données, langage Python Série 2 Premiers programmes Programmes avec des affectations, des lectures et des écritures Exo 2.1 Le problème de la machine qui rend

Plus en détail

RAPPORT DU PREMIER MINI PROJET «FORUM DE CHAT» Novembre 2005

RAPPORT DU PREMIER MINI PROJET «FORUM DE CHAT» Novembre 2005 Oussama ELKACHOINDI Wajdi MEHENNI RAPPORT DU PREMIER MINI PROJET «FORUM DE CHAT» Novembre 2005 Sommaire I. Préliminaire : Notice d exécution et mode opératoire...4 II. Architecture globale de l application...5

Plus en détail

Classes et templates C++

Classes et templates C++ Classes et templates C++ Ce TP propose une application des classes, des templates et du polymorphisme au travers du design de classes permettant de gérer des courbes de Bézier. Contents 1 Bézier unidimensionnelle

Plus en détail

Méthodes de test. Mihaela Sighireanu

Méthodes de test. Mihaela Sighireanu UFR d Informatique Paris 7, LIAFA, 175 rue Chevaleret, Bureau 6A7 http://www.liafa.jussieu.fr/ sighirea/cours/methtest/ Partie I 1 Propriétés 2 Un peu de génie logiciel de test 3 Eléments Problèmes Point

Plus en détail

Etude et développement d un moteur de recherche

Etude et développement d un moteur de recherche Ministère de l Education Nationale Université de Montpellier II Projet informatique FLIN607 Etude et développement d un moteur de recherche Spécifications fonctionnelles Interface utilisateur Responsable

Plus en détail

Module SIN21 Pre sentation, analyse, prise en main

Module SIN21 Pre sentation, analyse, prise en main Module SIN21 Pre sentation, analyse, prise en main Temps : 3h Objectifs : Prendre connaissance du système. Lire les diagrammes UML et comprendre le fonctionnement du système. Mettre en place une maquette

Plus en détail

Enveloppes convexes dans le plan

Enveloppes convexes dans le plan ÉCOLE POLYTECHNIQUE ÉCOLES NORMALES SUPÉRIEURES ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE B (XECLR)

Plus en détail

Environnements de Développement

Environnements de Développement Institut Supérieur des Etudes Technologiques de Mahdia Unité d Enseignement: Environnements de Développement Mme BEN ABDELJELIL HASSINE Mouna m.bnaj@yahoo.fr Développement des systèmes d Information Syllabus

Plus en détail

PG208, Projet n 3 : Serveur HTTP évolué

PG208, Projet n 3 : Serveur HTTP évolué PG208, Projet n 3 : Serveur HTTP évolué Bertrand LE GAL, Serge BOUTER et Clément VUCHENER Filière électronique 2 eme année - Année universitaire 2011-2012 1 Introduction 1.1 Objectif du projet L objectif

Plus en détail

Devoir maison Info 2 A rendre pour le 15 décembre au plus tard

Devoir maison Info 2 A rendre pour le 15 décembre au plus tard Devoir maison Info 2 A rendre pour le 15 décembre au plus tard Exercice 1 : Exécutez un algorithme Considérez l algorithme suivant. Variables A, B, C en Entier; Début Lire A; Lire B; TantQue B 0 C A; TantQue

Plus en détail

Le mot «algorithme» vient du nom de l auteur persan Al-Khuwarizmi (né vers 780 - mort vers 850) Une définition: «un algorithme est une suite finie de

Le mot «algorithme» vient du nom de l auteur persan Al-Khuwarizmi (né vers 780 - mort vers 850) Une définition: «un algorithme est une suite finie de Le mot «algorithme» vient du nom de l auteur persan Al-Khuwarizmi (né vers 780 - mort vers 850) Une définition: «un algorithme est une suite finie de règles à appliquer dans un ordre déterminé à un nombre

Plus en détail

Projet 2A STI : Supervision et audit de la sécurité système dans un réseau

Projet 2A STI : Supervision et audit de la sécurité système dans un réseau Projet 2A STI : Supervision et audit de la sécurité système dans un réseau Jeremy Briffaut,??? 8 septembre 2014 1 Objectifs Ce projet vous permettra de mettre en pratique vos connaissances acquises dans

Plus en détail

Optimisation Combinatoire (Méthodes approchées) VI. Algorithmes à Population (Les bases)

Optimisation Combinatoire (Méthodes approchées) VI. Algorithmes à Population (Les bases) Optimisation Combinatoire (Méthodes approchées) VI. Algorithmes à Population (Les bases) Algorithmes à Population Idée principale 'Amélioration' d'un ensemble de solutions Recombiner des solutions Orienté

Plus en détail

Le voyageur de commerce

Le voyageur de commerce Université de Strasbourg UFR Maths-Informatique Licence 3 - Semestre 6 Le voyageur de commerce Jonathan HAEHNEL & Marc PAPILLON Strasbourg, le 3 mai 2012 Table des matières 1 Etat des lieux 4 1.1 Fonctionnalités..............................

Plus en détail

Machine de Turing. Informatique II Algorithmique 1

Machine de Turing. Informatique II Algorithmique 1 Machine de Turing Nous avons vu qu un programme peut être considéré comme la décomposition de la tâche à réaliser en une séquence d instructions élémentaires (manipulant des données élémentaires) compréhensibles

Plus en détail

Déclassement d'actifs et stock brut de capital

Déclassement d'actifs et stock brut de capital Extrait de : La mesure du capital - Manuel de l'ocde 2009 Deuxième édition Accéder à cette publication : http://dx.doi.org/10.1787/9789264067752-fr Déclassement d'actifs et stock brut de capital Merci

Plus en détail

Valoriser vos bases de connaissances avec AMI Help Desk. AMI Enterprise Discovery version 3.9

Valoriser vos bases de connaissances avec AMI Help Desk. AMI Enterprise Discovery version 3.9 Valoriser vos bases de connaissances avec AMI Help Desk AMI Enterprise Discovery version 3.9 Février 2005 Sommaire 1 Objectifs d AMI Help Desk...3 2 Principes de fonctionnement...3 2.1 Mode de travail

Plus en détail

Méthode de tests MODE D EMPLOI POINTS IMPORTANTS

Méthode de tests MODE D EMPLOI POINTS IMPORTANTS Méthode de tests MODE D EMPLOI Cette première partie est destinée à ceux qui débutent en tests et permet une approche progressive et simple de la méthodologie des tests. L introduction vous aura permis

Plus en détail

Le service pack 6 (SP6) est le dernier disponible pour visual studio 6. Ce dernier devrait être maintenu par Microsoft jusqu en 2008.

Le service pack 6 (SP6) est le dernier disponible pour visual studio 6. Ce dernier devrait être maintenu par Microsoft jusqu en 2008. 1 CONCEPT DE BASE 1.1 Visual Basic 6 1.1.1 Pour quoi faire? VB est un langage de type RAD : «Rapid Application Development». Il permet de créer des applications rapidement grâce à une conception simple

Plus en détail

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7 Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques Elec 2311 : S7 1 Plan du cours Qu est-ce l optimisation? Comment l optimisation s intègre dans la conception?

Plus en détail

INF 1250 INTRODUCTION AUX BASES DE DONNÉES. Guide d étude

INF 1250 INTRODUCTION AUX BASES DE DONNÉES. Guide d étude INF 1250 INTRODUCTION AUX BASES DE DONNÉES Guide d étude Sous la direction de Olga Mariño Télé-université Montréal (Québec) 2011 INF 1250 Introduction aux bases de données 2 INTRODUCTION Le Guide d étude

Plus en détail

Niveau de la classe : troisième ou seconde

Niveau de la classe : troisième ou seconde Olivier PILORGET et Luc PONSONNET - Académie de Nice - TraAM 2013-2014 " PERIMETRE DE SECURITE AUTOUR D UNE PISCINE" Niveau de la classe : troisième ou seconde Testée avec une classe de seconde sur une

Plus en détail

Didacticiel - Etudes de cas. Montrer l utilisation de la macro complémentaire TANAGRA.XLA dans le tableur EXCEL.

Didacticiel - Etudes de cas. Montrer l utilisation de la macro complémentaire TANAGRA.XLA dans le tableur EXCEL. Objectif Montrer l utilisation de la macro complémentaire TANAGRA.XLA dans le tableur EXCEL. De nombreux utilisateurs s appuient sur EXCEL pour la gestion de leurs données. C est un outil relativement

Plus en détail

Exercices VHDL pour l évaluation

Exercices VHDL pour l évaluation Outils informatiques 25-26 Exercices VHDL pour l évaluation Alain Vachoux EPFL/STI-IMM-LSM alain.vachoux@epfl.ch Organisation des exercices Les informations sur l organisation des exercices se trouvent

Plus en détail

Projet Informatique. Philippe Collet. Licence 3 Informatique S5 2014-2015. http://deptinfo.unice.fr/twiki/bin/view/linfo/projetinfo201415

Projet Informatique. Philippe Collet. Licence 3 Informatique S5 2014-2015. http://deptinfo.unice.fr/twiki/bin/view/linfo/projetinfo201415 Projet Informatique Philippe Collet Licence 3 Informatique S5 2014-2015 http://deptinfo.unice.fr/twiki/bin/view/linfo/projetinfo201415 Réalisation d'un développement de taille conséquente? r Firefox? Ph.

Plus en détail

Développement itératif, évolutif et agile

Développement itératif, évolutif et agile Document Développement itératif, évolutif et agile Auteur Nicoleta SERGI Version 1.0 Date de sortie 23/11/2007 1. Processus Unifié Développement itératif, évolutif et agile Contrairement au cycle de vie

Plus en détail

Validation de systèmes intégrant des COTS : comment accommoder les inconnues sur la qualification des COTS dans le processus de validation?

Validation de systèmes intégrant des COTS : comment accommoder les inconnues sur la qualification des COTS dans le processus de validation? Validation de systèmes intégrant des COTS : comment accommoder les inconnues sur la qualification des COTS dans le processus de validation? L I S EDF Electricité de France technicatome THOMSON-CSF Philippe

Plus en détail

Business Intelligence (BI) Stratégie de création d un outil BI

Business Intelligence (BI) Stratégie de création d un outil BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information indispensable, sous plusieurs

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Concours National d Informatique. Sujet de demi-finale Montpellier et Toulouse

Concours National d Informatique. Sujet de demi-finale Montpellier et Toulouse Concours National d Informatique Sujet de demi-finale Montpellier et Toulouse 28 février 2009 Poule de lard 1 Préambule Bienvenue à Prologin. Ce sujet est l épreuve écrite d algorithmique et constitue

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

REQUEA. v 1.0.0 PD 20 mars 2008. Mouvements d arrivée / départ de personnels Description produit

REQUEA. v 1.0.0 PD 20 mars 2008. Mouvements d arrivée / départ de personnels Description produit v 1.0.0 PD 20 mars 2008 Mouvements d arrivée / départ de personnels Description produit Fonctionnalités L application Gestion des mouvements d arrivée / départ de Requea permet la gestion collaborative

Plus en détail

Tournées de véhicules

Tournées de véhicules Tournées de véhicules De la théorie aux outils d aide à la décision Olivier Péton, Ecole des Mines de Nantes, novembre 2008 Les principaux problèmes de tournées Deux problèmes de base : Problème du voyageur

Plus en détail

Étude de cas. UML n est pas une méthode

Étude de cas. UML n est pas une méthode Étude de cas UML n est pas une méthode UML n est pas une méthode, mais un simple langage ; l OMG ne préconise pas de processus ; il n existe pas une démarche unique qui fixe l ordre dans lequel les modèles

Plus en détail

Fiche n 8 : Création de champs supplémentaires

Fiche n 8 : Création de champs supplémentaires PlanningPME Planifiez en toute simplicité Fiche n 8 : Création de champs supplémentaires I. Description... 2 II. Paramétrage des champs supplémentaires... 2 III. Les différents types de champs... 7 IV.

Plus en détail

ACTUALITÉS LANDPARK. Nouvelle version. Landpark Helpdesk. Landpark Helpdesk. Les avantages de la nouvelle version 3.9.2.

ACTUALITÉS LANDPARK. Nouvelle version. Landpark Helpdesk. Landpark Helpdesk. Les avantages de la nouvelle version 3.9.2. ACTUALITÉS LANDPARK Solutions complètes d'inventaire, de gestion de parc et de helpdesk ITIL Avril 2015 Nouvelle version Landpark Helpdesk Landpark vous associe aux meilleurs logiciels de Gestion de Parc

Plus en détail

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés ENSEIRB-MATMECA PG-113 014 TP6: Optimisation au sens des moindres carrés Le but de ce TP est d implémenter une technique de recalage d images qui utilise une méthode vue en cours d analyse numérique :

Plus en détail

Utiliser Access ou Excel pour gérer vos données

Utiliser Access ou Excel pour gérer vos données Page 1 of 5 Microsoft Office Access Utiliser Access ou Excel pour gérer vos données S'applique à : Microsoft Office Access 2007 Masquer tout Les programmes de feuilles de calcul automatisées, tels que

Plus en détail

PG208, Projet n 2 : Dessin vectoriel

PG208, Projet n 2 : Dessin vectoriel PG208, Projet n 2 : Dessin vectoriel Bertrand LE GAL, Serge BOUTER et Clément VUCHENER Filière électronique 2 eme année - Année universitaire 2011-2012 1 Introduction 1.1 Objectif du projet L objectif

Plus en détail

Visualiser, concevoir, déployer et interagir avec vos données Transformez vos données à l aide de Crystal Reports

Visualiser, concevoir, déployer et interagir avec vos données Transformez vos données à l aide de Crystal Reports Visualiser, concevoir, déployer et interagir avec vos données Transformez vos données à l aide de Crystal Reports Solutions SAP BusinessObjects de Business Intelligence Crystal Reports Manipulation de

Plus en détail

Gestion multi-stocks

Gestion multi-stocks Gestion multi-stocks Dans l architecture initiale du logiciel IDH-STOCK, 11 champs obligatoires sont constitués. Ces champs ne peuvent être supprimés. Ils constituent l ossature de base de la base de données

Plus en détail

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3)

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3) Plan du cours Quelques problèmes classiques Quelques algorithmes classiques Métaheuristiques pour l optimisation combinatoire un peu de vocabulaire codage des solutions taxinomie méthodes complètes méthodes

Plus en détail

Programmation orientée objet et technologies Web

Programmation orientée objet et technologies Web Programmation orientée objet et technologies Web LEA.3N, version 2012 Information : (514) 376-1620, poste 7388 Programme de formation Type de sanction Attestation d études collégiales permettant de cumuler

Plus en détail

ATELIER ALGORITHME PREMIERS PAS Journée d information sur les nouveaux programmes de Première S-ES 2010-2011

ATELIER ALGORITHME PREMIERS PAS Journée d information sur les nouveaux programmes de Première S-ES 2010-2011 Pour me contacter : irene.rougier@ac-clermont.fr 1. Introduction ATELIER ALGORITHME PREMIERS PAS Journée d information sur les nouveaux programmes de Première S-ES 2010-2011 De nombreux documents et informations

Plus en détail

Conduite de projets et architecture logicielle

Conduite de projets et architecture logicielle s et architecture logicielle ABCHIR Mohammed-Amine Université Paris 8 15 février 2011 1/36 ABCHIR Mohammed-Amine (Université Paris 8) Conduite de projets et architecture logicielle 15 février 2011 1 /

Plus en détail

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Exercice 1 : 4 points et exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles.

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

La nouvelle dimension de l analyse acoustique et vibratoire

La nouvelle dimension de l analyse acoustique et vibratoire La nouvelle dimension de l analyse acoustique et vibratoire HEAD Gallery Des fonctions innovantes intégrées dans une technologie de pointe ArtemiS suite est la solution logicielle intégrée de HEAD acoustics

Plus en détail

Analyses MALDI-TOF. Acquisition des spectres de masse en mode automatique

Analyses MALDI-TOF. Acquisition des spectres de masse en mode automatique Analyses MALDI-TOF Acquisition des spectres de masse en mode automatique Etape préliminaire : Afin d optimiser vos analyses en mode automatique, il est nécessaire de réaliser différentes séries d acquisition

Plus en détail

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des

Plus en détail

Introduction aux systèmes d exploitation

Introduction aux systèmes d exploitation Introduction aux systèmes d exploitation Le système d exploitation est un ensemble de logiciels qui pilotent la partie matérielle d un ordinateur. Les principales ressources gérées par un système d exploitation

Plus en détail

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace.

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace. Traonmilin Yann traonmil@enst.fr MOD Algorithmique Probabiliste 1. Deux exemples 1.1. Quicksort randomisé. Dans l'algorithme de tri classique Quicksort, le pivot est choisi au début du tableau puis on

Plus en détail

LIVRE BLANC : Architectures OXYGENE++ version 6.50. MEMSOFT Page 1 sur 18 Livre Blanc Architectures Oxygène++

LIVRE BLANC : Architectures OXYGENE++ version 6.50. MEMSOFT Page 1 sur 18 Livre Blanc Architectures Oxygène++ LIVRE BLANC : Architectures OXYGENE++ version 6.50 MEMSOFT Page 1 sur 18 Livre Blanc Architectures Oxygène++ Date du document : 17 novembre 2005 Ce livre blanc est destiné à l'information des professionnels

Plus en détail

SECTION 5 BANQUE DE PROJETS

SECTION 5 BANQUE DE PROJETS SECTION 5 BANQUE DE PROJETS INF 4018 BANQUE DE PROJETS - 1 - Banque de projets PROJET 2.1 : APPLICATION LOGICIELLE... 3 PROJET 2.2 : SITE WEB SÉMANTIQUE AVEC XML... 5 PROJET 2.3 : E-LEARNING ET FORMATION

Plus en détail

Quelques conseils pour le choix des indicateurs

Quelques conseils pour le choix des indicateurs IDENTIFIER LES INDICATEURS ET LES CIBLES Pourquoi se doter d indicateurs de suivi Étant donné l aspect dynamique du contexte dans lequel s inscrit votre projet, il est important de mesurer de façon continue

Plus en détail

OFFRE D EMPLOI. 2.1 La définition du poste

OFFRE D EMPLOI. 2.1 La définition du poste OFFRE D EMPLOI 1 Introduction Définir une offre d emploi type n est pas un processus anodin à sous-estimer. En effet, l offre que l entreprise va communiquer représente la proposition d emploi vacant.

Plus en détail

Site Web de paris sportifs

Site Web de paris sportifs HENAUD Benoît Numéro d auditeur 05-39166 Version V1.2 Date de mise à jour 31/03/2008 1/21 Table des matières 1. Objectif du document... 3 2. Présentation... 3 2.1. Présentation du projet... 3 2.2. Situation

Plus en détail

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2) Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter

Plus en détail

Benchmark des Meilleures Pratiques : de la Communauté des utilisateurs de solutions CRM, XRM 1

Benchmark des Meilleures Pratiques : de la Communauté des utilisateurs de solutions CRM, XRM 1 L' imaginer, le réaliser ensemble Benchmark des Meilleures Pratiques : de la Communauté des utilisateurs de solutions CRM, XRM 1 Réalisé par 1 extended Relation Management : une extension du CRM (Customer

Plus en détail

Comment configurer les HotFolders et les Workflows

Comment configurer les HotFolders et les Workflows Comment configurer les HotFolders et les Workflows HotFolders 1 À la base : le Hotfolder en tant que gestionnaire de fichiers 1 Un exemple : les Hotfolders et la barre d images 2 Imprimer depuis un client

Plus en détail

APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE

APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE INAUGURATION DE L INSTITUT HENRI FAYOL 17/05/2013 DE L OPTIMISATION MATHEMATIQUE

Plus en détail

CAHIER DES SPECIFICATIONS FONCTIONNELLES

CAHIER DES SPECIFICATIONS FONCTIONNELLES 2010/2011 INSTITUT SUP GALILEE CAHIER DES SPECIFICATIONS FONCTIONNELLES IHM XML O.N.E.R.A. Institut Sup Galilée O.N.E.R.A. Page 2 Sommaire I. Description du sujet... 4 II. Outils utilisés... 4 III. Description

Plus en détail

Points fixes de fonctions à domaine fini

Points fixes de fonctions à domaine fini ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2013 FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE

Plus en détail

Visual Studio 2013 Concevoir et développer des projets Web, les gérer avec TFS 2013

Visual Studio 2013 Concevoir et développer des projets Web, les gérer avec TFS 2013 Introduction 1. Présentation du cas d étude 13 1.1 Présentation générale 13 1.2 Présentation des applications 13 2. Déroulement du projet 14 3. Pré-requis et fondamentaux techniques à connaître 15 3.1

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

Modèle d implémentation

Modèle d implémentation Modèle d implémentation Les packages UML: Unified modeling Language Leçon 5/6-9-16/10/2008 Les packages - Modèle d implémentation - Méthodologie (RUP) Un package ou sous-système est un regroupement logique

Plus en détail

DIVA. Modélisation spécialisée d analyse financière stochastique et dynamique

DIVA. Modélisation spécialisée d analyse financière stochastique et dynamique DIVA Modélisation spécialisée d analyse financière stochastique et dynamique Un outil flexible et intuitif qui modélise l impact financier des risques d assurance complexes et volatiles rencontrés dans

Plus en détail

Un algorithme génétique hybride pour des problèmes de tournées de véhicules multi-attributs

Un algorithme génétique hybride pour des problèmes de tournées de véhicules multi-attributs Un algorithme génétique hybride pour des problèmes de tournées de véhicules multi-attributs Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau Nadia Lahrichi, Walter Rei ROADEF 2010 Plan de la présentation

Plus en détail

Projet de cryptographie. Algorithme de cryptage de type Bluetooth

Projet de cryptographie. Algorithme de cryptage de type Bluetooth Projet de cryptographie Algorithme de cryptage de type Bluetooth Le but de ce projet est de créer une application qui crypte et décrypte des fichiers en utilisant le principe de cryptage du Bluetooth.

Plus en détail

Deuxième partie. Calcul de fréquences de génotypes multilocus dans des pédigrees complexes XXVII

Deuxième partie. Calcul de fréquences de génotypes multilocus dans des pédigrees complexes XXVII Deuxième partie Calcul de fréquences de génotypes multilocus dans des pédigrees complexes XXVII Présentation Les programmes informatiques MDM et grafgen L analyse de schémas de construction de génotypes

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES ST50 - Projet de fin d études Matthieu Leromain - Génie Informatique Systèmes temps Réel, Embarqués et informatique Mobile - REM 1 Suiveur en entreprise

Plus en détail

Travailler avec des objets pédagogiques, un PLUS pour l autonomie de l enseignant. Colloque SFIB/CTIE 2008

Travailler avec des objets pédagogiques, un PLUS pour l autonomie de l enseignant. Colloque SFIB/CTIE 2008 Travailler avec des objets pédagogiques, un PLUS pour l autonomie de l enseignant Colloque SFIB/CTIE 2008 Jean Zahnd / P.-O. Vallat Points traités Modalités de l expérimentation 1 Aspects techniques et

Plus en détail

Les standards et la prise en compte des COTS : comment se concilient l utilisation des COTS et les normes actuelles?

Les standards et la prise en compte des COTS : comment se concilient l utilisation des COTS et les normes actuelles? Les standards et la prise en compte des COTS : comment se concilient l utilisation des COTS et les normes actuelles? L I S EDF Electricité de France technicatome THOMSON-CSF Marie-Hélène Durand Aerospatiable

Plus en détail

La version 12 de PaperPort s est enrichie de nombreuses fonctions qui vont vous aider à gérer encore plus efficacement l ensemble de vos documents.

La version 12 de PaperPort s est enrichie de nombreuses fonctions qui vont vous aider à gérer encore plus efficacement l ensemble de vos documents. Bienvenue! Nuance PaperPort est un logiciel de gestion documentaire qui vous permet de numériser, d organiser, de consulter, de manipuler et de partager vos documents papier et vos fichiers numériques

Plus en détail

Modélisation des Systèmes d Information Jean-Yves Antoine

Modélisation des Systèmes d Information Jean-Yves Antoine Modélisation des Systèmes d Information Jean-Yves Antoine http://www.info.univ-tours.fr/~antoine Processus de développement logiciel Jean-Yves Antoine U. Bretagne Sud - UFR SSI - IUP Vannes année 2001-2002

Plus en détail

Cours et applications

Cours et applications MANAGEMENT SUP Cours et applications 3 e édition Farouk Hémici Mira Bounab Dunod, Paris, 2012 ISBN 978-2-10-058279-2 Table des matières Introduction 1 1 Les techniques de prévision : ajustements linéaires

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

UV Théorie de l Information. Codes à longueur variable

UV Théorie de l Information. Codes à longueur variable Cours n 5 : UV Théorie de l Information Compression de l information : Codage de source sans distorsion Ex 1 : Code de Shannon Fano Ex 2 : Code de Huffman Ex 3 : Codage par plage Ex 4 : Codage de Lempel

Plus en détail

CORRECTION D UN BUG (INTERACTION DEVELOPPEUR/TESTEUR)

CORRECTION D UN BUG (INTERACTION DEVELOPPEUR/TESTEUR) CORRECTION D UN BUG (INTERACTION DEVELOPPEUR/TESTEUR) 1 Correction d un bug (interaction développeur/testeur) Sommaire Avertissement...2 Aperçu...3 1. Résolution du problème...4 Triage et affectation de

Plus en détail

Plateforme d'évaluation professionnelle. Manuel d utilisation de l interface de test d EvaLog

Plateforme d'évaluation professionnelle. Manuel d utilisation de l interface de test d EvaLog Plateforme d'évaluation professionnelle Manuel d utilisation de l interface de test d EvaLog Un produit de la société AlgoWin http://www.algowin.fr Version 1.0.1 du 18/01/2015 Table des matières Présentation

Plus en détail