Chapitre 2 : LES NOMBRES COMPLEXES : FORME ALGEBRIQUE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 2 : LES NOMBRES COMPLEXES : FORME ALGEBRIQUE"

Transcription

1 SOMMAIRE 1.ACTIVITES... 2 ACTIVITE ACTIVITE NOTION DE NOMBRE COMPLEXE... 3 DEFINITIONS ET PROPRIETES INTERPRETATION GEOMETRIQUE AFFIXE D UN VECTEUR, D UN BARYCENTRE NOMBRES COMPLEXES CONJUGUES REGLES DE CALCULS SUR LES NOMBRES COMPLEXES MODULE D UN NOMBRE COMPLEXE OPERATIONS SUR CONJUGUES ET MODULES SECOND DEGRE A COEFFICIENTS REELS...8 touchap2seuls 1/9

2 1.Activités Activité 1 En 1545 le mathématicien italien Jérôme Cardan ( ) publia une formule permettant sous certaines conditions de trouver une solution à une équation du troisième degré. On montre qu une équation du troisième degré quelconque peut toujours s écrire sous la forme : x 3 + px + q =0 p et q étant deux nombres réels. Une solution à cette équation est alors donnée par la formule suivante : 1. On considère les deux fonctions f et g définies sur R par f (x)= x 3 +2x +3 et g(x)= x 3-15x - 4 a) Etudier les variations de ces deux fonctions sur R et dresser leur tableau de variations. (On pourra s aider de la calculatrice) b) En déduire le nombre de solutions sur R des équations f (x) = 0 puis g(x) = Etude de l équation (F) : x 3 +2x +3 = 0. a) Appliquer la formule de Cardan à cette équation. b) Vérifier que : = et que c) En déduire une expression simple d une solution à l équation (F). = Etude de l équation (G) : x 3-15x 4 = 0. a) Appliquer la formule de Cardan à cette équation, que se passe t-il? b) Le mathématicien italien Bombelli ( ) eu l idée d appliquer la formule de Cardan à l équation (G) et de poursuivre les calculs en considérant que -484 existe et on le qualifie de "nombre imaginaire". Par utilisation des règles usuelles de calcul on a alors - 22² = 22² (-1) = 22-1 Ce "nombre imaginaire", -1 reçut en 1777 une notation particulière, Euler nota i ce nombre imaginaire, et il posa i² = -1 ;ce qui permet de poser -484 =22i Avec cette notation écrire la formule de Cardan obtenue pour l équation (G). c) En appliquant les formules usuelles de calcul dans R, développer (2 + i) 3 et (2 - i) 3 d) En déduire une expression simple d une solution à l équation (G). f) Vérifier que x 3-15x 4 = (x 4) (x² + 4x + 1) puis résoudre (G). Activité 2 2 p.284 touchap2seuls 2/9

3 2. Notion de nombre complexe Définitions et propriétés. Définition n 1 : On appelle nombre complexe un nombre de la forme z = a + ib où a et b sont deux réels et i un symbole tel que i 2 = -1. Cette écriture est appelée forme algébrique du nombre complexe z. L ensemble de tous les nombres complexes se note C. Les règles de calculs pour l addition et la multiplication restent les mêmes que dans R. Exemples : 2 + 3i ; i 2 sont des nombres complexes i = 0est un nombre complexe particulier et d une façon générale : si x est un nombre réel alors x + 0 i = x est un nombre complexe. Propriété 1: Tout nombre réel est un nombre complexe particulier, on dit que l ensemble des nombre réels est inclus dans l ensemble des nombres complexes et on note R C NB : 3i = 0 + 3i et -2i = 0 + (-2)i sont des nombres complexes. On dit que ce sont imaginaires purs. Définition n 2 : On appelle imaginaire pur tout nombre complexe de la forme ib où b est un nombre réel. L ensemble des nombres imaginaires purs se note ir. Remarque : 0 est imaginaire pur. Parmi les nombres complexes a + ib, les deux cas particuliers des nombres réels et imaginaires purs, sont obtenus en faisant a = 0 ou b = 0. C est ainsi que l on définit la partie réelle et la partie imaginaire d un nombre complexe. Définition n 3 : Soient a et b deux nombres réels, et z le nombre complexe a + ib. a est appelé partie réelle de z et b partie imaginaire de z. On note a = Re(z) et b = Im(z). Remarque : la partie imaginaire d un nombre complexe est un nombre réel, il n y a pas de "i". Exemples : z = 2 + i 3 La partie réelle de z est 2 et sa partie imaginaire est 3. Puisque 0 = i il s ensuit que la partie réelle et la partie imaginaire de 0 sont toutes deux nulles. Réciproquement si a = b = 0, alors z = a + ib = i = 0 Propriété 2: Un nombre complexe est nul si et seulement si ses parties réelle et imaginaire sont nulles. z = 0 Re(z) = Im(z) = 0 touchap2seuls 3/9

4 Conséquences : Un nombre complexe est réel si et seulement si sa partie imaginaire est nulle. Un nombre complexe est imaginaire pur si et seulement si sa partie réelle est nulle. z R Im(z) = 0 et z ir Re(z) = 0 0 est le seul nombre complexe à la fois réel et imaginaire pur. Calculs : On calcule dans C comme dans R. Deux nombres complexes z = a + ib et z = a + ib, il vient z = z z z = 0 (a + ib) - (a + ib ) = 0 a a + ib ib = 0 a a + ib ib = 0 Soit z = z (a a ) + i(b b ) = 0 a a = 0 et b b = 0 a = a et b = b. Ce qui signifie que z et z on même partie réelle et même partie imaginaire, d où : Propriété 2: Deux nombres complexes sont égaux si et seulement si ils ont même partie réelle et même partie imaginaire. z = z Re(z) = Re(z ) et Im(z) = Im(z ) 3. Interprétation géométrique. (O ; OU, OV) étant un repère du plan, A tout nombre complexe z = a + ib, a et b étant deux réels, on associe un unique point M du plan qui aura pour coordonnées (a, b), et réciproquement à tout point M du plan on associe l unique nombre complexe z = a + ib où a et b sont respectivement l abscisse et l ordonnée de ce point M. Ce nombre complexe z se nomme affixe du point M. Le plan est appelé plan complexe. Définition n 4 : On appelle affixe du point M, le nombre complexe z = a + ib où, a et b sont dans cet ordre, l abscisse et l ordonnée du point M. M est appelé point image du nombre complexe z = a + ib. Notation : M(z) exprime le fait que l affixe de M est z. touchap2seuls 4/9

5 Si l on considère plusieurs points, on notera z A l affixe de A, z B l affixe de B, etc... On nomme l axe des abscisses "axe des réels" et l axe des ordonnées "axe des imaginaires purs". 4. Affixe d un vecteur, d un barycentre Définition n 5 : L affixe du vecteur u (x, y) est le nombre complexe, qu on peut noter Aff ( u ), défini par z u = x + iy. D où pour u = AB avec A et B qui ont pour affixes respectives z A = x A + iy A et z B = x B + iy B, le vecteur AB ayant pour coordonnées (x B - x A ; y B - y A ), on a donc: Aff ( AB ) = xb - x A + i( y B - y A ) = x B - x A + iy B - iy A =(x B + iy B ) - (x A + iy A )= z B - z A Soit z AB = z B - z A Propriété 3 : Soient deux points A(z) et B(z) alors le vecteur AB a pour affixe = z B - z A De même le barycentre G des points pondérés (A,a), (B, b) avec a + b non nulle a pour affixe : z G = az A + bz B a + b Point image et affixe : Le point image M d un tel complexe aura comme affixe z = x + 0 i et donc comme coordonnées (x, 0) ce qui signifie qu il appartient à l axe des abscisses. Réciproquement, un point de l axe des abscisses a pour coordonnées (x, 0) et comme affixe z = x + 0 i = x, ce qui implique qu il soit réel. Un nombre complexe est réel si et seulement si son point image appartient à l axe des abscisses. Un nombre complexe est imaginaire pur si et seulement si son point image appartient à l axe des ordonnées. Exercice : Placer les points suivants dans le plan complexe muni d un repère orthonormal (O, u, v) A(1) ; B(i); C(1+ i); C (1 - i); D(3-2i); D (3 + 2i) 5. Nombres complexes conjugués Définition 6 : Soit un nombre complexe z = a + ib avec a et b réel, on appelle nombre complexe conjugué de z le nombre complexe noté z défini par z = a - ib Exemples 1+ i =1- i ; 3-2i = 3+2 ; i = 0 + i = 0 i = -i ; 1 = i =1-0 i =1 touchap2seuls 5/9

6 On remarque que i et i sont opposés alors que 1et 1 sont égaux. Ceci est général, en effet si M(z) avec z réel, M sera invariant par la symétrie d axe (Ox) et donc M(z) et M ( z )seront confondus d où z = z, et réciproquement. Dans le cas où M(z) avec z imaginaire pur, M appartient à l axe (Oy) et son symétrique par rapport à (Ox) aura pour affixe -z, d où z = -z, et réciproquement. Propriété 4 : Un nombre complexe est réel si et seulement s il est égal à son conjugué. Un nombre complexe est imaginaire pur si et seulement s il est égal à l opposé de son conjugué. z R z = z et z ir z = -z conséquences : z = z z = a + ib, avec a et b réels: z + z = a + ib + a - ib = 2a = 2Re(z) z - z = a + ib - (a - ib) = a + ib - a+ ib = 2ib = 2iIm(z) ce qui permet d obtenir: Re(z) = z + z 2 Im(z) = z - z 2i 6. Règles de calculs sur les nombres complexes. Exercice : Effectuer les opérations suivantes puis placer les points obtenus dans le plan complexe muni d un repère orthonormé (O, u, v): z 1 =(2+5i) + (1-2i); z 2 = (-2+4i) - (1+3i); z 3 =(3+2i) (1-i); z 4 = 2 + 3i 3 ; z 5 = 1 + 2i 1 + i Solution z 1 =3+3i ; z 2 =-3+i ; z 3 =3-3i +2i - 2i 2 = 5- i ; z 4 = i; z 5 = i 2 Soient les points M 1 (3+3i); M 2 (-3+i); M 3 (5- i); et M 4 ( i) et M5 (3 2 + i 2 ) Règle pratique. Pour mettre un quotient de deux nombres complexes sous forme algébrique, on multiplie le numérateur et le dénominateur de ce quotient par le conjugué du dénominateur Soit, z 2 non nul alors : z 1 z 2 = z 1 z 2 z 2 z 2 touchap2seuls 6/9

7 Donc si le dénominateur est sous la forme z = a + ib, avec a et b réels, on obtient alors zz =(a +ib) (a - ib) = a² - (ib)² = a² - i²b² = a² + b² Propriété 5: Soit z = a + ib avec a et b réels, alors z z = a² + b² Application : Donner la forme algébrique des nombres complexes suivants : z 1 = (2+3i)(2-3i); z 2 = (2+3i) 2 ; z 3 = 1 i et z 4 = 2-3i 2 - i Identités remarquables: (z +z )² = z² +2zz + z ² (z - z )² = z² - 2zz + z ² z ² - z ² =(z z )(z + z ) z ² + z ² =(z + iz )(z iz ) 7. Module d un nombre complexe. Définition 7: On appelle module du nombre complexe z = a + ib avec a et b réels la distance OM où M est le point du plan complexe d affixe z, on note ce module z donc : z = a + ib = a² + b²= OM Application: Considérons deux points A(x A,y A ) et B(x B,y B ) d affixes respectives z A = x A + iy A et z B = x B + iy B, puisque z B - z A =(x B + iy B ) - (x A + iy A )=(x B - x A )+ i(y B - y A ) d après la formule usuelle donnant la distance entre deux points du plan, AB = (x B - x A )² + (y B - y A )² donc AB = z B - z A Propriété 6: Soient A et B deux points d affixes respectives z A et z B alors AB = z A - z B Une conséquence de la définition du module est que zz = a ² + b² = z ² 8. Opérations sur conjugués et modules Propriétés de la conjugaison et du module. Dans tout ce qui suit z =a + ib et z =a + ib sont deux nombres complexes écrits sous forme algébrique et le plan complexe est muni d un repère orthonormal z = z -z = z (-z) = - z Conjugué d une somme ou d une différence : z + z = z + z et de même z z = z - z Module d une somme ou d une différence : Soient M(z), M (z ) et R(z +z ),alors z +z = OR, or d après l inégalité triangulaire valable pour tous les points du plan, on obtient z +z = OR OM+MR. z M + z R -z M = z + z +z -z = z + z On a donc z +z z + z touchap2seuls 7/9

8 Conjugué d un produit. z z = (a + ib)(a + ib )=aa bb + iab + ia b = aa bb + i(ab + a b) z z = aa bb + i(ab + a b) = aa bb - i(ab + a b) z z = (a - ib)(a - ib )=aa bb - iab - ia b = aa bb - i(ab + a b) Donc : Le conjugué d un produit est égale au produit des conjugués z z = z z Module d un produit. z z ² = a² + b² = z z z z. = z ² z ² = z ² z ²= d après le résultat précédent. Les quantités ont donc des carrés égaux, or comme ce sont des nombres réels positifs nous pouvons en conclure qu ils sont égaux, d où : on retiendra que : Le module d un produit est égal au produit des modules z z = z z Module et conjugué d une puissance. Soit n un entier naturel non nul.: z n = z n et z n =z n Conjugué d un quotient. Le conjugué d un quotient est égal au quotient des conjugués : En particulier si le numérateur vaut 1, 1 z = 1 z z z = z z Module d un quotient. Le module d un quotient est égal au quotient des modules : z z = z z En particulier si le numérateur vaut 1, 1 z = 1 z 9. Second degré à coefficients réels Racines carrées d un réel dans C. Définition : les solutions de l équation z² = a, avec a réel, sont appelées racines carrées de a dans C. Propriété : Tout réel non nul admet deux racines carrées dans C. Si a > 0, z² = a admet deux racines réelles a et - a Si a < 0, z² = a admet deux racines complexes i -a et -i -a Exemples : z² = -3 admet deux solutions i 3 et i 3 touchap2seuls 8/9

9 Résolution de az² + bz + c = 0, avec a,b, c réels et a non nul. Définition : Soit = b² - 4ac, si = 0, une solution réelle est b 2a si > 0, deux solutions réelles -b + 2a si < 0, deux solutions complexes conjuguées et -b - 2a -b + i - et 2a -b i - 2a Exemples z² + z + 2 = 0 si = -7, deux solutions complexes conjuguées -1 + i 7 2 et -1 i 7 2 touchap2seuls 9/9

TERMINALE S Chapitre 1 : les nombres complexes [forme algébrique]

TERMINALE S Chapitre 1 : les nombres complexes [forme algébrique] SOMMAIRE * 1. NOTION DE NOMBRE COMPLEXE... 2 DEFINITIONS ET PROPRIETES.... 2 * 2. INTERPRETATION GEOMETRIQUE.... 3 * 3. AFFIXE D UN VECTEUR, D UN BARYCENTRE... 3 * 4. NOMBRES COMPLEXES CONJUGUES... 4 *

Plus en détail

TERMINALE S Les nombres complexes [forme algébrique]

TERMINALE S Les nombres complexes [forme algébrique] Définitions et propriétés. Il existe un ensemble de nombres, noté C, qui contient tous les nombres réels et qui de plus : -contient un nombre noté i, un symbole tel que i 2 = -1. -tous les nombres de C

Plus en détail

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire :

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire : Nombres complexes 1 Ensemble des nombres complexes 1.1 Forme algébrique d un nombre complexe Théorème Admis 1. Il existe un ensemble, noté C, d éléments appelés nombres complexes, tel que : C contient

Plus en détail

Chapitre 10 Nombres complexes NOMBRES COMPLEXES. et Im(z) =

Chapitre 10 Nombres complexes NOMBRES COMPLEXES. et Im(z) = Chapitre 0 Nombres complexes NOMBRES COMPLEXES I- - Forme algébrique d un nombre complexe Définition : On note C l ensemble des nombres de la forme z = x + iy, où x et y sont deux nombres réels et ii un

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Généralités 1.1 Définitions................................................. 1. Règles de calcul dans C.........................................

Plus en détail

TS Nombres complexes Cours

TS Nombres complexes Cours TS Nombres complexes Cours I. Le plan complexe 1. Définitions générales Théorème( admis ) Il existe un ensemble noté, appelé ensemble des nombres complexes qui possède les propriétés suivantes : contient

Plus en détail

Les nombres complexes : forme algébrique

Les nombres complexes : forme algébrique Isabelle orel-ts-cours complexes forme algébrique Les nombres complexes : forme algébrique Introduction. Le problème L histoire des nombres complexes commence en pleine Renaissance italienne avec les algébristes

Plus en détail

Géométrie plane & nombres complexes

Géométrie plane & nombres complexes Géométrie plane & nombres complexes Terminale S P. Flambard Lycée Max Linder Année scolaire 2017-2018 1. Notion de nombre complexe Ensemble des nombres complexes Propriété Il existe un ensemble de nombres,

Plus en détail

Nombres complexes. Introduction - Résolution d équations algébriques ) 1 + ( 1) (car 1 2 = 1!)

Nombres complexes. Introduction - Résolution d équations algébriques ) 1 + ( 1) (car 1 2 = 1!) Nombres complexes 1ère STID I - Introduction - Résolution d équations algébriques Soit le trinôme du second degré P(x) = 1 x + 3x + 5. Le discriminant de P est : = 9 10 = 1 < 0, donc P n a pas de racine

Plus en détail

Mathématique en Terminale S Les nombres complexes

Mathématique en Terminale S Les nombres complexes Mathématique en Les nombres complexes Table des matières 1 Approche historique 3 2 4 3 Représentation graphique des nombres complexes 4 4 Opérations sur les nombres complexes 5 4.1 Addition et soustraction

Plus en détail

Nombres complexes, cours, Terminale S

Nombres complexes, cours, Terminale S Nombres complexes, cours, Terminale S F.Gaudon 25 mars 2014 Table des matières 1 Notion de nombre complexe 2 2 Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes

Plus en détail

Les nombres complexes

Les nombres complexes Lycée Paul Doumer 2013-2014 TS1 Cours Les nombres complexes Contents 1 Introduction - Une extension des ensembles de nombres 2 2 Forme algébrique d un nombre complexe 3 2.1 Définitions et vocabulaire..............................

Plus en détail

Nombres complexes Forme algébrique

Nombres complexes Forme algébrique Nombres complexes Forme algébrique I) Forme algébrique d un nombre complexe 1) Définitions On admet l existence d un nombre, noté dont le carré est égal à On appelle alors nombre complexe tout nombre de

Plus en détail

Les nombres complexes (forme algébrique)

Les nombres complexes (forme algébrique) Les nombres complexes (forme algébrique) I. L'ensemble IC des nombres complexes. ) Notion de nombre complexe. def : Soit i le nombre "imaginaire" tel que i ² =. L'ensemble IC des nombres complexes est

Plus en détail

Chapitre VI : Complexes (1) Forme algébrique

Chapitre VI : Complexes (1) Forme algébrique Forme algébrique. Ensemble des nombres complexes. Notion de nombres complexes Théorème l existe un ensemble, noté, appelé ensemble de nombres complexes qui possède les propriétés suivantes : R l addition

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Table des matières 1 Approche historique 2 2 Définition 2 3 Représentation graphique des nombres complexes 3 4 Opérations sur les nombres complexes 4 4.1 Addition et soustraction

Plus en détail

Nombres complexes, cours, première STI2D

Nombres complexes, cours, première STI2D Nombres complexes, cours, première STID F.Gaudon 9 juin 015 Table des matières 1 Notion de nombre complexe Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes 3 4

Plus en détail

Cours de terminale S Les nombres complexes

Cours de terminale S Les nombres complexes Cours de terminale S Les nombres complexes V. B. et S. B. Lycée des EK 20 décembre 2014 Définition Vocabulaire Conséquences Définition Il existe un ensemble, noté C, d éléments appelés nombres complexes,

Plus en détail

Nombres complexes. Lycée du parc. Année

Nombres complexes. Lycée du parc. Année Nombres complexes Lycée du parc Année 2014-2015 Introduction historique Au début du XVI ème siècle en Italie, Scipione del Ferro, découvre une formule permettant de résoudre les équations du type x 3 +

Plus en détail

NOMBRES COMPLEXES. I Introduction 1 I.1 Le nombre i... 1 I.2 L ensemble des nombres complexes... 1

NOMBRES COMPLEXES. I Introduction 1 I.1 Le nombre i... 1 I.2 L ensemble des nombres complexes... 1 re STI Ch03 : Nombres complexes 006/007 NOMBRES COMPLEXES Table des matières I Introduction I. Le nombre i............................................ I. L ensemble des nombres complexes...............................

Plus en détail

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe Chapitre 7 Les nombres complexes Objectifs du chapitre : item références auto évaluation forme algébrique d un nombre complexe résolution d équation du second degré dans C forme exponentielle d un nombre

Plus en détail

Les nombres complexes

Les nombres complexes Chapitre 6 Terminale S Ce que dit le programme : Les nombres complexes CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie Forme algébrique, conjugué. Somme, produit, quotient. Équation du second degré

Plus en détail

BTS Mécanique et Automatismes Industriels. Nombres complexes

BTS Mécanique et Automatismes Industriels. Nombres complexes BTS Mécanique et Automatismes Industriels, Année scolaire 006 007 Table des matières. Les différentes écritures. - Forme algébrique d un nombre complexe. - Représentation géométrique d un nombre complexe.3

Plus en détail

BTS Mécanique et Automatismes Industriels. Nombrescomplexes

BTS Mécanique et Automatismes Industriels. Nombrescomplexes BTS Mécanique Automatismes Industriels Nombrescomplexes, Année scolaire 008/009 Table des matières Nombres complexes.lesdifférentesécritures....... Forme algébriqued unnombre complexe.... Représentationgéométrique

Plus en détail

Nombres complexes. Les Nombres Complexes

Nombres complexes. Les Nombres Complexes Introduction : Historique : Les Nombres Complexes Au début du XVI ème siècle, le mathématicien Scipione dal Ferro, propose une formule donnant une solution de l'équation du 3 ème degré : A la fin du XVI

Plus en détail

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3 I Forme algébrique d un nombre complexe 1 Il existe un ensemble noté et appelé ensemble des nombres complexes qui vérifie les propriétés suivantes : " ; L'ensemble est muni d'une addition et d'une multiplication

Plus en détail

GEOMETRIE PLANE : NOMBRES COMPLEXES

GEOMETRIE PLANE : NOMBRES COMPLEXES GEOMETRIE PLANE : NOMBRES COMPLEXES I Les points du plan et les nombres complexes - Notion de nombre complexe Dans ce chapitre, on définit un ensemble noté C, qui prolonge l ensemble R, muni d une addition

Plus en détail

Chapitre VII Les nombres complexes

Chapitre VII Les nombres complexes Chapitre VII Les nombres complexes Extrait du programme : I. Ensemble des nombres complexes 1. Existence Théorème (admis) : Il existe un ensemble noté, appelé ensemble des nombres complexes, qui possède

Plus en détail

NOMBRES COMPLEXES. Définition Deux nombres complexes Z = a + i b et Z = a + i b' sont égaux si et seulement si a = a et b = b

NOMBRES COMPLEXES. Définition Deux nombres complexes Z = a + i b et Z = a + i b' sont égaux si et seulement si a = a et b = b NOMBRES COMPLEXES I- s et règles de calcul dans C Un nombre complexe est un nombre de la forme Z = a + i b où a et b sont des réels et i un nombre vérifiant i² = 1 L'ensemble des nombres complexes est

Plus en détail

Les nombres complexes

Les nombres complexes DERNIÈRE IMPRESSION LE 17 février 016 à 15:35 Les nombres complexes Table des matières 1 Introduction 1.1 Un problème historique......................... 1. Création d un nouvel ensemble.....................

Plus en détail

Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER. D. Poquillon, C. Mijoule et P. Floquet

Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER. D. Poquillon, C. Mijoule et P. Floquet Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER D Poquillon, C Mijoule et P Floquet SEPTEMBRE 005 Cours semaine 1 :Introduction, définitions, résolution d équations 1-1 Introduction

Plus en détail

Chapitre VII : LES NOMBRES COMPLEXES

Chapitre VII : LES NOMBRES COMPLEXES I - Ecriture algébrique des nombres complexes 1) Définition Chapitre VII : LES NOMBRES COMPLEXES Définition 1 : On admet qu il existe un ensemble de nombres, noté C, vérifiant les propriétés suivantes

Plus en détail

Chapitre 4 Les nombres complexes : 1ère Partie

Chapitre 4 Les nombres complexes : 1ère Partie Chapitre 4 Les nombres complexes : 1ère Partie A) Définition et propriétés de base 1) Historique Les nombre complexes ont été inventés au départ en 1545 par le mathématicien italien Jérôme Cardan (Girolamo

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Les nombres complexes. Il existe un ensemble, noté C, d éléments appelés..........................., tels que : C contient l ensemble............... ; C contient un élément i tel

Plus en détail

Chap. 5 : Ensemble C 1. L ensemble C. Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + i.

Chap. 5 : Ensemble C 1. L ensemble C. Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + i. Chap 5 : Ensemble C 1 Arthur LANNUZEL le 1 Octobre 005 L ensemble C 1 Définition de C 11 Rappels Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + ib, a, b R} où i =

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Hervé Hocquard Université de Bordeaux, France 6 septembre 017 Rappels ou pas Introduction Soit (O; i, j ) un repère orthonormal direct et soit C le cercle trigonométrique de centre

Plus en détail

Nombres complexes I C H A P I T R E

Nombres complexes I C H A P I T R E 4 C H A P I T R E Nombres complexes I Jérôme CARDAN mathématicien, philosophe et astrologue se passionne pour les équations du troisième et quatrième degré. Il fait venir chez lui TARTAGLIA et lui arrache

Plus en détail

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec 1/Les Nombres Complexes Chapitre 4 Les Nombres Complexes. I. Définitions Objectif : On veut «construire» un ensemble de nombres contenant l ensemble des nombres réels, muni de deux opérations qui généralisent

Plus en détail

Nombres complexes Ecriture algébrique d un complexe Exercices corrigés

Nombres complexes Ecriture algébrique d un complexe Exercices corrigés Nombres complexes Ecriture algébrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : calculs dans l ensemble des nombres complexes (addition, soustraction, multiplication,

Plus en détail

Nombres complexes. s'écrit alors i

Nombres complexes. s'écrit alors i Nombres complexes préambule : En 1545, dans son ouvrage Artis magnae sive regulis algebraicus, le mathématicien italien Cardan veut résoudre l'équation : x(10 x) 40. Il est confronté à une opération impossible

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 8 novembre 009 Table des matières Définitions Forme algébrique Représentation graphique Opérations sur les nombres complexes Addition et multiplication Inverse d un nombre complexe

Plus en détail

Relations entre forme trigonométrique et forme algébrique

Relations entre forme trigonométrique et forme algébrique FORMULES ET THÉORÈMES Carré du nombre i On définit le nombre i de la façon suivante. i = 1 Forme algébrique d'un nombre complexe Tout nombre complexe z peut s'écrire sous une forme algébrique. z = a +

Plus en détail

Ecritures des nombres complexes

Ecritures des nombres complexes Ecritures des nombres complexes I. Rappel sur les nombres complexes Le nombre i est un nombre dont le carré vaut 1. Donc : i² = 1 De plus, son opposé i a aussi pour carré 1. ( i)² = i² = 1 Les deux racines

Plus en détail

NOMBRES COMPLEXES. I Définitions

NOMBRES COMPLEXES. I Définitions NOMBRES COMPLEXES Objectifs Définitions C, nombre complexe, forme algébrique, parties réelles imaginaires, imaginaire pur. Plan complexe, affixe, image, axe imaginaire, axe réel Introduction. Inclusions

Plus en détail

1 Forme algébrique d un nombre complexe

1 Forme algébrique d un nombre complexe Chapitre 2 Nombres complexes 1 BCPST 851 27 septembre 2011 Chapitre 2 Nombres complexes On suppose donné un nombre i n appartenant pas à R. 1 Forme algébrique d un nombre complexe Définition 1 Propriété

Plus en détail

Nombres complexes, fonctions et formules trigonométriques

Nombres complexes, fonctions et formules trigonométriques Chapitre 4 Nombres complexes, fonctions et formules trigonométriques 41 Nombres complexes L ensemble C des nombres complexes est où i = 1 R C C = {z = a + ib : a, b R} Définition 411 On dit que l écriture

Plus en détail

CHAPITRE 4 : Les nombres complexes

CHAPITRE 4 : Les nombres complexes CHAPITRE 4 : Les nombres complexes 1 Définition... 1.1 Théorème... 1. Définitions... 1.3 Théorème... Nombre complexe conjugué... 3.1 Définition... 3. Théorème 1... 3.3 Théorème... 3.4 Théorème 3... 5 3

Plus en détail

Chapitre 9 Les nombres complexes

Chapitre 9 Les nombres complexes Chapitre 9 Les nombres complexes Vocabulaire-représentation Définition des nombres complexes Définition Nombres complexes, partie réelle, partie imaginaire) On introduit i, un nombre qui vérifie i = On

Plus en détail

Module d'un nombre complexe. Nombres complexes. Définition. Forme algébrique :

Module d'un nombre complexe. Nombres complexes. Définition. Forme algébrique : Définition Nombres complexes L'ensemble des nombres complexes noté est l'ensemble des nombres de la forme z = a + biou a et b sont des réels quelconques et i un nouveau nombre tel que i²= -1. Le nombre

Plus en détail

NOMBRES COMPLEXES. avec une calculatrice TI on écrit par exemple 5^(1/3) et on obtient environ 1,71. On a donc 3 5 1,71

NOMBRES COMPLEXES. avec une calculatrice TI on écrit par exemple 5^(1/3) et on obtient environ 1,71. On a donc 3 5 1,71 NMBRES CMPLEXES I - Représentation géométrique Rappel Pour tout réel k, il existe un unique nombre réel dont le cube est k. Ce nombre est appelé racine cubique de k. Il est noté 3 k ou aussi k n a par

Plus en détail

Nombres complexes, cours, Terminale S

Nombres complexes, cours, Terminale S Nombres complexes, cours, Terminale S F.Gaudon 18 décembre 2013 Table des matières 1 Notion de nombre complexe 2 2 Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes

Plus en détail

1. Forme algébrique d un nombre complexe

1. Forme algébrique d un nombre complexe Chapitre 5 : Nombres complexes 1STI2D 3, 2014-2015 1. Forme algébrique d un nombre complexe 1.1. Le nombre i Le nombre i est un nombre dont le carré vaut 1. Ainsi, i 2 = 1. De plus, son opposé i a aussi

Plus en détail

I. Nombres complexes. 1 Corps C des nombres complexes

I. Nombres complexes. 1 Corps C des nombres complexes 1 Corps C des nombres complexes Théorème 1. Il existe un ensemble C des nombres complexes qui possède les propriétés suivantes : C contient R. C est muni d une addition et d une multiplication qui suivent

Plus en détail

cours de mathématiques en terminale

cours de mathématiques en terminale cours de mathématiques en terminale Les nombres complexes (partie 1) I. Notion de nombre complexe : 1. Théorème : théorème :. Il existe un ensemble noté propriétés suivantes :, appellé ensemble des nombres

Plus en détail

9 Nombres. complexes. Sommaire CHAPITRE. Partie A (s14) 2

9 Nombres. complexes. Sommaire CHAPITRE. Partie A (s14) 2 CHAPITRE 9 Nombres complexes Sommaire Partie A (s14) 2 1 Rappels de première.................................................. 2 1.1 Forme algébrique 2 1.2 Forme trigonométrique 3 2 Forme exponentielle..................................................

Plus en détail

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban.

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban. COMPLEXES Sujets septembre 01 novembre 01 avril 01 mai 01 Antilles-Guyane Amérique du Sud Pondichéry Liban Formulaire COMPLEXES 1 Antilles-Guyane septembre 01. EXERCICE Le plan complexe est rapporté à

Plus en détail

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 Université de Tours Année 2015-2016 Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 NOMBRES COMPLEXES ET ÉQUATIONS ALGÉBRIQUES (12 h) 1 Nombres complexes 1.1 Introduction

Plus en détail

NOMBRES COMPLEXES ET TRIGONOMÉTRIE

NOMBRES COMPLEXES ET TRIGONOMÉTRIE CHAPITRE 2 NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Rappels de trigonométrie tanα sinα π 2 M(α) π α cosα 0 3π 2 Figure 2.1 Sinus, cosinus, tangente Définition 2.1 La tangente d un nombre réel x, notée tan

Plus en détail

Et un jour on inventa les nombres complexes.

Et un jour on inventa les nombres complexes. CHAPITRE 5. NOMBRES COMPLEXES Chapitre 5 Nombres complexes Et un jour on inventa les nombres complexes. Les plus anciens nombres qui ont été inventés, il y a plusieurs milliers d années, sont bien sûr

Plus en détail

NOMBRES COMPLEXES. 2 + q 2

NOMBRES COMPLEXES. 2 + q 2 NMBRES CMPLEXES I - Représentation géométrique f(x) = x 3 Pour tout réel k, il existe un unique nombre réel dont le cube est k. Ce nombre est appelé racine cubique de k. Il est noté 3 k ou aussi k 3. k

Plus en détail

Nombre complexe. 1. Il existe un nombre noté i, (ou j dans les matières comportant de l électricité), tel que

Nombre complexe. 1. Il existe un nombre noté i, (ou j dans les matières comportant de l électricité), tel que Nombre complexe I. Forme algébrique, Représentation géométrique 1. Il existe un nombre noté i, (ou j dans les matières comportant de l électricité), tel que 2. On appelle nombre complexe tout nombre de

Plus en détail

Chapitre X : Nombres Complexes

Chapitre X : Nombres Complexes Chapitre X : Nombres Complexes I : L ensemble des complexes Il existe un ensemble appelé ensemble des nombres complexes, qu on note C et qui possède les propriétés suivantes : 1. C contient R (on note

Plus en détail

Chapitre 1 Les nombres complexes

Chapitre 1 Les nombres complexes Chapitre 1 Les nombres complexes A) Définition et propriétés de base (rappels) 1) Définition a) On appelle C l'ensemble des nombres complexes. Un nombre complexe s'écrit z a bi, où a et b sont des réels

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 1 Un peu d histoire En 157, l italien NICCLÓ FNTANA dit TARTAGLIA le bègue) découvre une méthode de résolution d équations du troisième degré. Il la dévoile à CARDAN. Celui que les

Plus en détail

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths Géométrie BAC MATHS δmaths M. Ezeddine ABDA DeltaMaths Nombres complexes * +. Si, alors il existe un unique couple tel que. est la forme algébrique du nombre complexe. : la partie réelle de. : la partie

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - représentation graphique, opérations, conjugué, module, argument, forme trigonométrique : toutes sections - notation exponentielle : STISD STL - S Prérequis

Plus en détail

LES NOMBRES COMPLEXES

LES NOMBRES COMPLEXES S.A.Q LES NOMBRES COMPLEXES Aperçu historique Définition Module d'un nombre complexe Argument d'un nombre complexe Nombre complexe et géométrie Ensemble des points M dont l'affixe z vérifie une propriété

Plus en détail

NOMBRES COMPLEXES (Partie 1)

NOMBRES COMPLEXES (Partie 1) NOMBRES COMPLEXES (Partie 1) 1 Les nombres complexes prennent naissance au XVIème siècle lorsqu un italien Gerolamo Cardano (1501 ; 1576), ci-contre, au nom francisé de Jérôme Cardan, introduit 15 pour

Plus en détail

MATHÉMATIQUES T erminale S

MATHÉMATIQUES T erminale S L Oasis Des M@Thém@tiques MATHÉMATIQUES T erminale S Boubacar MANÉ Mansour SANÉ Préface Table des matières 1 Les Nombres Complexes 5 I Historique......................................... 5 II Fabrication

Plus en détail

Nombres complexes. 1 Le corps commutatif (C, +, )

Nombres complexes. 1 Le corps commutatif (C, +, ) Nombres complexes La construction du corps des réels a permis de gagner, par rapport au corps des rationnels, des propriétés topologiques importantes : complétude, théorème de la borne supérieure... À

Plus en détail

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009 CH 1 Géométrie : Complexes 4 ème Sciences Septembre 009 A. LAATAOUI I. INTRODUCTION ET DEFINITION Tous les nombres positifs ont une racine carrée, par exemple, 9 a pour racine 3 et 3 et a pour racine et

Plus en détail

NOMBRES COMPLEXES. I Introduction 2 I.1 Le nombrei... 2 I.2 L ensemble des nombres complexes... 2

NOMBRES COMPLEXES. I Introduction 2 I.1 Le nombrei... 2 I.2 L ensemble des nombres complexes... 2 T ale STI Nombres complexes 008/009 NOMBRES COMPLEXES Table des matières I Introduction I. Le nombrei.............................................. I. L ensemble des nombres complexes.................................

Plus en détail

C1 Nombres complexes : forme algébrique. Le plan complexe.

C1 Nombres complexes : forme algébrique. Le plan complexe. C Nombres complexes : forme algébrique. Le plan complexe. OBJECTIFS DU CHAPITRE C- Mettre en œuvre les règles de calcul sur les nombres complexes C-2 Utiliser les nombres complexes pour résoudre un exercice

Plus en détail

Nombres Complexes Exercice 1. [5 pts] Équations

Nombres Complexes Exercice 1. [5 pts] Équations Nombres Complexes Exercice 1. [5 pts] Équations On se propose d étudier les solutions de l équation (E) z + 1 = 0 1. Vérifier que pour tout nombre complexe z, on a : z + 1 = (z + 1)(z z + 1). En déduire

Plus en détail

Nombres complexes - Équations et forme trigonométrique

Nombres complexes - Équations et forme trigonométrique Lycée Paul Doumer 0-04 TS Cours Nombres complexes - Équations et forme trigonométrique Contents Équation du second degré. Racines carrées..................................... Équation du second degré à

Plus en détail

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque...

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque... Le corps C des nombres complexes Table des matières 1 Définitions algébrique et géométrique de C 1 1.1 Définition de C............................................. 1 1. Structure algébrique de C.......................................

Plus en détail

9 page 333 du LIVRE : EXERCICE N 5 : Extrait de l épreuve du concours EFREI (mai 2010) ÉLÉMENTS DE RÉPONSE DES EXERCICES DU CHAPITRE 5.

9 page 333 du LIVRE : EXERCICE N 5 : Extrait de l épreuve du concours EFREI (mai 2010) ÉLÉMENTS DE RÉPONSE DES EXERCICES DU CHAPITRE 5. 1 FICHE : EXERCICE N 1 : 1. j = 1.. j = j. 1 + j + j = 0 et j = 1. EXERCICE N : 15 page du LIVRE : correction page 474 du livre. EXERCICE N : 6 page du LIVRE : z 1 = 1 + 1 i ; z = 7 + 7 i ; z = 4 5 + 5

Plus en détail

Les similitudes. Table des matières

Les similitudes. Table des matières Les similitudes Table des matières 1 Rappels sur les nombres complexes 3 1.1 Expression d un nombre complexe................... 3 1.2 Représentation d un nombre complexe................. 3 1.3 Opérations

Plus en détail

CHAPITRE 1 : LES NOMBRES COMPEXES :

CHAPITRE 1 : LES NOMBRES COMPEXES : CHAPITRE 1 : LES NOMBRES COMPEXES : I-Forme algébrique d un nombre complexe : I.1) Définitions : On appelle nombre complexe tout nombre de la forme z=a+ib où a et b sont des nombres réels et où la quantité

Plus en détail

Terminale S - Nombres Complexes

Terminale S - Nombres Complexes Exercice - 1 Terminale S - Nombres Complexes Ecrire le nombre complexe z = 1 + i 3 sous sa forme exponentielle En déduire la forme algébrique de z 5 Exercice - 2 2iπ On pose ω = e 5 1 Calculer ω 5 et prouver

Plus en détail

TRANSFORMATIONS ET NOMBRES COMPLEXES

TRANSFORMATIONS ET NOMBRES COMPLEXES TRANSFORATIONS ET NOBRES COPLEXES Table des matières Applications géométriques des nombres complexes. Arguments d un nombre complexe........................................... Ensemble de points du plan.

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 01-014 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Complexes 1 Le Plan complexe 1.1 Introduction Dans tout ce chapitre,

Plus en détail

Cours de Terminale S /Nombres complexes. E. Dostal

Cours de Terminale S /Nombres complexes. E. Dostal Cours de Terminale S /Nombres complexes E. Dostal aout 01 Table des matières 8 Nombres complexes 8.1 Introduction............................................ 8. Le plan complexe.........................................

Plus en détail

Nombres et plan complexes Les exercices fondamentaux à connaître

Nombres et plan complexes Les exercices fondamentaux à connaître Nombres et plan complexes Les exercices fondamentaux à connaître Y. Morel Version en ligne et interactive : http://xymaths.free.fr/lycee/ts/exercices-corriges-complexes.php Table des matières 1 Formes

Plus en détail

TS Applications géométriques des nombres complexes Cours

TS Applications géométriques des nombres complexes Cours TS Applications géométriques des nombres complexes Cours I. Forme trigonométrique d un nombre complexe non nul (O ; u ; v ) est un repère orthonormal direct du plan complexe 1. Module et argument d un

Plus en détail

1) Donner une valeur en radians pour les angles : ( i, OMi ) pour i de 1 à 8. 2) Placer sur le cercle les points tels que :

1) Donner une valeur en radians pour les angles : ( i, OMi ) pour i de 1 à 8. 2) Placer sur le cercle les points tels que : GÉOMÉTRIE Nombres complexes Connaissances nécessaires à ce chapitre Factoriser une expression Utiliser les formules de géométrie dans les repères Représenter des angles sur un cercle trigonométrique Connaître

Plus en détail

Chapitre 14 : Nombres complexes et géométrie

Chapitre 14 : Nombres complexes et géométrie Chapitre 14 : Nombres complexes et géométrie I Affixe, module et argument I.1 Représentation géométrique d un nombre complexe Le plan est muni d un repère orthonormal direct (O; u; v. Il est ainsi appelé

Plus en détail

Ch 4. Complexes. D où l idée d introduire de nouveaux nombres dont le carré serait négatif, pour traiter le cas < 0.

Ch 4. Complexes. D où l idée d introduire de nouveaux nombres dont le carré serait négatif, pour traiter le cas < 0. PTSI2 2016/2017 Maths Lycée La Martinière-Monplaisir Lyon Ch 4. Complexes. 1 L ensemble C des nombres complexes 1.a Introduction Pour résoudre une équation de la forme ax 2 + bx + c = 0, avec a, b, c réels

Plus en détail

II ÉQUATIONS DU SECOND DEGRÉ À COEFFICIENTS RÉELS

II ÉQUATIONS DU SECOND DEGRÉ À COEFFICIENTS RÉELS Terminale S (3-4) I GÉNÉRALITÉS I. Présentation des nombres complexes Définition - Théorème : (admis) Il existe un ensemble noté C, contenant R, vérifiant les conditions suivantes : C est muni d une addition

Plus en détail

et z B alors le vecteur AB a pour affixe le iy B. Alors par définition les coordonnées = x B, z B, z C et z D, z C = z B

et z B alors le vecteur AB a pour affixe le iy B. Alors par définition les coordonnées = x B, z B, z C et z D, z C = z B Chapitre 9 Nombres complexes et géométrie Dans tout ce chapitre on se place dans un repère orthonormal direct du plan complexe O ; i ; j. 1. Affixe d un vecteur Définitions et conséquences Définition :

Plus en détail

Nombres complexes. Emmanuel Vieillard-Baron 5 avril Nombres complexes

Nombres complexes. Emmanuel Vieillard-Baron 5 avril Nombres complexes Nombres complexes Emmanuel Vieillard-Baron 5 avril 2005 Programme officiel 1- Nombres complexes L objectif est de consolider et d approfondir les notions sur les nombres complexes déjà abordées en classe

Plus en détail

AL1 Complexes FC - Exercices -

AL1 Complexes FC - Exercices - AL Complexes FC - Exercices - CALCULS TRANSFORMATIONS D ÉCRITURES TRIGONOMÉTRIE 4 4 POLYNÔMES 4 5 EXERCICES DE TESTS 5 Page sur 9 Calculs. Additions.. ( i) ( 4i) Mathématiques AL - Complexes + + +.. i

Plus en détail

Nombres complexes. I.2 Représentation géométrique des nombres complexes

Nombres complexes. I.2 Représentation géométrique des nombres complexes MTA - ch3 Page 1/11 Nombres complexes I L'ensemble C des nombres complexes I.1 Écriture des nombres complexes Il existe un ensemble noté C de nombres dits complexes vériant : R C C contient le nombre i

Plus en détail

, obtenu par la construction du parallélogramme (voir figure 8.2).

, obtenu par la construction du parallélogramme (voir figure 8.2). CHAPITRE 8 Équations et nombres complexes L équation du second degré ax 2 bx c 0 a pour racines, comme chacun sait, b b2 4ac et b b2 4ac. Nous supposons ici que a, b, c sont des nombres réels, avec a 0,

Plus en détail

LES NOMBRES COMPLEXES

LES NOMBRES COMPLEXES LES NMBRES CMPLEXES Table des matières Écriture algébrique d un nombre complee Définitions Propriétés 3 Somme, produit et inverse 4 Équation dans C Représentation géométrique d un nombre complee 4 Définitions

Plus en détail

Nombres complexes, cours, terminale S

Nombres complexes, cours, terminale S Nombres complexes, cours, terminale S 1 Notion de nombre complexe Il existe un ensemble noté C et appelé ensemble des nombres complexes tel que : C contient l'ensemble des...... ; l'addition et la multiplication

Plus en détail

1.1 Nombres complexes

1.1 Nombres complexes Université de Provence 011 01 Mathématiques Générales I Parcours PEIP Cours : Nombres complexes 1 Définitions 11 Nombres complexes Définition 1 On appelle nombre complexe tout élément z de la forme z a

Plus en détail

CHAPITRE 2 : L ENSEMBLE C DES NOMBRES COMPLEXES. 1. Insuffisance dans R

CHAPITRE 2 : L ENSEMBLE C DES NOMBRES COMPLEXES. 1. Insuffisance dans R CHAPITRE 2 : L ENSEMBLE C DES NOMBRES COMPLEXES 1. Insuffisance dans R Résoudre dans R, l équation ax² + bx + c = 0 Le calcul de = b² - 4ac suggère les cas suivants : 1 er cas : 0, l équation a des racines

Plus en détail

Nombres complexes. I. Conventions

Nombres complexes. I. Conventions Nombres complexes I. Conventions On admet qu il existe un ensemble, noté que : d éléments appelés nombres complexes tel contient Les opérations dans prolongent celles dans avec des propriétés analogues

Plus en détail