Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini."

Transcription

1 Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont des expériences aléatoires. Leur résultat n est connu que lorsque l expérience aléatoire a pris fin. On peut cependant envisager a priori des éventualités (des résultats possibles) mais seule la fin de l expérience nous permet de savoir si telle éventualité est réalisée ou non. Un événement est un ensemble d éventualités qui est réalisé si l une de ces éventualités est réalisée. Dans une expérience aléatoire certains événements sont plus probables que d autres ; d où l idée de chiffrer les chances qu a un événement de se produire. Cette idée trouve une justification expérimentale connue sous le nom de loi empirique des grands nombres : Soit A un événement relatif à une certaine expérience aléatoire (par exemple A="sortir pile" quand on joue à pile ou face). Répétons N fois (dans les mêmes conditions expérimentales) l expérience aléatoire et soit N A le nombre de fois où A s est réalisé au cours des N essais. On constate que le rapport f A = N A N appelé fréquence de l événement A, reste pratiquement constant pour N assez grand, de sorte qu on peut considérer ce nombre comme une caractéristique intrinsèque de l événement A. Dans le cas de l exemple, pour une pièce correcte, on constate que f A = 0, 5 dès que N est assez grand. C est cette valeur limite qu on appelera la probabilité de l événement A. 2 Expérience aléatoire et événements 2.1 Définitions Il est naturel de représenter une expérience aléatoire par l ensemble de toutes ses éventualités (qu on suppose pour l instant en nombre fini). Par exemple lancer un dé peut se représenter par l ensemble (1) Ω = {1, 2, 3, 4, 5, 6}. Notes du cours de Probabilités de M1 de M. L. Gallardo, Université de Tours, année Les démonstrations sont détaillées dans le cours oral. 1

2 Un événement est un ensemble d éventualités ; par exemple "il sort un nombre pair" est représenté par le sous-ensemble A = {2, 4, 6}. L ensemble des éventualités autres que celles de A est un événement appelé contraire de A ; il est noté Ā. Toujours avec le même exemple, Ā = {1, 3, 5}. Deux événements A et B peuvent avoir des éventualités en commun. L ensemble des éventualités communes à A et B constitue un événement noté A B et appelé conjonction des événements A et B. Avec l exemple ci-dessus, si A ="il sort un nombre pair"= {2, 4, 6} et B ="il sort un nombre supérieur ou égal à 4"= {4, 5, 6}, on a A B = {4, 6}. Si on réunit les éventualités de deux événements A et B, on obtient un événement appelé événement A ou B 1 et noté A B. Toujours avec l exemple précédent, on a A B = {2, 4, 5, 6}. 2.2 Réalisation d un événement On dit que l événement A s est réalisé si et seulement si l une des éventualités constituant A s est réalisée. Ainsi on a : A réalisé Ā non réalisé A B réalisé A réalisé et B réalisé A B réalisé A réalisé ou B réalisé 3 Expérience aléatoire probabilisée Définition 3.1 : Si une expérience aléatoire est schématisée par un ensemble fini Ω appelé univers des possibles, alors : les éléments de Ω sont appelés éventualités. les éléments de l ensemble P(Ω) des parties de Ω sont appelés événements. Remarque 3.2 : Désormais on considérera un événement comme un sous-ensemble de Ω sans faire référence à sa réalisation ou sa nonréalisation. Les opérations ensemblistes, et trouvent alors une interprétation en termes d événements. On utilisera le vocabulaire suivant : écriture ensembliste Ω A( P(Ω)) Ā A B A B A B = A B formulation probabiliste événement certain événement impossible événement A événement non A événement A et B événement A ou B A et B sont incompatibles A implique B 1 attention, il s agit du «ou» mathématique, c est à dire le «ou» non exclusif. 2

3 Remarque 3.3 : Soit N > 0 un entier fixé. Notons f A la fréquence de l événement A au cours de N répétitions successives de l expérience aléatoire (voir le 1). On voit immédiatement que l application A f A possède les deux propriétés suivantes : 1) f Ω = 1 2) A B = = f A B = f A + f B. Les axiomes des probabilités sont calqués sur ces propriétés de la fréquence. Définition 3.4 : L univers fini Ω est probabilisé si à chaque événement A P(Ω) est associé un nombre P(A) 0, appelé probabilité de A de telle sorte que pour A, B P(Ω) les deux propriétés suivantes soient satisfaites : 1) P(Ω) = 1 2) A B = = P(A B) = P(A) + P(B). Le couple (Ω, P) où l application P définie sur P(Ω) vérifie les conditions ci-dessus, est appelé espace probabilisé. Les propriétés immédiates de la probabilité sont les suivantes : Proposition 3.5 : Si (Ω, P) est un espace probabilisé fini, pour tous A, B P(Ω), on a 1) 0 P(A) 1. 2) P(Ā) = 1 P(A). 3) P( ) = 0. 4) P(A B) = P(A) + P(B) P(A B). De plus si A 1..., A n sont des événements deux à deux incompatibles, P( n i=1a i ) = n P(A i ). i=1 Définition 3.6 : Soit Ω = {ω 1,..., ω n } un espace probabilisé fini et soient p 1 = P(ω 1 ),..., p n = P(ω n ) les probabilités des éventualités de Ω. La suite des nombres p i, i = 1,..., n s appelle la distribution de probabilité sur Ω. Ces nombres p i vérifient les propriétés suivantes : 1) 0 p i 1 pour tout i {1,..., n}. 2) n i=1 p i = 1. 3) si A = i J {ω i } alors P(A) = i J p i. Définition 3.7 : Etant donné un univers Ω, on appelle système complet d événements toute partition (A i ) i I de l ensemble Ω. Autrement dit les A i sont des événements deux à deux incompatibles et de réunion égale à Ω. Souvent on attache plus d importance à un système complet d événements (A i ) i I et aux événements obtenus comme réunion de certains A i qu aux éventualités (i.e. les éléments de Ω). Dans ce cas, on considère les A i (i I) comme de nouvelles éventualités et on n utilise alors que la distribution de probabilité associée aux A i. 3

4 Exemple 3.8 : Si on joue avec deux dés, un blanc et un rouge, l expérience aléatoire peut être modélisée par l ensemble Ω des couples (a, b) où a est le numéro obtenu avec le dé blanc et b le numéro obtenu avec le dé rouge. Autrement dit Ω est le produit cartésien Ω = {1,..., 6} {1,..., 6}. Considérons les événements A i, 2 i 12 définis par : A i = la somme des points marqués égale i Les A i (2 i 12) forment un système complet d événements. Si on ne s intéresse qu à la somme des points marqués, il est plus commode d introduire un nouvel espace Ω = {A 2, A 3,..., A 12 } dont les nouvelles éventualités sont les A i et la distribution de probabilité sur Ω est donnée par : P(A 2 ) = 1, P(A 36 3) = 2, P(A 36 4) = 3, P(A 36 5) = 4, P(A 36 6) = 5, 36 P(A 7 ) = 6, P(A 36 8) = 5, P(A 36 9) = 4, P(A 36 10) = 3, P(A 36 11) = 2, 36 P(A 12 ) = Soit A l événement "la somme des points marqués est supérieure ou égale à 10". On a P(A) = P(A 10 ) + P(A 11 ) + P(A 12 ) = = Probabilité équidistribuée 4.1 Généralités Soit Ω = {ω 1,..., ω n } un ensemble fini, P une probabilité sur Ω, et p 1 = P(ω 1 ),..., p n = P(ω n ) la distribution de probabilité correspondante sur Ω. Définition 4.1 : On dit que la probabilité est équidistribuée (ou uniforme) sur Ω si p 1 = p 2 =... = p n = 1 n. Proposition 4.2 : Si la probabilité est équidistribuée sur Ω, pour tout événement A, on a P(A) = card A. card Ω (en d autres termes plutôt anciens, P(A) = nombre de cas favorables à A nombre total de cas possibles ). Exemple 4.3 : La plupart des exemples élémentaires de probabilité équidistribuée ont trait aux jeux de hasard : 1) Quand on lance un dé, quelle est la probabilité d obtenir un nombre supérieur à 4 (événement A)? L expérience aléatoire se modélise par l ensemble Ω = {1,..., 6}. Si le dé n est pas truqué, il est naturel d admettre qu aucune face n est privilégiée donc que la probabilité est équidistribuée. On a donc P(A) = p 5 + p 6 = 2 = ) En tirant une carte d un jeu de 32 cartes, quelle est la probabilité d obtenir un as (événement A)? L expérience a ici 32 éventualités chacune équiprobable. Donc P(A) = 4 = ) Si on tire successivement 3 cartes d un jeu de 32 cartes (sans remise) 4

5 quelle est la probabilité d obtenir 3 as (événement A)? Ici la réponse dépend d une modélisation convenable de l expérience aléatoire consistant à tirer 3 cartes sans remise. Sa solution est étudiée dans le paragraphe suivant. 4.2 Tirages sans remise Les tirages sans remise interviennent si souvent dans les modèles probabilistes qu il convient que le débutant ait des idées claires sur cette question. Soit E un ensemble de N objets (par exemple des cartes ou d autres choses). Par définition «tirer un objet au hasard dans E» est une expérience aléatoire probabilisée qu on modélise par l espace Ω = E (car les éventualités sont les divers objets qu on peut «tirer» de l ensemble E qu on assimile à un sac dans lequel on va plonger le main pour en tirer un objet) et on suppose que la probabilité est équidistribuée sur Ω (c est ce qui justifie le terme tirer au hasard, ce qui suppose que les objets ont été bien mélangés et que chaque objet a la même probabilité d être choisi). Supposons qu il y ait dans E un nombre N C d objets possédant une certaine caractéristique C alors la probabilité de tirer un objet de type C est égale à N C N c est à dire c est la proportion d objets de type C dans E. Si maintenant on tire au hasard successivement r objets sans remise dans E (1 < r N) (i.e. on tire un objet dans E puis un deuxième dans E, etc... mais à chaque fois sans remettre les différents objets déjà tirés). Comment modéliser cette expérience aléatoire? : On convient de ne s intéresser qu aux r objets tirés et non à l ordre dans lequel ils ont été tirés (autrement dit tout se passe comme si on avait tiré les r objets d un seul coup dans E). Tout sous ensemble de E à r éléments est une éventualité. On modélise donc l expérience aléatoire «tirer r objets dans E sans remise» par l espace Ω = {F P(E); cardf = r} de toutes les parties de E ayant r éléments. On sait depuis le lycée que cardω = Cn r = n!. Par définition (de "au hasard") on suppose r!(n r)! que la probabilité est équidistribuée sur Ω, c est à dire que chaque éventualité a pour probabilité 1. Cn r Ainsi si on tire au hasard 3 cartes (sans remise) d un jeu de 32 la probabilité d obtenir 3 as (événement A) est égale à P(A) = carda C 3 32 = C3 4 C 3 32 = = = 0, La probabilité d obtenir au moins un valet (événement B) (en tirant toujours 3 cartes), vaut P(B) = 1 P( B) = 1 C3 28 C 3 32 = =

6 4.3 Tirages avec remise Les tirages avec remise donnent lieu à une toute autre une modélisation. Faire n tirages au hasard avec remise dans un ensemble E, c est tirer un objet dans E, noter le résultat observé, remettre l objet dans E, mélanger les objets puis réeffectuer encore n 1 fois la même opération. Le résultat observé est un n-uplet (x 1,..., x n ) où pour tout 1 i n, x i E. L expérience aléatoire «tirer n objet au hasard avec remise dans E» est donc représentée par l univers (2) Ω = E E = E n et il est naturel de supposer que les éventualités sont toutes équiprobables, c est à dire (3) ω Ω, P(ω) = 1 (carde) n Par exemple si on tire trois cartes au hasard et avec remise dans un jeu de 32 cartes, l événement A = «obtenir trois as» est composé de = 64 éventualités différentes. On a donc (4) P(A) = = = 0, Remarque 4.4 : La notion de tirage avec remise est liée à la notion de répétition d expériences aléatoires indépendantes que nous modéliserons dans le chapitre suivant. Nous reviendrons donc bientôt sur cette question avec un autre point de vue. 5 Rappels d analyse combinatoire Dans le cas où la probabilité est équidistribuée dans un univers fini, les questions de probabilité se reduisent, comme on vient de le voir, à des questions de dénombrement. Il n est donc peut être pas inutile de rappeler succintement quelques résultats bien connus d analyse combinatoire. 5.1 Applications Soient E un ensemble à n éléments et F un ensemble à p éléments. Une application (quelconque) f : E F de E dans F peut se représenter par le n-uplet (i.e. suite finie) (f 1, f 2,..., f n ) des images des différents éléments de E. Comme il y a p choix possibles pour chaque coordonnée f i (i = 1,..., n), il y a donc au total p p p = p n applications de E dans F. 5.2 Permutations Soit E un ensemble de n objets. On appelle permutation de E toute manière (b 1, b 2,..., b n ) de disposer les éléments de E dans un certain 6

7 ordre. Mathématiquement une permutation est donc une application bijective (5) b : {1,..., n} E de l ensemble {1,..., n} sur E. Comme il y a n choix possibles pour l objet b 1, n 1 choix possibles pour b 2, n 2 choix possibles pour b 3, etc..., le nombre total de permutations de E est égal à n(n 1) 2.1 = n! 5.3 Arrangements Soient E un ensemble à n éléments et 0 p n un entier fixé. On appelle arrangement de p objets de E tout p-uplet (i 1,..., i p ) d objets de E tous différents. Mathématiquement un arrangement est donc une application injective (6) i : {1, 2,..., p} E de l ensemble {1, 2,..., p} dans E. Il y a donc n choix possibles pour l objet i 1, n 1 choix possibles pour i 2, etc... et n p + 1 choix pour i p. Le nombre total d arrangements de p objets de E est donc (7) A p n = n(n 1) (n p + 1) = 5.4 Combinaisons n! (n p)! Soient E un ensemble à n éléments et 0 p n un entier fixé. Toute partie F E à p élément est appelée combinaison de p éléments de E (on dit aussi combinaison de p éléments parmi n). Comme F est un sous-ensemble, on ne tient compte que des p éléments qui le composent qui sont évidemment tous différents mais il n y a pas d ordre entre les éléments. On note C p n (où ( n p)) le nombre total de combinaisons de p objets. Comme à une combinaison de p objets on peut clairement associer p! arrangements différents, il y a p! fois plus d arrangements de p objets que de combinaisons de p objets et donc : (8) C p n = Ap n p! = n! p!(n p)! 5.5 Combinaisons avec répétition Soient E un ensemble à n éléments et 1 p un entier fixé (on ne suppose pas que p n). Une combinaison avec répétitions de p objets de E est une «pseudo sous-ensemble» de E à p éléments mais où un même élément peut être répété plusieurs fois. Par exemple si E = {1, 2, 3, 4}, et p = 5, {1, 1, 1, 1, 1},{1, 2, 2, 3, 4} et {2, 2, 3, 3, 4} sont des combinaisons avec répétitions de 5 éléments de E. Pour donner une description mathématique rigoureuse considérons que E = {1, 2,..., n} est l ensemble des entiers de 1 à n. Une combinaison avec répétition de p objets de E est parfaitement déterminée si pour tout i = 1,..., n, on 7

8 précise le nombre k i de répétitions de l élément i dans la combinaison. Le nombre total de combinaisons avec répétitions de p objets de E est donc égal au nombre de solutions en nombres entiers k i (i = 1,..., n) de l équation (9) k 1 + k k n = p. On montre que ce nombre est égal à C n 1 n+p 1 (voir les exercices). 8

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Introduction au Calcul des Probabilités

Introduction au Calcul des Probabilités Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Introduction au Calcul des Probabilités Probabilités à Bac+2 et plus

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Arbre de probabilité(afrique) Univers - Evénement

Arbre de probabilité(afrique) Univers - Evénement Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Probabilités. I - Expérience aléatoire. II - Evénements

Probabilités. I - Expérience aléatoire. II - Evénements Probabilités Voici le premier cours de probabilités de votre vie. N avez-vous jamais eut envie de comprendre les règles des grands joueurs de poker et de les battre en calculant les probabilités d avoir

Plus en détail

P1 : Corrigés des exercices

P1 : Corrigés des exercices P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à

Plus en détail

9 5 2 5 Espaces probabilisés

9 5 2 5 Espaces probabilisés BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Objets Combinatoires élementaires

Objets Combinatoires élementaires Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Peut-on imiter le hasard?

Peut-on imiter le hasard? 168 Nicole Vogel Depuis que statistiques et probabilités ont pris une large place dans les programmes de mathématiques, on nous propose souvent de petites expériences pour tester notre perception du hasard

Plus en détail

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles Probabilités conditionnelles Exercice Dans une usine, on utilise conjointement deux machines M et M 2 pour fabriquer des pièces cylindriques en série. Pour une période donnée, leurs probabilités de tomber

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

LES GENERATEURS DE NOMBRES ALEATOIRES

LES GENERATEURS DE NOMBRES ALEATOIRES LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. Corrigé du Prétest 1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. a) Obtenir un nombre inférieur à 3 lors du lancer d un dé. U= { 1, 2,

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile. Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir

Plus en détail

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles

Plus en détail

INF 162 Probabilités pour l informatique

INF 162 Probabilités pour l informatique Guy Melançon INF 162 Probabilités pour l informatique Licence Informatique 20 octobre 2010 Département informatique UFR Mathématiques Informatique Université Bordeaux I Année académique 2010-2011 Table

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch

Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch Pre-MBA Statistics Seances #1 à #5 : Benjamin Leroy-Beaulieu Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch Mise à niveau statistique Seance #1 : 11 octobre Dénombrement et calculs de sommes 2 QUESTIONS

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Cryptographie et fonctions à sens unique

Cryptographie et fonctions à sens unique Cryptographie et fonctions à sens unique Pierre Rouchon Centre Automatique et Systèmes Mines ParisTech pierre.rouchon@mines-paristech.fr Octobre 2012 P.Rouchon (Mines ParisTech) Cryptographie et fonctions

Plus en détail

Axiomatique de N, construction de Z

Axiomatique de N, construction de Z Axiomatique de N, construction de Z Table des matières 1 Axiomatique de N 2 1.1 Axiomatique ordinale.................................. 2 1.2 Propriété fondamentale : Le principe de récurrence.................

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

L E Ç O N. Marches aléatoires. Niveau : Terminale S Prérequis : aucun

L E Ç O N. Marches aléatoires. Niveau : Terminale S Prérequis : aucun 9 L E Ç O N Marches aléatoires Niveau : Terminale S Prérequis : aucun 1 Chaînes de Markov Définition 9.1 Chaîne de Markov I Une chaîne de Markov est une suite de variables aléatoires (X n, n N) qui permet

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques : MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE

Plus en détail

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année

Plus en détail

COMBINATOIRES ET PROBABILITÉS

COMBINATOIRES ET PROBABILITÉS COMBINATOIRES ET PROBABILITÉS ème année. Analyse combinatoire.. Outils.. Principe de décomposition.. Permutations.. Arrangements..5 Combinaisons 8.. Développement du binôme 9..7 Ce qu il faut absolument

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

Que faire lorsqu on considère plusieurs variables en même temps?

Que faire lorsqu on considère plusieurs variables en même temps? Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

EI - EXERCICES DE PROBABILITES CORRIGES

EI - EXERCICES DE PROBABILITES CORRIGES EI 1 EI - EXERCICES DE PROBABILITES CORRIGES Notations 1 Les coefficients du binôme sont notés ( n p 2 Un arrangement de n objets pris p à p est noté A p n 3 Si A est un ensemble fini, on notera A ou card

Plus en détail

4. Exercices et corrigés

4. Exercices et corrigés 4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au

Plus en détail

ÉPREUVE COMMUNE DE TIPE 2008 - Partie D

ÉPREUVE COMMUNE DE TIPE 2008 - Partie D ÉPREUVE COMMUNE DE TIPE 2008 - Partie D TITRE : Les Fonctions de Hachage Temps de préparation :.. 2 h 15 minutes Temps de présentation devant le jury :.10 minutes Entretien avec le jury :..10 minutes GUIDE

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle

Plus en détail

Date : 18.11.2013 Tangram en carré page

Date : 18.11.2013 Tangram en carré page Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement

Plus en détail

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2) Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Probabilités et Statistique

Probabilités et Statistique Probabilités et Statistique Y. Velenik Version du 24 mai 2012 Dernière version téléchargeable à l adresse http://www.unige.ch/math/folks/velenik/cours.html 2011-2012 2 Table des matières Table des matières

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des

Plus en détail

Chapitre VI - Méthodes de factorisation

Chapitre VI - Méthodes de factorisation Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.

Plus en détail

Probabilité 2 Ω = { P, F } Lancer un sou deux fois. Ω = { PP, PF, FP, FF} Ω = { 2, 3, 4,..., as }

Probabilité 2 Ω = { P, F } Lancer un sou deux fois. Ω = { PP, PF, FP, FF} Ω = { 2, 3, 4,..., as } . Définitions préliminaires Probabilité. Définitions préliminaires La théorie des probabilités utilise un langage emprunté à la théorie des ensembles. Il sera nécessaire de définir les éléments de ce langage

Plus en détail

Dunod, Paris, 2014 ISBN 978-2-10-059615-7

Dunod, Paris, 2014 ISBN 978-2-10-059615-7 Illustration de couverture : Federo-istock.com Dunod, Paris, 2014 ISBN 978-2-10-059615-7 1.1 Symétrie du hasard et probabilité uniforme 3 1.2 Loi de probabilité sur un ensemble fini 6 1.3 Probabilité sur

Plus en détail

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques

Plus en détail

Introduction aux probabilités. et à la statistique. Jean Bérard

Introduction aux probabilités. et à la statistique. Jean Bérard Introduction aux probabilités et à la statistique Jean Bérard 2 Avertissement Ces notes sont en cours d élaboration. Il se peut donc qu y subsistent un certain nombre d erreurs, d incohérences, et/ou de

Plus en détail

NOTIONS DE PROBABILITÉS

NOTIONS DE PROBABILITÉS NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail