Fonctions usuelles Limites

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Fonctions usuelles Limites"

Transcription

1 Fonctions usuelles Limites I) Généralités Dans tout ce cours, I désignera un intervalle de Y (intervalle ouvert, fermé, semi-ouvert ). Si I = [a, b], on appellera I un segment de Y. On considère la fonction f allant de I dans Y telle que pour tout de I, il eiste un unique réel y tel que y = f(). On appelle graphe de f et on note C f les couples (, f()) quand parcours I. On appelle domaine de définition de f l ensemble noté D f qui représente l ensemble de de I tel que f() Y. II) Limites de fonction 1) Définition Soit f une fonction de I dans Y et a I et l Y. On dit que f admet une limite l quand tends vers a si : ε > 0, α > 0 / I, a α f ( ) l ε On écrira : lim f ( ) = l ou f ( ) l a a

2 Remarque : a α a α a + α ], [ a α a α a + α 2) Propriétés des limites Lemme : Soit f une fonction de I dans Y et a Y. Si la limite de f() quand tend vers a eiste alors elle est unique. Si pour tout de I, f() est positif ou nul et si la limite de f() quand tend vers a eiste alors la limite de f() est positive ou nulle. Si la limite de f() quand tend vers a eiste et est non nulle alors il eiste un α > 0 tel que pour tout de ]a α, a + α[ entraîne que f() 0. Autrement dit : lim f ( ) eiste la limite est unique a I, f ( ) 0 lim f ( ) 0 lim f ( ) eiste a a lim f ( ) eiste a α > 0 / ] a α, a + α[, f ( ) 0 lim f ( ) 0 a (Démonstrations par l absurde) Corollaire : Soit f une fonction de I dans Y et a I tel que la limite de f() quand tend vers a soit non nulle alors la fonction 1/f() est bien définie sur ]a α, a + α[

3 Définition : Soit f une fonction de I dans Y et a I. On dit que f est continue en a si et seulement si la limite de f() quand tends vers a eiste et vaut f(a). f continue en a lim f ( ) = f ( a ) a Théorème d encadrement (des gendarmes) : Soit f, g et h trois fonctions et a I. On suppose que I, f ( ) g( ) h( ) et que lim f ( ) = lim h( ) alors la limite de g() quand tend vers a a a eiste et vaut lim g( ) = lim f ( ) = lim h( ) a a a Remarque : l = ± lim f ( ) n'eiste pas l R, ε > 0 / α > 0, I a a α et f ( ) l > ε Il eiste aussi une autre méthode pour montrer qu une limite n eiste pas. Il suffit de trouver deu suites ( n ) et (y n ) telles que : n y n pour tout n V a et y a n n n + n + lim f ( n) lim f ( yn) n a yn a Définition : Soit f une fonction de I dans Y et a I. On dit que f admet une limite à gauche de a : lim f ( ) ε > 0, α > 0 / I, a α < a f ( ) l ε a

4 On dit que f admet une limite à droite de a : lim f ( ) ε > 0, α > 0 / I, a < a + α f ( ) l ε + a Lemme : lim f ( ) = l R lim f ( ) = lim f ( ) + a a a Définition : On dit que f admet une limite l quand tend vers + si : ε > 0, b > 0 / > b f ( ) l ε On dit que f tend vers + quand tends vers a si : A > 0, α > 0 / I, a α f ( ) A On dit que f tend vers quand tends vers + si : A < 0, b > 0 / > b f ( ) A Propriétés : [ ] lim f ( ) + g( ) = lim f ( ) + lim g( ) a a a [ ] lim f ( ) g( ) = lim f ( ) lim g( ) a a a f ( ) lim f ( ) a lim, si lim g( ) 0 a g( ) = lim g( ) a a

5 III) Formes indéterminées 1) Définitions Les formes indéterminées sont les suivantes : 0 0,,,,1 0 Si tend vers a, les formes indéterminées se ramènent à 0/0 Si tend vers, les formes indéterminées se ramènent à / Rappel : a > 0, R, a = e ln( a) ( ) f ( ) > 0, I, f ( ) = e g ( ) g ( )ln( f ( )) Remarque : 1 se ramène à la forme indéterminée 0 Remarques : 1) Si tend vers et si on a une forme indéterminée de la forme / ou 0/0 alors ce sont les croissances comparées qui nous aident. 2) Si tend vers a et si on a une forme indéterminée de la forme 0/0 alors ce sont les propriétés fines du numérateur et du dénominateur au voisinage de a qui nous aident et la clé est la dérivée dans ce cas. Limites à connaître :

6 ln(1 + ) e 1 lim = 1 lim = sin( ) cos( ) 1 lim = 1 lim = tan( ) ln( ) lim = 1 lim = Autres limites utiles : sin( ) 1 lim 0 3 = 6 cos( ) 1 1 lim 0 2 = 2 tan( ) 1 lim 0 3 = 3 2) Méthodes de résolutions des FI «0/0» et «/» Cas «0 / 0» : Première méthode Soit f une fonction de I dans Y dérivable en a I. Alors on a : f ( ) f ( a) lim = f '( a) a a Cette méthode ne marche que si on a un au dénominateur. Cas «0 / 0» : Deuième méthode Soit f et g deu fonctions de I dans Y dérivables en a I. On a :

7 f ( ) f ( a) f '( a) lim = si f '( a) 0 ou g '( a) 0 a g( ) g( a) g '( a) Cas «0 / 0» : Troisième méthode, règle de l Hospital Soit f et g deu fonctions de I dans Y dérivables en a I ainsi que toutes les dérivées de f et g au point a. On a : f ( ) f ( a) f '( a) lim = si f '( a) 0 ou g '( a) 0 a g( ) g( a) g '( a) Si f (a) = g (a) = 0 alors, f ( ) f ( a) f ''( a) lim = si f ''( a) 0 ou g ''( a) 0 a g( ) g( a) g ''( a) Si f (a) = g (a) = 0 alors, (3) f ( ) f ( a) f ( a) (3) (3) lim = si f ( a) 0 ou g ( a) 0 a (3) g( ) g( a) g ( a) Et ainsi de suite Cas «/» Pour lever l indétermination, «/» quand tends vers, on factorise les termes dominants à l infini et on simplifie. On peut aussi utiliser les croissances comparées des fonctions usuelles. En plus l infini, c est l eponentielle qui domine les fonctions puissances qui elle-même dominent les fonctions logarithmes. e lim = + n > 0 + n n lim = + n > 0 + ln( )

8 IV) Fonctions usuelles 1) La fonction «valeur absolue» Soit un réel si 0 = si 0 Une valeur absolue est toujours positive ou nulle. = λ = λ Graphe de la fonction : 2) La fonction «partie entière» Soit un réel

9 = n + α, n Z, 0 α < 1 On définie la fonction partie entière E() telle que : R, E( ) = n Z Propriétés de E() : R, E( + 1) = E( ) + 1 [ [ n, n + 1, E( ) = n R, 1 < E( ) Limites de E() : lim E( ) = n 1 n lim E( ) n + = n E() est discontinue en tout point n relatif. Graphe de la fonction :

10 3) La fonction «mantisse» On définie la fonction mantisse m() telle que : R, m( ) = α = E( ), 0 α = m( ) < 1 Propriétés : R, m( + 1) = m( ) m() est 1 Périodique. [ [ 0,1, m( ) = Limites de m() : lim m( ) = 1 n lim m( ) = 0 n + C est également une fonction discontinue. Graphe de la fonction :

11 4) La fonction «eponentielle» et «logarithme» R, e > 0 lim e = 0 lim + e 0 e = 1 = + R = 2 + y y (, y), e e. e 2 y (, y) R, e = R, e = 1 e e e La dérivée de ep est elle-même. Elle est donc toujours positive. Donc ep est une fonction strictement croissante et elle réalise une bijection de R ] 0, + [ La fonction inverse de ep est ln. On l obtient en faisant la symétrie orthogonale par rapport à la première bissectrice. Elle est définie de ] 0,+ [ R. > = ln( ) 0, e R, ln( e ) = La fonction logarithme népérien est strictement croissante car sa dérivée vaut 1/ pour tout positif. y

12 lim ln( ) = 0 lim ln( ) + + ln(1) = 0 = + (, y) > 0, ln( y) = ln( ) + ln( y) (, y) > 0, ln = ln( ) ln( y) y 1 > 0, ln = ln( ) 5) Les fonctions trigonométriques Ces fonctions ont été étudiées dans ce cours : tions_usuelles1.pdf Pour les courbes : 1_Fonction_usuelles1.pdf

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5 FONCTION LOGARITHME I FONCTION RECIPROQUE La fonction carrée La fonction carrée est dérivable et strictement monotone sur [ 0 ; 2 ] D'après le corollaire du théorème des valeurs intermédiaire pour tout

Plus en détail

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

TS Limites de fonctions Cours

TS Limites de fonctions Cours TS Limites de fonctions Cours I. Limites à l infini. Limite infinie en + ( 3 ) Définition Une fonction f a pour limite + en + si pour toute valeur réelle A, on a f() > A pour assez grand c est à dire pour

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier.......................................... Fonctions affines............................................

Plus en détail

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln Eercice ) f ( ) = ln ; f () = ln + ) ln ln ln f ( ) = ; f () = = ² ² ) f ( ) = ( ln ) 4 ; f () = 4 ( ln ) 4) f ( ) = ; f () = = ln ln ² ln ² ) ( ln + ) ( ln ) ln f ( ) = ; f () = = ln + (ln + )² ( ln +

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Table des matières La fonction réciproque de la fonction eponentielle 2. Définition......................................................... 2.2 Propriété.........................................................

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation Ce que dit le programme : Nouveautés par rapport à la première : Dérivée de la composée et écriture différentielle (pour la physique)

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

Fonctions logarithmes

Fonctions logarithmes La fonction logarithme népérien. Définition et propriétés Fonctions logarithmes La fonction eponentielle est continue et strictement croissante sur R. Le corollaire du théorème des valeurs intermédiaires

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation ) Définition et interprétation géométrique : Soient f une fonction définie sur un intervalle I de R et a I. La fonction est dérivable

Plus en détail

LIMITES et CONTINUITE

LIMITES et CONTINUITE LIMITES et CONTINUITE I. LIMITES EN L INFINI a) Limite infinie Par exemple, considérons la fonction f dont la courbe représentative est : Lorsque x s'en va vers +, f(x) devient de plus en plus grand. il

Plus en détail

Examen de l UE LM110 Juin 2005

Examen de l UE LM110 Juin 2005 Université Pierre et Marie Curie Licence Sciences et Technologies MIME Eamen de l UE LM110 Juin 2005 La durée de l eamen est de deu heures Les eercices sont indépendants les uns des autres Les notes de

Plus en détail

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ A. Limites d'une fonction I. Limite en et en. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ où a R. DÉFINITIONS Soit l un réel.

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien Introduction La fonction eponentielle est continue strictement croissante de R à valeurs dans ]0; + [. Le théorème des valeurs intermédiaires permet donc d affirmer que : Pour

Plus en détail

Limites et continuité de fonctions

Limites et continuité de fonctions Limites et continuité de fonctions Limites. Limites en + Dénition Soit f une fonction réelle dénie sur un intervalle de la forme [A, + [.. Soit l R. On dit que f tend vers l en + et on note f() = l si

Plus en détail

( e ) x 2 e x 1 = 1. CORRIGÉ PARTIEL Fonction exponentielle. Ch 5. = donc lim x. Exercice 2. e x e2 =. = +. Par produit lim ( 3 x)e x =.

( e ) x 2 e x 1 = 1. CORRIGÉ PARTIEL Fonction exponentielle. Ch 5. = donc lim x. Exercice 2. e x e2 =. = +. Par produit lim ( 3 x)e x =. C 5 CORRIGÉ PARTIEL Fonction eponentielle Eercice e + = e e = e e. En + : + e = 0 (ite de référence), donc + e e = 0. En : e 0 + = donc e =. e > 0, donc e e =. En + : 3 = et e = +. Par produit ( 3 )e =.

Plus en détail

REVISIONS POUR LES VACANCES. Généralités sur les fonctions

REVISIONS POUR LES VACANCES. Généralités sur les fonctions Année 2016-2017 PCSI ( Baggio ) REVISIONS POUR LES VACANCES Vous devez connaître parfaitement tous les résultats donnés ici sur les généralités de fonctions, sur les fonctions exponentielles et logarithmes

Plus en détail

Cours informel sur la fonction réciproque.

Cours informel sur la fonction réciproque. Cours informel sur la fonction réciproque. Ce cours aborde de nombreuses parties du programme de terminale scientifique. Les parties qui n'appartiennent pas au programme seront signalées par le sigle hp,

Plus en détail

Fonctions d'une variable réelle (M-1.1)

Fonctions d'une variable réelle (M-1.1) Fonctions d'une variable réelle (M-.) I. Fonctions définies par morceaux Définition des fonctions en escalier : une fonction en escalier est une fonction constante par intervalles. Sa représentation graphique

Plus en détail

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle FONCTIONS USUELLES Fonctions logarithme, eponentielle et puissances. Fonction logarithme et eponentielle Définition. Logarithme La fonction ln est l unique primitive de sur R + s annulant en. Proposition.

Plus en détail

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S I Notion de continuité 1) Fonctions continues Définition 1 : Soit f une fonction définie sur un intervalle I contenant a. Remarques : On dit que f est continue en a si lim f(x) = f(a) On dit que f est

Plus en détail

DERIVATION. ou f'(x 0 ) = lim. h 0

DERIVATION. ou f'(x 0 ) = lim. h 0 DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui Chapitre 6 : CONTINUITE - DERIVATION 1. CONTINUITE 1. 1 Continuité en un point Définition Soit f une fonction numérique définie sur un intervalle I de R, et a un élément de I (distinct des bornes de I)

Plus en détail

AN 1 FONCTIONS USUELLES et RÉCIPROQUES

AN 1 FONCTIONS USUELLES et RÉCIPROQUES Analyse /0 AN FONCTIONS USUELLES et ÉCIPOQUES Les notions de limites, dérivées, primitives, continuité sont supposées connues, elles seront revues ultérieurement THEOEMES FONDAMENTAUX D ANALYSE Théorème

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN T ale S FONCTION LOGARITHME NÉPÉRIEN Analyse - Chapitre 8 Tale des matières I La fonction logarithme népérien 2 I Théorème et définition 2 I 2 Conséquences immédiates 2 I 3 La relation fonctionnelle 3

Plus en détail

Limites d une fonction Continuité ponctuelle

Limites d une fonction Continuité ponctuelle Limites d une fonction Continuité ponctuelle Bcpst 1 3 janvier 2017 I Parties de et ordre I.1 Intervalles Definition 1.1 Intervalle de Un intervalle de est un ensemble d une des formes suivantes (a, b)

Plus en détail

Math I Analyse Feuille 4 : Fonctions, fonctions continues

Math I Analyse Feuille 4 : Fonctions, fonctions continues Math I Analyse Feuille 4 : Fonctions, fonctions continues 1 Quelques calculs élémentaires 11 Limites On rappelle les limites suivantes : lim ep = + et lim ep = 0 lim ln = + et lim ln = 0 Eercice 1 Soit

Plus en détail

Chapitre 8 : Limites de fonctions, continuité et applications

Chapitre 8 : Limites de fonctions, continuité et applications Chapitre 8 : Limites de fonctions, continuité et applications 1. Introduction On introduit d abord de manière rigoureuse les notion de limites de fonctions définies sur un intervalle de R et de continuité

Plus en détail

FONCTIONS D UNE VARIABLE RÉELLE

FONCTIONS D UNE VARIABLE RÉELLE FONCTIONS D UNE VARIABLE RÉELLE Toutes les fonctions considérées dans ce chapitre seront des d une variable réelle (i.e. l ensemble de départ est R) à valeurs dans R ou C. 1 Généralités 1.1 Ensemble de

Plus en détail

Fonctions réelles : rappels de lycée et compléments. () Fonctions réelles : 1 / 54

Fonctions réelles : rappels de lycée et compléments. () Fonctions réelles : 1 / 54 Fonctions réelles : rappels de lycée et compléments () Fonctions réelles : 1 / 54 1 Fonctions logarithmes et exponentielles Le logarithme népérien L exponentielle Logarithmes et exponentielles de base

Plus en détail

Limites et fonctions continues

Limites et fonctions continues Limites et fonctions continues Vidéo partie. Notions de fonction Vidéo partie 2. Limites Vidéo partie 3. Continuité en un point Vidéo partie 4. Continuité sur un intervalle Vidéo partie 5. Fonctions monotones

Plus en détail

Limites, continuité, dérivabilité

Limites, continuité, dérivabilité Limites, continuité, dérivabilité (3) () Analyse 1 / 47 Plan 1 Un peu de vocabulaire 2 Limites 3 Opérations sur les limites 4 Relations de comparaison locale, notations de Landau 5 Continuité 6 Fonctions

Plus en détail

FONCTIONS USUELLES. Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction.

FONCTIONS USUELLES. Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction. A 00-0 FONCTIONS USUELLES Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction. Exponentielles, logarithmes, puissances. Exponentielle

Plus en détail

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie Finance et Gestion L1-S1 : MATH101 : Pratique des Fonctions numériques Notes de cours : Chapitre II : Limites Notations

Plus en détail

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité Chapitre. Compléments sur les fonctions : ites, continuité, dérivabilité I. Rappels de cours. Limites d une fonction Soit l R. (i) Limites en + et en On dit que f() tend vers l lorsque tend vers + quand

Plus en détail

Limites, continuité et dérivabilité

Limites, continuité et dérivabilité Correction de la Feuille de TD - Analyse 8 9 Limites, continuité et dérivabilité Eercice. Montrer que a = et ( ) =.. Démontrer maintenant ces résultats en utilisant la définition (avec le ε) de la ite.

Plus en détail

Etude de la fonction logarithme

Etude de la fonction logarithme Etude de la fonction logarithme Après un bref rappel des résultats vus dans le module de définition des fonctions logarithmes, nous menons l étude approfondie de la fonction logarithme népérien. 1/ Rappels

Plus en détail

Fonctions exponentielles

Fonctions exponentielles Fonctions eponentielles Terminale ES 22 septembre 2013 Terminale ES () Fonctions eponentielles 22 septembre 2013 1 / 19 Fonctions du type q On admet la propriété suivante : Propriété 1 Soit q > 0, un réel.

Plus en détail

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique.

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Programme de colle - Semaine 4 Fonctions circulaires. Bijections, fonctions circulaires réciproques. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Démonstrations du

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Fonctions Remise à Niveau Mathématiques Deuième partie : Fonctions Corrigés des eercices Page sur 0 RAN Fonctions Eercices corrigés - Rev 03 Mathématiques RAN - Fonctions DÉFINITIONS

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

Continuité sur un intervalle

Continuité sur un intervalle Continuité sur un intervalle Bcpst 1 27 février 2017 Notations du chapitre Dans tout ce chapitre, et sauf mention contraire : I est un intervalle de non vide et non réduite à un point ; est un domaine

Plus en détail

Fonctions usuelles réelles

Fonctions usuelles réelles Fonctions usuelles réelles fonctions polynômes et rationnelles 0. les fonctions polynômes Les polynômes seront étudiés en le détail au chapitre 7. définition 4. : n dit que p est une fonction polynôme

Plus en détail

Chapitre 2 : Limites et asymptotes

Chapitre 2 : Limites et asymptotes I Eercices 1 Limites sans indétermination Calculer les ites des fonctions suivantes, et préciser lorsque la courbe représentative de f (notée (C f )) admet une asymptote horizontale ou verticale. 1. f()

Plus en détail

Limite d une fonction en un point

Limite d une fonction en un point Limite d une fonction en un point Définiton Soit f une fct déf. sur un intervalle I de R, sauf p-ê en a I. l R est la limite de f en a si, quand x I se rapproche de a, f (x) se rapproche de l. Dans ce

Plus en détail

Continuité d une fonction

Continuité d une fonction Continuité d une fonction Sur un intervalle Pour démontrer qu une fonction est continue sur un intervalle, il suffit de dire qu elle est composée de fonctions continues sur cet intervalle. Les fonctions

Plus en détail

La fonction logarithme

La fonction logarithme La fonction logarithme Table des matières La fonction logarithme népérien. Fonction réciproque d une fonction monotone............. Définition................................. 3.3 Représentation de la

Plus en détail

Progression terminale S

Progression terminale S Progression terminale S Chapitre 1 : Suites (3 semaines) I. Rappels sur les suites A. Mode de génération d une suite B. Représentations graphiques C. Suites arithmétiques et géométriques II. III. IV. Raisonnement

Plus en détail

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M "pour x assez grand"

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M pour x assez grand Terminale S Capitre «Fonctions : ites, continuité et dérivabilité» Page I) Limites ) Limites à l infini a) Limite finie Définition : Etant donnée une fonction f et un réel α, on dira quelle tend vers α

Plus en détail

MPSI 2 : DL 03. pour le 12 décembre 2003

MPSI 2 : DL 03. pour le 12 décembre 2003 MPSI : DL 03 pour le décembre 003 Problème L objet du problème est de calculer eplicitement la limite de la suite des moyennes arithmétiques-géométriques pour certaines valeurs initiales. On considère

Plus en détail

soit confondu avec son cercle circonscrit C (par définition un polygone est un polygone et non pas un cercle). Or, si l on trace P

soit confondu avec son cercle circonscrit C (par définition un polygone est un polygone et non pas un cercle). Or, si l on trace P Limite d une fonction Approche intuitive de la notion de limite Dans ce chapitre, nous avons besoin d un outil mathématique appelé «Limite» qui est une notion fort nécessaire pour la compréhension et la

Plus en détail

Formulaire des fonctions usuelles

Formulaire des fonctions usuelles Université d Orléans Formulaire des fonctions usuelles Licence 1 de Mathématiques Groupe 2 Baptiste Morelle 29/09/2008 Page 1 sur 28 Page 2 sur 28 Table des matières Fonctions particulières... 4 Fonction

Plus en détail

Fonctions usuelles. lim x 1. lim. x α ln x = 0

Fonctions usuelles. lim x 1. lim. x α ln x = 0 I Fonction logarithme Fonctions usuelles Définition : n appelle fonction logarithme népérien la primitive de la fonction définie sur ]0, + [ qui s annule en. n notera cette fonction ln. Remarque : L eistence

Plus en détail

Dérivation : Exercices. , et M le point du cercle. ( h)

Dérivation : Exercices. , et M le point du cercle. ( h) Amerinsa - Ecole d été Dérivation : Eercices Eercice : Nombre dérivé de fonctions de base Soit 0 un réel. Pour chacune des fonctions suivantes, préciser à quel intervalle doit appartenir 0 pour que la

Plus en détail

Analyse (1) : fonctions d une variable réelle

Analyse (1) : fonctions d une variable réelle MP 1. Semestre 1. Cours. Chapitre 2 : Analyse Analyse (1) : fonctions d une variable réelle continuité, limites, asymptotes dérivées, variations Application : courbes paramétriques 1. GÉNÉRALITÉS SUR LES

Plus en détail

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Fonctions Numériques Site MathsTICE de Adama Traoré Lcée Technique Bamako A- / Ensemble de définition d une fonction : - / Définition : Soit f : A B une fonction. On appelle ensemble de définition D f

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction eponentielle Problème à résoudre { On cherche les fonctions f dérivables sur R telles que f(0) = f = f Nous avons déjà essayé de construire une représentation graphique approchée d'une telle

Plus en détail

(croissances comparées) x + x 1 x x 1. 1 x 1 x 1 x = 2 = 1

(croissances comparées) x + x 1 x x 1. 1 x 1 x 1 x = 2 = 1 Eercice.. 2. 3. e 2 ln = e 2 ( 2 ) /2 } ln {{ / } (ln ) 3 2 2 = (ln ) 3 / 2 / /(2) 2 }{{} sin 0 car sin est bornée et 0. 0 4. e (aucune difficulté!) 5. Il faut distinguer 0 et 0. 6. (croissances comparées)

Plus en détail

LIMITES ET CONTINUITÉ

LIMITES ET CONTINUITÉ LIMITES ET CONTINUITÉ Ph DEPRESLE septembre 05 Table des matières Limites à l infini. Limites infinies............................................ Limites finies-asymptotes horizontales.............................

Plus en détail

Fonctions puissances Croissances comparées

Fonctions puissances Croissances comparées Fonctions puissances Croissances comparées Christophe ROSSIGNOL Année scolaire 200/20 Table des matières Puissances réelles 2. Définition Premières propriétés.................................... 2.2 Propriétés

Plus en détail

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES)

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES) DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Mathématiques: Mise à niveau. Séance 10: Fonctions usuelles

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Mathématiques: Mise à niveau. Séance 10: Fonctions usuelles UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 04 05 L Économie Cours de M. Desgraupes Mathématiques: Mise à niveau Séance 0: Fonctions usuelles Table des matières Fonction

Plus en détail

Université de Rennes 1, Licence 1 Biologie Parcours Accompagné Soutien Mathématiques. Etude de Fonctions, Feuille 1

Université de Rennes 1, Licence 1 Biologie Parcours Accompagné Soutien Mathématiques. Etude de Fonctions, Feuille 1 Université de Rennes 1, Licence 1 Biologie Parcours Accompagné Soutien Mathématiques Etude de Fonctions, Feuille 1 Calcul de dérivées. Dériver les fonctions suivantes. f 1 () = e f () = ln() f 3 () = log

Plus en détail

Fonctions convexes. Jean-Paul Vincent

Fonctions convexes. Jean-Paul Vincent 2008 Definition Une partie C du plan est dite convexe si le segment [A, B] est contenu dans C dès que les points A et B sont dans C. Definition Une partie C du plan est dite convexe si le segment [A,

Plus en détail

1 Fonction valeur absolue

1 Fonction valeur absolue ISEL - Année Mathématiques FONCTIONS USUELLES Fonction valeur absolue Dénition La valeur absolue d'un nombre réel est = ma(, ) = Propriété Soient a et b deu réels, on a: a = a ; a b b a b; a b a b ou a

Plus en détail

Cours de Terminale S / Compléments sur les fonctions. E. Dostal

Cours de Terminale S / Compléments sur les fonctions. E. Dostal Cours de Terminale S / Compléments sur les fonctions E. Dostal septembre 013 Table des matières 3 Compléments sur les fonctions 3.1 Fonctions trigonométriques................................... 3.1.1 Définitions

Plus en détail

Chapitre 4. LES DÉRIVÉES

Chapitre 4. LES DÉRIVÉES Chapitre. LES DÉRIVÉES A. Introduction Le concept de «dérivée» qui va être introduit dans le présent chapitre va faire découvrir tout ce qui manque encore pour pouvoir représenter graphiquement une fonction

Plus en détail

(pour tout x > 0) et ln(1) = 0.

(pour tout x > 0) et ln(1) = 0. Eo7 Fonctions usuelles Vidéo partie. Logarithme et eponentielle Vidéo partie. Fonctions circulaires inverses Vidéo partie 3. Fonctions hperboliques et hperboliques inverses Eercices Fonctions circulaires

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 04 05 L Économie Cours de M. Desgraupes Corrigé des exercices de mise à niveau en Mathématiques Séance 0 : Fonctions usuelles

Plus en détail

x x ; Chapitre 2 GÉNÉRALITÉS SUR LES FONCTIONS

x x ; Chapitre 2 GÉNÉRALITÉS SUR LES FONCTIONS Chapitre GÉNÉRALITÉS SUR LES FONCTIONS I. GÉNÉRALITÉS SUR LES FONCTIONS DE VARIABLE RÉELLE Sau indication particulière, pour simpliier, les onctions sont déinies sur un intervalle I de non réduit à un

Plus en détail

Continuité, dérivabilité des fonctions d une variable réelle

Continuité, dérivabilité des fonctions d une variable réelle 7 Continuité, dérivabilité des fonctions d une variable réelle Pour ce chapitre I désigne un intervalle réel et f une fonction définie sur I et à valeurs réelles ou complees. 7. Continuité en un point,

Plus en détail

DÉVELOPPEMENTS LIMITÉS

DÉVELOPPEMENTS LIMITÉS CHAPITRE 9 DÉVELOPPEMENTS LIMITÉS Dans ce chapitre, I désignera systématiquement un intervalle de R non réduit à un point. 1 Développement limité d une fonction au voisinage d un point Définition 9.1 Soient

Plus en détail

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction On dit qu une fonction est dérivable sur un intervalle I si elle est définie sur I et admet en chaque point de I un nombre dérivé.

Plus en détail

Fonction logarithme népérien.

Fonction logarithme népérien. 1. Généralités... p2 2. Propriété fondamentale de ln... p5 3. Étude et représentation graphique de la fonction logarithme népérien... p10 Copyright meilleurenmaths.com. Tous droits réservés 1. Généralités

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Résumé du cours. Fonction dérivable

Résumé du cours. Fonction dérivable Résumé du cours Fonction dérivable Nombre dérivé et fonction dérivée Soit f une fonction définie sur un intervalle ouvert I contenant a. On dit que f est dérivable en a et de nombre dérivé f (a) si Définition

Plus en détail

Fonction d une variable réelle

Fonction d une variable réelle Fonction d une variable réelle 1 Fonction d une variable réelle : généralités Définitions Fonctions et opérations Fonctions et ordre Propriétés particulières Monotonie Limites Limites et opérations Limites

Plus en détail

Terminales S BAC BLANC Mathématiques Corrigé. Durée 4 heures. La calculatrice graphique est autorisée.

Terminales S BAC BLANC Mathématiques Corrigé. Durée 4 heures. La calculatrice graphique est autorisée. Terminales S BAC BLANC Mathématiques Corrigé Durée 4 heures. La calculatrice graphique est autorisée. Eercice (commun) A. Etude de f en ) On a : lim = et lim e = e =. Par composition, il vient alors :

Plus en détail

Chapitre 2 Développements limités. Etude locale d une fonction.

Chapitre 2 Développements limités. Etude locale d une fonction. hapitre 2 Développements limités. Etude locale d une fonction. I Introduction : le cas de la fonction eponentielle A Approimation affine de ep au voisinage de 0 n notera f la fonction eponentielle f :

Plus en détail

Cours sur les fonctions usuelles

Cours sur les fonctions usuelles Cours sur les fonctions usuelles c Emmanuel Vieillard Baron, Table des matières Préambule Fonctions logarithmes, eponentielles et puissances. Logarithme néperien................................ Eponentielle

Plus en détail

FONCTION LOGARITHME. ln = a.

FONCTION LOGARITHME. ln = a. FONCTION LOGARITHME I. DEFINITION DU LOGARITHME a) Définition Problème : Soit a un réel strictement positif. Démontrer que l équation e x = a admet une solution unique α dans IR. (théorème des valeurs

Plus en détail

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone.

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. LEÇON N 6 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. Pré-requis : I est un intervalle si a,b I a b, [a,b] I ; Toute partie non

Plus en détail

Fiche d exercices 1 : Analyse, Fonctions à une variable

Fiche d exercices 1 : Analyse, Fonctions à une variable Fiche d eercices 1 : Analyse, Fonctions à une variable Analyse, Fonctions à une variable QCM 1 : Concernant les propriétés des fonctions A. La fonction inverse est continue sur ] ;0[ et sur ] ;+ [ 0. Il

Plus en détail

(ln x) 3 + x. x+ 1 x. xe 1 x

(ln x) 3 + x. x+ 1 x. xe 1 x Calculs et entraînement. Eercice 1. [limites ] Calculer les limites suivantes : 1. lim + e + ln. lim + (ln ) 3 + sin 3. lim + 1 + + 4. lim + e 1 sin + cos 7. lim + + 1 1 10. lim + 1 13. lim 5. lim e 1

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien I Introduction du logarithme népérien Définitions Définition Pour tout réel a strictement positif, l équation e y = a, d inconnue y, admet une unique solution. Cette solution

Plus en détail

Plan d'étude d'une fonction. , f x = f x alors f est impaire.

Plan d'étude d'une fonction. , f x = f x alors f est impaire. 1 Recherche de l'ensemble de définition Plan d'étude d'une fonction. Fonctions rationnelles. f x existe si le dénominateur n'est pas nul. 2n Fonctions avec radical du type. f x existe si la quantité sous

Plus en détail

Les Fonctions. Les domaines de définitions : Les limites : Les asymptotes : 1 0 ; > 0 ; ) Formes indéterminées ; + ; 0

Les Fonctions. Les domaines de définitions : Les limites : Les asymptotes : 1 0 ; > 0 ; ) Formes indéterminées ; + ; 0 Les Fonctions Les domaines de définitions : 0 ; > 0 ; 0 ; 0 0 > 0 ; 0 Les limites : ) Formes indéterminées ; 0 ; + ; 0 0 ) Formes déterminées = ; + ) ) = 0 ) Référence = 0 ; 0 = ) Limites à l ininie Factoriser

Plus en détail

Un problème sans solution est un problème mal posé. Albert Einstein. Physicien allemand.

Un problème sans solution est un problème mal posé. Albert Einstein. Physicien allemand. Chapitre 1 Étude de fonctions Un problème sans solution est un problème mal posé. Albert Einstein. Physicien allemand. 1 Fonctions usuelles 1.1 Fonction en escalier Définition 1.1 Une fonction en escalier

Plus en détail

On notera α cette solution. b. A l aide de la calculatrice, déterminer un encadrement d amplitude 10 2

On notera α cette solution. b. A l aide de la calculatrice, déterminer un encadrement d amplitude 10 2 Liban Juin 010 Série S Exercice Partie A Soit u la fonction définie sur 0; + par : ux ( ) = x + lnx 1 Etudier les variations de u sur 0; + et préciser ses limites en 0 et en + a Montrer que l équation

Plus en détail

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α.

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α. Eercice 1: (7 points) Nouvelle-Calédonie novembre 2010 TS4 DS5 19/01/11 Soit la fonction définie sur l intervalle [1 ; + [ par ϕ() = 1+ 2 2 2 ln(). 1. a. Étudier le sens de variation de la fonction ϕ sur

Plus en détail

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES Calculer les nombres suivants a) arcsin sin 8π ) 5 c) arcsin sin 5π ) 7 e) sin arcsin ) 3 b) arccos sin 8π ) 5 d) arcsin sin 0π

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Etude des fonctions usuelles

Etude des fonctions usuelles Etude des fonctions usuelles 1. Introduction Soit f une fonction réelle de la variable réelle, on a vu que ces fonctions sont souvent définies par des formules, c est-à-dire définies par des epressions

Plus en détail

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail

La calculatrice est autorisée. CORRIGE. x 2. g x

La calculatrice est autorisée. CORRIGE. x 2. g x Mathématiques TS7 04-05 Continuité et TVI IE Lundi 0 novembre «C est justement pour préserver ce qui est neuf et révolutionnaire dans chaque enfant que l éducation doit être conservatrice, c'est-à-dire

Plus en détail

Limites et continuité

Limites et continuité 1 Limites et continuité Table des matières 1 Limites - Rappels de première 2 1.1 Définition................................. 2 1.2 Asymptotes parallèles aux axes..................... 3 1.3 Limites des

Plus en détail

Suites réelles et complexes. () Suites 1 / 36

Suites réelles et complexes. () Suites 1 / 36 Suites réelles et complexes () Suites 1 / 36 1 Limites et relation d ordre 2 Comparaison des suites 3 Suites de nombres complexes () Suites 2 / 36 Plan 1 Limites et relation d ordre 2 Comparaison des suites

Plus en détail

Leçon 5 Les fonctions numériques

Leçon 5 Les fonctions numériques Leçon 5 Les fonctions numériques Cette leçon en contient 3 en fait : les généralités, la dérivation et les limites. Il y a beaucoup de théorèmes à apprendre et de méthodes à mémoriser. Voici quelques eercices

Plus en détail