Chapitre 3 / TP 1 : Diffraction des ondes (PROF) Que se passe t-il lorsqu'une onde franchit une fente ou frappe un obstacle?

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 3 / TP 1 : Diffraction des ondes (PROF) Que se passe t-il lorsqu'une onde franchit une fente ou frappe un obstacle?"

Transcription

1 Chpitre 3 / TP 1 : Diffrction des ondes (PROF) Que se psse t-il lorsqu'une onde frnchit une fente ou frppe un obstcle? Trvil nticipé : - Lire le TP I- Diffrction d'une onde mécnique 1) Rppeler ce qu'est une onde mécnique. Une onde mécnique progressive est le phénomène de propgtion d'une perturbtion locle dns un milieu mtériel 2) Que peut-on observer de prticulier sur le document 1? Formuler une hypothèse sur l formtion de ce phénomène. Sur le document 1 on peut observer que l houle (initilement considérée comme une onde plne) se déforme lorsqu'elle frnchit une fente : c'est le phénomène de diffrction. Hypothèse : Au pssge d'une fente, une onde se déforme. Pour simuler l houle en lbortoire, on peut utiliser une Doc 1 Observtion de l houle cuve à onde. Un système stroboscopique permet de u lrge de l Thïlnde visuliser correctement les ondes à l surfce de l'eu. Pour créer une onde plne progressive, on fit vibrer une réglette à l surfce de l'eu. On plce ensuite sur le chemin de l'onde une fente de lrgeur notée. Voici ce qu l'on observe : 3) Noter vos observtions. Lorsque l fente est grnde devnt l longueur d'onde de l'onde, on n'observe ps (qusiment ps) de phénomène de diffrction. Lorsque l'on réduit l lrgeur de l fente et qund elle est du même ordre de grndeur que l longueur d'onde, on observe un phénomène de diffrction.

2 II- Diffrction des ondes lumineuses monochromtique L nture de l lumière longtemps pssionné les physiciens. Cet objet insisissble - on ne l «voit» ps, et elle ne peut ps priori être une onde mécnique (pourquoi?) - présente deux propriétés crctéristiques de toutes les ondes : elle se diffrcte et peut interférer. Nous llons tout d'bord étudier le phénomène de diffrction. Doc 2 : 1) Réliser le montge expérimentl et schémtiser l figure de diffrction observée. On noter l lrgeur de l tâche centrle. Observtion : L figure de diffrction est perpendiculire à l'objet diffrctnt. Figure de diffrction obtenue pr une fente verticle 2) On se propose de déterminer l reltion mthémtique lint l lrgeur de l tche centrle et différents prmètres expérimentux. Voici plusieurs propositions : = 2λ D = 2λ D = 2D λ = 2λD = 2λL TF vec : - λ : longueur d'onde de l lumière utilisée - : lrgeur de l'objet diffrctnt - D : distnce objet diffrctnt écrn - L TF : distnce lser fente A l'ide d'une nlyse dimensionnelle, éliminer les reltions fusses. On peut éliminer : = 2λ D En effet, toutes les grndeurs de cette formule s'exprime en mètre donc : en mètre 2λ en m 1 formule non homogène (ce n'est ps les meme unité d'un coté et de l'utre de l'églité) D Proposer et mettre en œuvre un protocole permettnt de déterminer l formule correcte. Pour cel, les étpes de votre risonnement (objectif, conditions expérimentles, schém...), vos résultts et vos conclusions seront clirement exposées. Pour déterminer l'influence d'un prmètre (ex D), il est indispensble de conserver les utres prmètres constnts (, L TF...).

3 Étpe 1 : Influence de l distnce Lser-fente L LF sur l figure de diffrction. Modifions l distnce Lser-fente tout en grdnt les utres prmètres constnts. Lorsque l'on modifie l distnce Lser-fente, l figure de diffrction reste inchngée. L distnce L LF n' donc ucun impct sur l diffrction. On peut donc dire qu'elle n'intervient ps dns l formule donc ce n'est ps : = 2λL TF Étpe 2 : Influence de l distnce fente-écrn notée D Plus D ugmente, plus l tche centrle est étlée et donc plus est grnd. On élimine = 2λ D cr si D ugmente, diminue De mnière générle, pour être le plus précis lors d'une mesure, on doit mesurer une grnde longueur. Plus l distnce D ser grnde, plus l'incertitude sur cette mesure ser fible. Ex : Considérons l'erreur sur l mesure est de 1cm. 1 Si l'on mesure une distnce de 10 cm, l'erreur reltive (l'incertitude) ser de 10 =0,1=10% 1 Si l'on mesure une distnce de 100 cm, l'erreur reltive (l'incertitude) ser de 100 =0,01=1% 3) Influence de l tille de l objet diffrctnt Plcer successivement les trois fils (ou fentes) de dimètres différents ( = 50, 100 et 150 μm) sur le trjet de l lumière lser et observer les figures obtenues sur le mur. On observe que plus l fente est fine, plus l figure de diffrction est étlée. C'est à dire que plus est petit, plus est grnd. On peut donc éliminer : = 2D λ L formule correcte est donc : = 2λD 3) Pour décrire le phénomène de diffrction, on défini l'écrt ngulire θ (en rdin) comme indiqué sur le schém ci-dessous.

4 ) Dns le cs ou l distnce fente écrn D est grnde devnt l lrgeur de l tche centrle, déterminer une reltion entre l'écrt ngulire θ, l longueur d'onde λ et l tille de l'objet diffrctnt. Astuce : pproximtion des petits ngles : sin θ θ lorsque θ< π (ou 30 ) 6 sinθ= 2D or << D donc de plus = 2λD 2D π 6 d'ou tn θ θ donc θ= λ b) A l'ide de l reltion déterminée ci-dessus, vérifier votre hypothèse de déprt sur l condition de diffrction d'une onde. (Prtie I) Hypothèse : il y diffrction lorsque l tille de l'objet diffrctnt est de l'ordre de grndeur de l longueur d'onde. Vérifiction : vec l formule, il y diffrction lorsque θ devient ssez grnd donc à prtir du moment ou est de l'ordre de grndeur de l longueur d'onde 2) Appliction : Mesure de longueur d'onde A l ide du mtériel mis à disposition, vous proposerez un protocole permettnt de déterminer l longueur d onde du lser. Après vlidtion, vous pourrez le réliser et conclure. N oubliez ps de discuter l précision de votre résultt. Incertitude reltive sur l mesure : ( Δλ 2 λ ) =( ΔD 2 D ) +( ΔL 2 TC ) vec ΔD, Δ et Δλ les incertitudes bsolues des vleurs mesurées D, et λ Votre résultt est il cceptble? (longueur d'onde du lser donnée pr le fbricnt : λ th = 632,8 nm)

5 D près l étude précédente, trcer l llure de l figure de diffrction obtenue vec un lser de couleur bleue sous celle du lser rouge, ci-dessous. Justifier. Doc 4 : hut : Figure de diffrction en lumière rouge Bs : Figure de diffrction en lumière bleue A votre vis, quelle llure ur l figure de diffrction si on éclire l fente en lumière blnche? Rppel : l lumière blnche est l superposition de toute les lumières visibles de longueur d'onde comprises entre 400 et 750 nm, c'est donc une lumière polychromtique. L lrgeur de l tche centrle dépend de l couleur (de l longueur d'onde). Au centre, toutes les couleurs seront superposées donc on observer du blnc. Et sur les cotés, il y ur des iristions. Vérifier votre hypothèse vec l'nimtion suivnte :

6 Chpitre 3 / TP 1 : Diffrction des ondes Objectif : Que se psse t-il lorsqu'une onde frnchit une fente ou frppe un obstcle? Préprtion du TP : - Lire le TP - Fire Prtie I I- Diffrction d'une onde mécnique 1) Rppeler ce qu'est une onde mécnique. 2) Que peut-on observer de prticulier sur le document 1? Formuler une hypothèse sur l formtion de ce phénomène. Pour simuler l houle en lbortoire, on peut utiliser une cuve à onde. Un système stroboscopique permet de visuliser correctement les ondes à l surfce de l'eu. Pour créer une onde plne progressive, on fit vibrer une réglette à l surfce de l'eu. Doc 1 Observtion de l houle u lrge de l Thïlnde On plce ensuite sur le chemin de l'onde une fente de lrgeur notée. Voici ce que l'on observe : 3) ) Noter vos observtions. Vérifier votre hypothèse. b) Quelle est l condition sur l dimension de l'obstcle pour que ce phénomène soit observble? II- Diffrction des ondes lumineuses monochromtiques 1) Détermintion des prmètres influençnt l figure de diffrction L nture de l lumière longtemps pssionné les physiciens. Cet objet insisissble - on ne l «voit» ps, et elle ne peut ps priori être une onde mécnique (pourquoi?) - présente deux propriétés crctéristiques de toutes les ondes : elle se diffrcte et peut interférer. Nous llons tout d'bord étudier le phénomène de diffrction. Doc 2 :

7 1) Réliser le montge expérimentl et schémtiser l figure de diffrction observée. On noter l lrgeur de l tâche centrle. 2) On se propose de déterminer l reltion mthémtique lint l lrgeur de l tche centrle et différents prmètres expérimentux. Voici plusieurs propositions : = 2λ D = 2λ D vec : - λ : longueur d'onde de l lumière utilisée - : lrgeur de l'objet diffrctnt - D : distnce objet diffrctnt écrn - d : distnce lser écrn = 2D λ = 2λD A l'ide d'une nlyse dimensionnelle, éliminer les reltions fusses. = 2λd Proposer et mettre en œuvre un protocole permettnt de déterminer l formule correcte. Pour cel, les étpes de votre risonnement (objectif, conditions expérimentles, schém...), vos résultts et vos conclusions seront clirement exposées. 3) Pour décrire le phénomène de diffrction, on défini l'écrt ngulire θ (en rdin) comme indiqué sur le schém ci-dessous. Doc 3 : Schém de principe du montge ) Dns le cs ou l distnce fente écrn D est grnde devnt l lrgeur de l tche centrle, déterminer une reltion entre l'écrt ngulire θ, l longueur d'onde λ et l tille de l'objet diffrctnt. Astuce : pproximtion des petits ngles : sin θ θ lorsque θ< π (ou 30 ) 6 b) A l'ide de l reltion déterminée ci-dessus, vérifier votre hypothèse de déprt sur l condition de diffrction d'une onde. (Prtie I)

8 2) Appliction : Mesure de longueur d'onde A l ide du mtériel mis à disposition, vous proposerez un protocole permettnt de déterminer l longueur d onde du lser. Après vlidtion, vous pourrez le réliser et conclure. N oubliez ps que le résultt doit être le plus précis possible. Incertitude reltive sur l mesure : ( Δλ 2 λ ) =( ΔD 2 D ) +( ΔL 2 TC ) vec ΔD, Δ et Δλ les incertitudes bsolues des vleurs mesurées D, et λ Votre résultt est il cceptble? (longueur d'onde du lser donnée pr le fbricnt : λ th = 632,8 nm) III- Diffrction des ondes lumineuses polychromtiques D près l étude précédente, trcer l llure de l figure de diffrction obtenue vec un lser de couleur bleue sous celle du lser rouge, ci-dessous. Justifier. Doc 4 : hut : Figure de diffrction en lumière rouge Bs : Figure de diffrction en lumière bleue A votre vis, quelle llure ur l figure de diffrction si on éclire l fente en lumière blnche? Rppel : l lumière blnche est l superposition de toute les lumières visibles de longueurs d'onde comprises entre 400 et 800 nm, c'est donc une lumière polychromtique. Vérifier votre hypothèse vec l'nimtion suivnte : Qu'observe t-on u centre de l figure de diffrction? Sur les cotés?

Chapitre 3 : Propriétés des ondes

Chapitre 3 : Propriétés des ondes Chpitre 3 : Propriétés des ondes I- Diffrction des ondes Cours p. 67 L diffrction d'une onde peut se produire lorsque l'onde trverse une ouverture ou frnchit un obstcle. Les ondes mécniques se diffrctent

Plus en détail

La lumière : une onde

La lumière : une onde P g e TS Physique Exercice résolu Enoncé Remrque : les 3 prties sont indépendntes. e texte ci-dessous retrce succinctement l évolution de quelques idées à propos de l nture de l lumière : Pr nlogie à l

Plus en détail

Diffraction de la lumière

Diffraction de la lumière Terminle S iffrction de l lumière Objectifs : - Observer des phénomènes de diffrction. - Rechercher les fcteurs ynt une influence sur l figure de diffrction : * en déduire l lrgeur d une fente fine à l

Plus en détail

Chapitre 3.5a La diffraction

Chapitre 3.5a La diffraction Chpitre. L diffrction Le phénomène de l diffrction L diffrction est le comportement ondultoire déformnt une onde plne en onde sphérique lorsque celle-ci rencontre un obstcle ou une ouverture. L déformtion

Plus en détail

Chapitre 7 : Diffraction et interférences

Chapitre 7 : Diffraction et interférences Chpitre 7 : Diffrction et interférences 1. Diffrction des ondes 1.1. Les ondes mécniques Lorsqu une onde mécnique progressive plne rencontre une ouverture de dimension voisine de celle de s longueur d

Plus en détail

DM n o 1 Propagation d une onde

DM n o 1 Propagation d une onde DM n o 1 Propgtion d une onde 1. Étude sur une cuve à ondes. On lisse tomber une goutte d eu sur une cuve à ondes. Le fond de l cuve à ondes présente un décrochement de telle sorte que l onde créée pr

Plus en détail

OP 3: Diffraction & réseaux

OP 3: Diffraction & réseaux M.Bosco BTS OL2 OP 3: Diffrction & réseux CH 3 : Le phénomène de diffrction Appliction ux réseux BTS ISO I. Le phénomène de diffrction I.1.Présenttion L diffrction est un phénomène physique qui été mis

Plus en détail

O4 : Diffraction à l infini

O4 : Diffraction à l infini O4 : Diffrction à l infini 1 Phénomène de diffrction 1.1 Mise en évidence Si l on cherche à "isoler" un ryon lumineux, modèle de l optique géométrique, grâce à une fente très fine de lrgeur, on n observe

Plus en détail

Le diagramme simplifié des niveaux d énergie d un atome est donné par la figure ci-dessous Données : 1 ev

Le diagramme simplifié des niveaux d énergie d un atome est donné par la figure ci-dessous Données : 1 ev Clsse : Mtière: SV Physique Exercice I : iveux d'énergie d un tome Le digrmme simplifié des niveux d énergie d un tome est donné pr l figure ci-dessous 19 onnées : 1 ev 1.6 10 J c 3.10 3 m/ s h 6.6 10

Plus en détail

Electrode. déplétée. Electrode de référence

Electrode. déplétée. Electrode de référence TP MESURE UNE INTENSITE LUMINEUSE Objectifs : - Utiliser un cpteur CC - istinguer les phénomènes de diffrction et d interférences - Mesurer de petites distnces - Etudier expérimentlement les principles

Plus en détail

interférences à deux ondes ; fentes de Young (1h) étude sommaire de la diffraction (30 mn) polariseurs (30 mn)

interférences à deux ondes ; fentes de Young (1h) étude sommaire de la diffraction (30 mn) polariseurs (30 mn) interférences à deux ondes ; fentes de Young (1h) étude sommire de l diffrction (3 mn) polriseurs (3 mn) 1. interférences des fentes de Young : étude vec un viseur (durée 3 mn) 1.1 perçu théorique Une

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET O.12

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET O.12 Pge /5 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET O.2 Ce document comprend : - une fiche descriptive du sujet destinée à l exminteur : Pge 2/5 - une fiche descriptive

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET O.12

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET O.12 Pge /5 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET O.2 Ce document comprend : - une fiche descriptive du sujet destinée à l exminteur : Pge 2/5 - une fiche descriptive

Plus en détail

CHAPITRE II INTERFERENCES A DEUX ONDES LUMINEUSES PAR DIVISION DU FRONT D ONDE

CHAPITRE II INTERFERENCES A DEUX ONDES LUMINEUSES PAR DIVISION DU FRONT D ONDE Prof. H. NAJIB Optique Physique Version : sept. 006 CHAPITRE II INTERFERENCES A DEUX ONDES LUMINEUSES PAR DIVISION DU FRONT D ONDE II.1- Définition On dit que deux ondes (ou plusieurs) interfèrent lorsque

Plus en détail

CORRIGE TD n 4. EXERCICE 1 : les trous d Young

CORRIGE TD n 4. EXERCICE 1 : les trous d Young EXERCICE 1 : les trous d Young CORRIGE TD n 4 On considère une onde plne monochromtique de longueur d onde =656,3 nm, se propgent le long de l xe Oz On intercle sur le trjet de cette onde un écrn percé

Plus en détail

Interféromètres à division d amplitude

Interféromètres à division d amplitude DUT Mesures Physiques MP S3 Interféromètres à division d mplitude Exercice 1 : Détection de fibles signux optiques Dns cet exercice on souhite détecter un très fible chmp électrique sclire (se propgent

Plus en détail

eau air diamant verre

eau air diamant verre Optique géométrique 1 sources de lumière Définitions : Une source de lumière est un ojet qui émet de l lumière Une source primire est une source qui produit l lumière qu elle émet Une source secondire

Plus en détail

PC - Lycée Dumont D Urville TD 2 optique ondulatoire I. Retour à la formule de Fresnel. a1(t)

PC - Lycée Dumont D Urville TD 2 optique ondulatoire I. Retour à la formule de Fresnel. a1(t) PC - Lycée Dumont D Urville TD optique onultoire I. Retour à l formule e Fresnel oit eux sources lumineuses 1 et qui émettent es ones lumineuses ont les mplitues sont onnées pr: 1 (t) = A 1 cos(ω 1 t+φ

Plus en détail

Partiel de Physique PH1 ME1D

Partiel de Physique PH1 ME1D Prtiel de Physique PH1 ME1D Durée : 3h Les clcultrices et documents ne sont ps utorisés Le brême indiqué peut être sujet à modifictions 21 Novembre 2009 Exercice 1 : Outils mthémtiques (3 points) 1 Dériver

Plus en détail

% f (t) e #i!t dt. $ f (x) e "ikx dx. Généralité de la Transformation de Fourier

% f (t) e #i!t dt. $ f (x) e ikx dx. Généralité de la Transformation de Fourier Générlité de l Trnsformtion de Fourier 3. Trnsformée de Fourier, diffrction et interférences : l eemple des ondes lumineuses Sons (ou phénomène dépendnts du temps) : temps t et fréquence (ou fréquence

Plus en détail

PHYSIQUE Chapitre 3 : le modèle ondulatoire de la lumière Exercices

PHYSIQUE Chapitre 3 : le modèle ondulatoire de la lumière Exercices PHYSIQUE Chpitre 3 : le modèle ondultoire de l lumière Exeries 1 Exerie 11 p. 70 1. L existene d une fente sur le trjet d ondes méniques progressives, plnes et périodiques ou sur le trjet d une rdition

Plus en détail

Ch.4èFONCTIONS DE RÉFÉRENCE

Ch.4èFONCTIONS DE RÉFÉRENCE LFA / première S COURS - mthémtiques Mme MAINGUY Ch.4èFONCTIONS DE RÉFÉRENCE ere S Dns tout le chpitre, le pln est muni d'un repère orthonorml ( O ; i! ;! j ) I. Rppels de Seconde Soit f une fonction définie

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document été mis en ligne pr le Cnopé de l cdémie de Bordeux pour l Bse Ntionle des Sujets d Exmens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté, dpté ou

Plus en détail

EXERCICES SUR LES PROPRIETES DES ONDES

EXERCICES SUR LES PROPRIETES DES ONDES EXERCICES SUR LES PROPRIETES DES ONDES EXERCICE 1 : Les ondes rdio Un élève consulte Internet pour récolter des informtions sur les ondes rdio. Il lit: «Lorsqu'une onde rencontre un obstcle de grnde dimension

Plus en détail

Nature ondulatoire de la lumière Diffraction et Interférences

Nature ondulatoire de la lumière Diffraction et Interférences iffrction et Interférences 1. Mise en évience u phénomène e iffrction iffrction 'une one à l surfce 'un liquie. Si est grn evnt : (photo 1) Il y propgtion sns moifiction e l nture e l one. On limite l

Plus en détail

Cours de mathématiques Classe de Troisième

Cours de mathématiques Classe de Troisième Clsse de Troisième CHAPITRE CALCULS ALGEBRIQUES FACTORISATION Clculs lgébriques Pge UTILISER DES LETTRES Eercice On veut connître le nombre de cubes nécessires à l construction d'escliers. Vérifier que

Plus en détail

Etude du comportement mécanique du gypse

Etude du comportement mécanique du gypse Etude du comportement mécnique du gypse Les essis mécniques rélisés en lbortoire sur des éprouvettes homogènes constituent le principl outil de détermintion des lois de comportement des solides en générl

Plus en détail

Cours PC Brizeux TP COURS : Réseau de diffraction 56 T.P. COURS

Cours PC Brizeux TP COURS : Réseau de diffraction 56 T.P. COURS Cours PC Brizeux TP COURS : Réseu de diffrction 56 T.P. COURS RÉSEAU DE DIFFRACTION 1. INTERET D UN DISPOSITIF INTERFERENTIEL A N ONDES 1.1. Interférences à deux ondes Dns un phénomène d interférences

Plus en détail

- 2a= 50 à 200µm pour l =0.8 à 1.6µm ( fibre de silice) - 2a=0.5 à 2mm pour l= 0.4 à 0.7µm ( fibre de plastique)

- 2a= 50 à 200µm pour l =0.8 à 1.6µm ( fibre de silice) - 2a=0.5 à 2mm pour l= 0.4 à 0.7µm ( fibre de plastique) Electricité et Optique 6-7 II. Les fibres optiques L'indice de réfrction du cœur de l fibre est supérieur à celui de l gine ce qui empêche le ryon lumineux de sortir du cœur de l fibre, le ryon étnt lors

Plus en détail

TRAVAUX DIRIGÉS DE O 2

TRAVAUX DIRIGÉS DE O 2 T O Correction PCS 015 016 TRVUX RGÉS E O Exercice 1 : Réflexion sur un miroir orizontl. Un omme dont les yeux sont plcés à = 1,80 m du sol cerce à observer un petit rbre de uteur = 1,50 m situé à une

Plus en détail

XI. Différentielles et intégrales définies : notions de base

XI. Différentielles et intégrales définies : notions de base . Différentielle XI. Différentielles et intégrles définies : notions de se soit f : R R y = f() et s dérivée : f '() = y ' Considérons un ccroissement de l vrile :. Définition - nottion On ppelle différentielle

Plus en détail

Calculs de base (Rappels)

Calculs de base (Rappels) Chpitre I Clculs de bse (Rppels) I.1 Diviseurs et multiples I.1.1 Définitions On : 12=3 4. On dit que 3 et 4 sont des diviseurs de 12, ou que 12 est un multiple de 3 et de 4. DÉFINITION I.1.1 Soit et b

Plus en détail

Chapitre 1 Le Second Degré

Chapitre 1 Le Second Degré Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Chpitre 1 Le Second Degré A) Résolution de l'éqution du second degré 1) Définitions On ppelle polynôme de second degré l expression x² x c

Plus en détail

Question cours. Une histoire de champs. Corrigé

Question cours. Une histoire de champs. Corrigé Question cours Une histoire de chmps. orrigé 1. Le chmp E est uniforme, il s pplique n importe où dns l espce séprnt les plques. Il est perpenculire ux plques Pour ccélérer des ions positifs il est orienté

Plus en détail

MAT 1720 A : Calcul différentiel et intégral I

MAT 1720 A : Calcul différentiel et intégral I MAT 1720 A : et intégrl I Pul-Eugène Prent Déprtement de mthémtiques et de sttistique Université d Ottw le 14 octobre 2015 Au menu ujourd hui 1 2 3 4 Le théorème de Stokes Voici le contenu d un peu plus

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1 Chpitre 7 Intégrle et primitive TABLE DES MATIÈRES pge - Chpitre 7 Intégrle et primitive Tble des mtières I Exercices I-................................................ I- Clcul pproché d une intégrle

Plus en détail

X. Equations paramétriques d'une courbe. Coordonnées polaires.

X. Equations paramétriques d'une courbe. Coordonnées polaires. . Equtions prmétriques X. Equtions prmétriques d'une courbe. Coordonnées polires. f ( ) Soient deu équtions où intervlle [, b] g( ) A chque vleur de correspondent une vleur de et une vleur de. Si l'on

Plus en détail

Lois de probabilité continues

Lois de probabilité continues Lois de proilité continues. Notion de loi à densité de proilité... p 4. Durée de vie sns vieillissement... p. Lois de proilité continues... p5 5. Loi exponentielle... p3 3. L loi uniforme... p7 Copyright

Plus en détail

Mémo de cours n 4. Intégrales

Mémo de cours n 4. Intégrales Mémo de cours n 4 Intégrles v.0 4. Primitive 4.. Définition Si l fonction f (x) est l dérivée de l fonction F(x), c est à dire que f (x) = df(x) dx, lors nous ppelons l fonction F une primitive de f. On

Plus en détail

Cuisson d un soufflé

Cuisson d un soufflé Mines-PC-1999 A-Equilibre de l ensemble Cuisson d un soufflé 2- Le système { plque et ir} est u contct vec une source de chleur (les prois du four) à tempérture constnte T e. Il s git donc d une trnsformtion

Plus en détail

CALCULS DE FORCES DE PRESSION SUR DES PAROIS PLANES On désire construire une piscine couverte de L = 25 m de longueur, de l = 10 m de largeur et de h

CALCULS DE FORCES DE PRESSION SUR DES PAROIS PLANES On désire construire une piscine couverte de L = 25 m de longueur, de l = 10 m de largeur et de h CALCUL DE FORCE DE PREION UR DE PAROI PLANE On désire construire une piscine couverte de L = 5 m de longueur, de l = 10 m de lrgeur et de h = 4,5 m de profondeur utile (huteur d'eu). Le bâtiment qui l'brite

Plus en détail

2 Taux de variation et dérivée

2 Taux de variation et dérivée Tu de vrition et dérivée.1 Tu de vrition et dérivée en un point Q..1 Clculer le tu de vrition moyen TVM [;] f) pour les fonctions suivntes. cm cm ) f) = 1 b) f) = c) f) = 5 d) f) = 1 e) f) = + 5 Q.. Soit

Plus en détail

TP 6 : Diffraction et Interférence des ondes lumineuses - Correction

TP 6 : Diffraction et Interférence des ondes lumineuses - Correction TP 6 : Diffrction et Interférence des ondes lumineuses - Correction Objectifs : - Prtiquer une démrche expérimentle visnt à étudier ou utiliser le phénomène de diffrction et d interférence dns le cs des

Plus en détail

Développements limités. Généralités. Définitions usuelles

Développements limités. Généralités. Définitions usuelles Développements limités I Générlités I.A Définitions usuelles.......................... I.B Formules de Tylor.......................... I.C Développements limités usuels.................... 4 I.D Eemples

Plus en détail

Fiche Intégration MOSE Octobre 2014

Fiche Intégration MOSE Octobre 2014 Fiche Intégrtion MOSE 13 9 Octore 14 Tle des mtières Propriétés de l intégrle 1 Théorème fondmentl du clcul intégrl................................ Intégrle d une fonction de signe quelconque...............................

Plus en détail

Chapitre 1 Équations et Inéquations du 2nd degré

Chapitre 1 Équations et Inéquations du 2nd degré Cours de Mthémtiques Première S Chpitre 1 : équtions et inéqutions du second degré Chpitre 1 Équtions et Inéqutions du nd degré A) Les Polynômes 1) Définitions On ppelle monôme une expression de l forme

Plus en détail

TD D2 - Correction. 1 Figures d'interférence à deux ondes

TD D2 - Correction. 1 Figures d'interférence à deux ondes PSI - 2012/2013 1 TD D2 - Correction 1 Figures d'interférence à deux ondes 1. () On reconnît ici l congurtion clssique des trous Young, vec un écrn prllèle à l'xe (S 1 S 2 ). L diérence de mrche en M s'exprime

Plus en détail

Chapitre 2 Limites et asymptotes

Chapitre 2 Limites et asymptotes Chpitre 2 Limites et symptotes A) Introduction ) Le grenier Je veux monter un toit à une pente en lissnt l plce pour une pièce (grenier) de 3 mètres de long et 2 mètres de hut. OA = 3, OC = 2, OE = x.

Plus en détail

Lycée Houmt Souk Lycée 7 Nov. 87 Lycée Sidi Zekri Jerb DEVOIR DE SYNTHESE N 3 Durée : 3 heures Dte : 05 009 Clsses : 4 ème M.-T. & Sc.Exp. Mtière : Sc. Physiques Chimie : Les piles Physique : Interction

Plus en détail

Hachurer légèrement la zone délimitée par les quatre droites, (Ox), et (AB).

Hachurer légèrement la zone délimitée par les quatre droites, (Ox), et (AB). Vdouine Terminle S Cpitre 4 Intégrtion Définition Soit f une fonction continue et positive sur un intervlle I contennt et deu nomres tels que. L représenttion grpique est trcée dns un repère ortogonl O;;

Plus en détail

LOIS DE PROBABILITE CONTINUES

LOIS DE PROBABILITE CONTINUES LOIS DE PROBABILITE CONTINUES I) LOI A DENSITE SUR UN INTERVALLE ( fire fiche '' vérifier les cquis'' ) 1) Introduction Qund l univers est un intervlle Jusqu à présent, chque expérience létoire conduisit

Plus en détail

Algorithme de remplissage des carrés magiques selon la méthode des enseintes successives de Blaise PASCAL

Algorithme de remplissage des carrés magiques selon la méthode des enseintes successives de Blaise PASCAL Algorithme de remplissge des crrés mgiques selon l méthode des enseintes successives de Blise PASCAL L méthode proposée pr Pscl consiste à prtir d un crré nturel et à déplcer les nombres pour que le crré

Plus en détail

La loi normale. Chapitre Introduction Motivation à partir de la loi binomiale Notion de variable aléatoire à densité

La loi normale. Chapitre Introduction Motivation à partir de la loi binomiale Notion de variable aléatoire à densité Chpitre 4 L loi normle 4.1 Introduction Dns le chpitre précédent, les probbilités rencontrées se rmenient à lister tous les cs possibles, leur ttribuer l même probbilité, et diviser le nombre de cs fvorbles

Plus en détail

DISPOSITIF INTERFÉRENTIEL PAR DIVISION DU FRONT D ONDE : TROUS D YOUNG

DISPOSITIF INTERFÉRENTIEL PAR DIVISION DU FRONT D ONDE : TROUS D YOUNG ISPOSITIF INTERFÉRENTIEL PAR IVISION U FRONT ONE : TROUS YOUNG http://www.scientillul.net/tstc/physique/diffrction_lumiere/interferences.html http://scphysiques.free.fr/ts/physiquets/young.swf http://scphysiques.free.fr/ts/physiquets/interferences.swf

Plus en détail

LES CONIQUES. Qu est-ce qu une conique?

LES CONIQUES. Qu est-ce qu une conique? LES CONIQUES Qu est-ce qu une conique? Une conique est une courbe plne que l on peut trcer sur un cône de révolution à deux nppes. Suivnt l position qu il occupe pr rpport à un cône, un pln qui coupe ce

Plus en détail

Gravitation. Pesanteur Centre de masse

Gravitation. Pesanteur Centre de masse CHAPITRE rvittion. Pesnteur Centre de msse. PHÉNOMÈNE DE RAVITATION.. Loi de l grvittion L loi de l grvittion (ou loi de Newton) fit intervenir l notion de msse d'un ensemble mtériel, grndeur pysique qui

Plus en détail

I] Généralités. b) Tableau de données et représentation graphique

I] Généralités. b) Tableau de données et représentation graphique Chpitre 4 Fonctions I] Générlités ) Notion de fonction Définition : Une fonction numérique est un processus qui fbrique un nombre (souvent noté y) à prtir d un nombre vrible (souvent noté x). On v noter

Plus en détail

Chapitre 3 : Propriétés des ondes :

Chapitre 3 : Propriétés des ondes : Chapitre 3 : Propriétés des ondes : I- La diffraction TP 1 : diffraction Activité 1 : Phénomène de diffraction 1- Doc 1 : Quelle expérience présente une figure de diffraction? 2-Comment définiriez vous

Plus en détail

Intégrales et primitives

Intégrales et primitives Chpitre 3 Intégrles et primitives 3.1 Définitions Soit f(x une fonction continue définie sur l intervlle [, ]. L intégrle de f sur l intervlle [, ] est un nomre réel noté qui est défini de l fçon suivnte

Plus en détail

Roulements à une rangée de billes à contact oblique

Roulements à une rangée de billes à contact oblique Roulements à une rngée de billes à contct oblique Roulements à une rngée de billes à contct oblique 232 Définition et ptitudes 232 Séries 233 Vrintes 233 Tolérnces et jeux 234 Eléments de clcul 236 Crctéristiques

Plus en détail

Chapitre 6 : Fonctions Logarithme Népérien

Chapitre 6 : Fonctions Logarithme Népérien Lycée Pul Sbtier, Cstelnudry Clsse de T`le STG Chpitre 6 : Fonctions Logrithme Népérien D. Zncnro et C. Aupérin 008-009 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

dans un EVMPS Moindres carrés

dans un EVMPS Moindres carrés Meilleure pproximtion dns un EVMPS Moindres crrés Meilleure pproximtion Définition. Soit V un EVMPS, W un sous-espce quelconque de V, et u un vecteur quelconque de V. On ppelle meilleure pproximtion de

Plus en détail

Etude de suites récurrentes

Etude de suites récurrentes [http://mp.cpgedupuydelome.fr] édité le 5 mi 06 Enoncés Etude de suites récurrentes Exercice [ 0304 ] [Correction] u 0 = R et n N, + = u n ) Justifier que l suite ( ) est bien définie et n N, [ ; ] b)

Plus en détail

TRIGONOMETRIE DANS LE TRIANGLE

TRIGONOMETRIE DANS LE TRIANGLE TRIGONOMETRIE DANS LE TRIANGLE. TRIGONOMETRIE DANS LE TRIANGLE RECTANGLE Si les ngles de deux tringles sont isométriques deux à deux, lors on dit que ces deux tringles sont semblbles. Dns le cs prticulier

Plus en détail

Licence de Mathématiques Fondamentales Calcul Scientifique feuille de TD 3

Licence de Mathématiques Fondamentales Calcul Scientifique feuille de TD 3 Licence de Mthémtiques Fondmentles Clcul Scientifique feuille de TD 3 Intégrtion numérique Soit f : [, b] R une fonction continue On cherche à clculer numériquement l intégrle f(x) dx Pour cel, on subdivise

Plus en détail

Chapitre 1.10 La chute libre à 2 dimensions

Chapitre 1.10 La chute libre à 2 dimensions Chpitre. L chute libre à diensions L nture ectorielle de l itesse en chute libre Anlsons l cinétique de trois billes lncées de l fçon suinte : A B C Une bille A et une bille B sont lncées horizontleent

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

physique année scolaire Interféromètre en "lame d'air"

physique année scolaire Interféromètre en lame d'air physique nnée scolire 014-015 Corrigé du DS commun de physique n 6 - Optique I- Interéromètre de Michelson et plnéité d'un miroir I.A - Interéromètre en "lme d'ir" 1. /1 L diérence de phse entre les deux

Plus en détail

A1. Banc mécanique I. INTRODUCTION ET BUT DE LA MANIPULATION II. MONTAGE EXPERIMENTAL. v a t

A1. Banc mécanique I. INTRODUCTION ET BUT DE LA MANIPULATION II. MONTAGE EXPERIMENTAL. v a t . nc mécnique I. INTRODUTION ET UT DE L MNIPULTION Toute une prtie de l mécnique générle repose sur un certin nomre de grndeurs mesurles qui, une ois extrites de l phénoménologie, ont reçu une déinition

Plus en détail

LES REGLES DU CALCUL LITTERAL

LES REGLES DU CALCUL LITTERAL Cours de Mr Jules v1.2 Clsse de Qutrième Contrt 6 pge 1 LES REGLES DU CALCUL LITTERAL «Les Mthémtiques sont des inventions très subtiles et qui peuvent beucoup servir, tnt à contenter les curieux qu'à

Plus en détail

Protocole de laboratoire n o 5. Circuits électriques en courant alternatif

Protocole de laboratoire n o 5. Circuits électriques en courant alternatif Protocole de lortoire n o 5 ircuits électriques en cournt lterntif BUTS Employer un oscilloscope pour mesurer l tension d'un cournt lterntif et l différence de phse entre deux ondes sinusoïdles. Étudier

Plus en détail

TP 2 : Guide d onde rectangulaire.

TP 2 : Guide d onde rectangulaire. II TP 2 : Guide d onde rectngulire. 15 II.1 Rppels sur l propgtion dns un guide d onde rectngulire Fig. 3 Section du guide d ondes. Le guide d ondes rectngulire est une structure de guidge à un conducteur

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2 CALCUL INTEGRAL Ph DEPRESLE 9 juin 5 Tble des mtières Intégrle d une fonction continue et positive sur un segment Primitives d une fonction sur un intervlle. Primitives, définition...................................

Plus en détail

Calcul de limites. 3) Limite d'une somme de deux fonctions. = x. 1 lim =... =... lim x =... lim x. lim 2x = x 1. lim 2x + x = lim 3x. lim

Calcul de limites. 3) Limite d'une somme de deux fonctions. = x. 1 lim =... =... lim x =... lim x. lim 2x = x 1. lim 2x + x = lim 3x. lim Clcul de ites I) Clculs de ite en et - ) Limite en ou - des fonctions de référence : Compléter les ites suivntes ( on observer les représenttions grphiques) :........................ (voir ci-dessous )...............

Plus en détail

Corrigé transformateurs triphasés Cours et exercices

Corrigé transformateurs triphasés Cours et exercices Exercice I Répondre ux questions suivntes Corrigé trnsformteurs triphsés Cours et exercices. L puissnce ctive nominle est indiquée sur l plque signlétique d un trnsformteur : vri ou fux? C'est fux, c'est

Plus en détail

LES CONSTRUCTIONS GEOMETRIQUES. «Les perpendiculaires et les parallèles»

LES CONSTRUCTIONS GEOMETRIQUES. «Les perpendiculaires et les parallèles» «Les perpendiculires et les prllèles» S2.1: L'EXPRESSIN GRPHIQUE. C2.5: Identifier et/u rechercher pr un trcé des dnnées de fbrictin. Feuille 1/2 1-) Perpendiculire u milieu d'un segment: -Prendre un écrtement

Plus en détail

La formule de Simpson avec reste intégral Jean-François Burnol, septembre 2016

La formule de Simpson avec reste intégral Jean-François Burnol, septembre 2016 L formule de Simpson vec reste intégrl Jen-Frnçois Burnol, septembre 1 On cherche à pprocher l intégrle b f (t)dt pr une combinison linéire λf () + µf ( + b ) + νf (b) On v tout d bord prendre = et b =

Plus en détail

LOI DE PROBABILITE CONTINUE

LOI DE PROBABILITE CONTINUE LOI DE PROBABILITE CONTINUE I) VERIFIER LES ACQUIS ( voir le chpitre des probbilités) 1) Clculer l moyenne, l vrince et l'écrt-type de ces deux séries sttistiques x i 3 5 6 10 effectifs 5 20 10 15 x =

Plus en détail

POLYGONES ET POLYEDRES

POLYGONES ET POLYEDRES CHAPITRE V POLYGONES ET POLYEDRES L Géométrie ne nous intéresse que pr ses interférences vec l Algèbre. Pourtnt, nous essyons ici de concilier les «deux» géométries, plne et dns l espce, trop souvent enseignées

Plus en détail

NOTIONS DE CALCUL DIFFERENTIEL ET INTEGRAL EN PHYSIQUE

NOTIONS DE CALCUL DIFFERENTIEL ET INTEGRAL EN PHYSIQUE NOTIONS D CALCUL DIFFNTIL T INTGAL N PHYSIQU 1) Dérivée d une fonction Soit une fonction F : x F(x) D F(x + ) F(x ) ΔF x x + ( +Δ ) ( ) Δ F F x x F x Le tux de vrition = L limite de ce tux de vrition lorsque

Plus en détail

Intégration des fonctions continues par morceaux

Intégration des fonctions continues par morceaux Chpitre 4 Intégrtion des fonctions continues pr morceu 4.1 Introduction Dns cette section, on fie < deu réels, on note I = [, ] et on considère f : I R une ppliction continue. On suppose en outre que f

Plus en détail

Cours de Mathématiques Seconde. Ordre et valeur absolue

Cours de Mathématiques Seconde. Ordre et valeur absolue Cours de Mthémtiques Seconde Frédéric Demoulin 1 Dernière révision : 16 vril 2007 Document diffusé vi le site www.cmths.net de Gilles Costntini 2 1 frederic.demoulin (chez) voil.fr 2 gilles.costntini (chez)

Plus en détail

Intégrabilité d une fonction à valeurs réelles ou complexes

Intégrabilité d une fonction à valeurs réelles ou complexes Cours de Mthémtiques ntégrtion sur un intervlle quelconque Prtie : Fonctions intégrbles à vleurs complexes Fonctions intégrbles à vleurs complexes Dns ce prgrphe, est un intervlle de R, et K désigne R

Plus en détail

1. Les fonctions affines.

1. Les fonctions affines. L E S F O N C T I O N S U S U E L L E S. Les fonctions ffines.. Définition. Une fonction ffine est une fonction f définie sur R pr : f ( x) = x+ b.2 Représenttion grphique. o o Si b =, l fonction est linéire.

Plus en détail

Mathématiques Différentielle - Intégrale

Mathématiques Différentielle - Intégrale Mthémtiques Différentielle - Intégrle F. Richrd 1 1 Institut PPRIME - UPR 3346 CNRS Déprtement Fluides, Thermique, Combustion Frnce Institut des Risques Industriels Assurntiels et Finnciers IRIAF F. Richrd

Plus en détail

Signe de ax + b Premières Applications

Signe de ax + b Premières Applications Signe de + Premières Applictions Ojectifs L étude des fonctions est un point centrl des progrmmes u lycée, quelque soit votre section L ojectif ser, l nnée prochine, de déterminer les vritions d une fonction

Plus en détail

CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION. Ch7 : Calcul intégral-ts

CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION. Ch7 : Calcul intégral-ts Ch7 : Clcul intégrl-ts CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION Activité n : Trcer dns un repère orthonorml l représenttion grphique de l fonction f définie pr : f(x) = 5. Hchurer l'ire du domine pln

Plus en détail

PRIMITIVES ET INTÉGRALES

PRIMITIVES ET INTÉGRALES Lurent Grcin MPSI Lycée Jen-Bptiste Corot PRIMITIVES ET INTÉGRALES Les fonctions de ce chpitre sont des fonctions d une vrible réelle à vleurs réelles ou complexes. Primitives. Définition Définition. Primitive

Plus en détail

S.Boukaddid Ondes électromagnétiques MP2

S.Boukaddid Ondes électromagnétiques MP2 S.Boukddid Ondes électromgnétiques MP2 Guide d'onde à section rectngulire Tble des mtières 1 Générlité 2 1.1 Définition....................................... 2 1.2 Onde trnsverse électrique-onde trnsverse

Plus en détail

Chapitre 0 : Mise au point sur les nombres et le calcul

Chapitre 0 : Mise au point sur les nombres et le calcul Lycée Jules Fil, Crcssonne Clsse de 2 nde Chpitre 0 : Mise u point sur les nombres et le clcul D. Zncnro C. Aupérin 2009-2010 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

Interférences par division du front d'onde Notes de cours

Interférences par division du front d'onde Notes de cours physique nnée scolire 014/015 Interférences pr division du front d'onde Notes de cours mrdi 16 décembre 014 Trous et fentes d'young expérience de cours Le pssge des trous ux fentes d'young permet de ggner

Plus en détail

Exercice 2 Soit N un nombre entier qui s écrit avec 4 chiffres en base 4, et avec 6 chiffres en base 3? Trouver toutes les valeurs possibles de N.

Exercice 2 Soit N un nombre entier qui s écrit avec 4 chiffres en base 4, et avec 6 chiffres en base 3? Trouver toutes les valeurs possibles de N. Groupe seconde chnce Feuille d exercice n 7 Exercice 1 On considère Un segment [AC] de longueur 16 cm, et le point B situé sur [AC] à 6 cm de C. P est un point du cercle de dimètre [AB] tel que AP = 8

Plus en détail

Apprentissage. Fiche «technique» n 3 (Chevalet, cas n 5) Révision

Apprentissage. Fiche «technique» n 3 (Chevalet, cas n 5) Révision Sénce 1 Viser Révision Nént Apprentissge CAC Fiches «pprentissge» n 1, 2 et 3 Fiche «technique» n 1 Fiche «technique» n 3 (chevlet, cs 5) Entrînement CTD DFA Pges 15 à 19 «Billrd de ronze» : fig. 1 à 3

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS I..

LIMITES DE SUITES ET DE FONCTIONS I.. TS-cours-chp2-1 - LIMITES DE SUITES ET DE FONCTIONS I.. Limite d une suite 1 / tend vers l infini Définition ( rppel ) Dire que l suite tend vers + signifie que, pour tout nombre A, l intervlle [A ; +

Plus en détail

Dynamique de l'atmosphère et météorologie

Dynamique de l'atmosphère et météorologie Dynmique de l'tmosphère et météorologie Frnçois Lott, flott@lmd.ens.fr et Bernrd Legrs, legrs@lmd.ens.fr I. Les ondes tmosphériques et leurs effets sur l circultion générle 7) Les ondes équtoriles )Observtions

Plus en détail

POURCENTAGE PROPORTION ÉVOLUTION

POURCENTAGE PROPORTION ÉVOLUTION POURCENTAGE PROPORTION ÉVOLUTION I. PROPORTION Dns une clsse de 35 élèves il y 14 filles. L proportion de filles dns cette clsse est de Dns cette clsse il y de filles. Prmi ces filles il y 42 % de demi-pensionnires,

Plus en détail

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)}

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)} Chpitre 6 Clcul intégrl Intégrle et ire. Intégrle d une fonction continue positive sur un intervlle [ ; ] Définition : L unité d ire Soit P un pln muni d un repère orthogonl (O ; ı, j ). Soient I, J, et

Plus en détail

Jeu interne types et normes

Jeu interne types et normes Jeu interne types et normes Le jeu interne est l distnce que les deux bgues d un roulement libre peuvent prcourir lorsqu elles subissent des poussées dns des directions opposées. On opère une distinction

Plus en détail