LES MATRICES. Chapitre Premières définitions

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "LES MATRICES. Chapitre Premières définitions"

Transcription

1 Chapitre 1 LES MATRICES 11 Premières définitions Définition Une matrice à n lignes et p colonnes et à coefficients dans R est un tableau de np éléments de R que l on représente sous la forme : a 11 a 12 a 1p a 21 a 22 a 2p A = a n1 a n2 a np Cette matrice se note A = (a i j ) 1 i n ou bien A = (a i j ) n p, n p étant le format de la matrice 1 j p Noter que l indice des lignes est toujours donné en premier et que chaque élément de la matrice a sa propre adresse (i, j ) qui indique sa position dans la matrice L ensemble de toutes les matrices à n lignes et p colonnes, à coefficients réels est noté M n, p (R) Il est d usage de réserver les lettres majuscules pour nommer des matrices Remarque (1) Dans une matrice A quelconque donnée de format n p, la i-ème ligne est composée des éléments L i = (a i 1, a i 2,, a i p et la j-ième colonne par C j = (a j 1, a j 2,, a j n ) comme on peut le voir ci-dessous : a 11 a 12 a 1j a 1p a 21 a 22 a 2j a 2p A = a i1 a i2 a ij a ip a n1 a n2 a nj a np (2) Une matrice ligne est une matrice de format 1 p et une matrice colonne est une matrice de format n 1 tandis qu une matrice carrée est une matrice de format n n ou encore d ordre n (3) La diagonale principale d une matrice carrée d ordre n se compose des éléments a i i tandis que la diagonale secondaire se compose des éléments a i,n i+1, (1 i n) 7

2 12 Opérations sur les matrices 121 Égalité de deux matrices Définition Deux matrices sont égales si elles ont le même format (même nombre de lignes et de colonnes) et si les éléments ayant la même adresse sont égaux ( ) Exemple 1 Les matrices et sont elles égales? Justifier votre réponse ( ) ( ) Faire de même avec les matrices et? Addition L addition de deux matrices n est possible que lorsque ces deux matrices ont le même format et consiste à additionner entre eux les éléments ayant même adresse Soient A = (a i j ) n p et B = (b i j ) n p deux éléments de M n, p (R), alors la matrice résultante A + B = (a i j + b i j ) est une matrice de même format que A et B ( ) ( ) ( ) Exemple 2 + = Multiplication par un scalaire La multiplication d une matrice par un scalaire (nombre réel) est toujours possible et consiste à multiplier tous les éléments de cette matrice par un même nombre Pour tout scalaire λ R et A = (a i j ) n p, λa = (λa i j ) La matrice résultante est de même format que la matrice A 7 3 Exemple = Produit de matrices Le produit de deux matrices n est possible que si ces deux matrices ont un format bien particulier La condition nécessaire et suffisante pour réaliser le produit de deux matrices est que le nombre de colonnes de la première matrice soit égal au nombre de lignes de la deuxième matrices Les matrice sont désignées dans l ordre d écriture du produit de gauche à droite Soient A = (a i j ) n p et B = (b i j ) p m deux matrices vérifiant la condition ci-dessus, alors la matrice produit C = (c i j ) est de format n m et ses éléments sont définis par la formule suivante : p (i, j ) 1, n 1, m c i j = a i k b k j k=1 8

3 Remarque (1) Cette formule s interprète de la manière suivante Pour obtenir l élément c 11 de la matrice produit C = AB, il faut multiplier la première ligne de la matrice A par la première colonne de la matrice B, ce produit étant la somme des produits des éléments ayant même indice dans la ligne et la colonne De la même manière si on veut déterminer l élément c 23, l adresse de cet élément étant (2, 3), on multiplie la deuxième ligne de A par la troisième colonne de B et de manière générale la valeur de l élément c i j est obtenue en effectuant le produit de la i -ème ligne par la j -ième colonne (2) En général, le produit de matrices n est pas commutatif, c est à dire A B B A, de plus A B = O n implique pas que A = O ou B = O et A B = A C n implique pas que B = C Exemple 4 On considère les matrices suivantes : ( A = ) et B = Dire lesquelles des matrices A + B, AB, B A sont définies et calculer celles qui le sont 9

4 125 Puissances de matrices Définition Soit A une matrice carrée d ordre n et p un entier naturel non nul Le carré de A est la matrice noté A 2, égale à A A Le cube de A est la matrice noté A 3, égale à A A A Plus généralement, la puissance p-ième de A est la matrice notée A p = } A {{ A }, égale au produit de p facteurs de A p f oi s Exemple 5 On considère les deux matrices de M 3 (R) : A = et B = Calculer A + B, (A + B) 2, A 2, B 2, AB et B A En déduire que (A + B) 2 A 2 + 2AB + B 2 10

5 13 Transposée et trace d une matrice Définition Soit A = (a i j ) n p une matrice quelconque de format n p La transposée de A notée A t est la matrice A t = (a j i ) p n de format p n qui s obtient à partir de A par l opération suivante : La première ligne des éléments de A devient la première colonne des éléments de A t, la deuxième ligne des éléments de A devient la deuxième colonne des éléments de A t et ainsi de suite Définition Soit A une matrice carrée d ordre n La trace de A est la somme des éléments de la diagonale n principale En d autres termes Tr (A) = a i i Remarque k=1 (1) La trace d une matrice est un nombre défini que lorsque la matrice est carrée car ce sont les seules matrices à posséder une diagonale principale (2) (A t ) t = A, la transposée de la transposée d une matric est la matrice elle-même autrement dit la transposition est une involution Exemple 6 On considère les matrices : A = ( ), B = ( 1 1 C = 0 1 ), D = , E = (1) Effectuer tous les produits de deux matrices avec A , et F = ( (2) Calculer si possible A + 2B, 2A + B t, A t + 3B, EFC, EF D, F EC, ADB, Tr (A), Tr (B), Tr (C ), Tr (D), Tr (E),Tr (D t ) ) 11

6 14 Matrices particulières 141 Éléments neutres Définition Une matrice nulle est une matrice dont tous les éléments sont nuls Il existe autant de matrices nulles que de format de matrices possibles donc une infinité C est aussi l élément neutre pour l addition de matrices selon le format utilisé, A n p +O n p = A n p Exemple 7 O 2 4 = ( ) ou O 3 1 = 0 entre autres 0 Définition Une matrice identité est une matrice carrée d ordre n dont les éléments de la diagonale principale valent tous 1 et dont les éléments hors diagonale principale sont tous nuls C est aussi l élément neutre pour la multiplication de matrices, A n I n = I n A n = A n ou B n p I p p = B n p Exemple 8 I 3 = 0 1 0, I 2 = ( ) Matrices triangulaires ( ) 1 0 et on peut également vérifier par exemple que 0 1 ( ) = ( ) ( ) 1 0 = 0 1 ( 37 ) Dans une matrice carrée A n, les éléments sur la diagonale principale sont de la forme a i i donc l indice des lignes et l indice des colonnes est le même, les éléments qui se situent dans la partie supérieure de la matrice sont de la forme a i j où i < j tandis que les éléments qui se sont situent dans la aprtie inférieure de la matrice sont les a i j où i > j Exemple 9 Soit la matrice suivante A = On remarque que a 13 = 3 est dans la partie supérieure de la matrice et son indice de ligne est inférieur à son indice de ligne (1 > 3), a 42 = 14 est dans la partie inférieure de la matrice et son indice de ligne est supérieur à son indice de colonne (4 > 2) et a 33 = 11 est sur la diagonale principale et son indice de ligne est égal à son indice colonne (3) Définition Une matrice carrée A = (a i j ) d ordre n est dite triangulaire supérieure si pour tout i > j, a i j = 0, c est à dire que les éléments en dessous de la diagonale principale sont tous nuls De la même manière, une matrice carrée B = (b i j ) d ordre n est dite triangulaire inférieure si pour tout i < j, a i j = 0, c est à dire que les éléments en dessous de sa diagonale principale sont tous nuls a 11 b a 22 a 22 A =, B = a nn a nn 12

7 Exemple est une matrice triangulaire supérieure et est une matrice triangulaire inférieure, 143 Matrices diagonales Définition Une matrice carrée D = (d i j ) d ordre n est dite diagonale si les éléments hors diagonale principale sont tous nuls, en d autres termes pour tout i j, d i j = 0 a d 22 D = d nn Remarque Une matrice diagonale est une matrice à la fois triangulaire supérieure et triangulaire inférieure Les éléments hors diagonale principale sont tous nuls par contre des éléments de la diagonale principale (voir tous) peuvent être nuls Exemple est une matrice diagonale Matrice scalaire Définition Une matrice scalaire est une matrice de la forme λi n oû λ est un scalaire et I n la matrice identité d ordre n C est une matrice diagonale dont les éléments de la diagonale principale valent tous λ Exemple est une matrice scalaire En particulier I 3 = est une matrice scalaire et I n est scalaire pour tout n N Matrices symétriques et anti-symétriques Définition Une matrice carrée A = (a i j ) d ordre n est dite symétrique si cette matrice est égale à sa transposée c est à dire A = A t, en d autres termes si pour tout (i, j ) 1, n 1, n, a i j = a j i Exemple est une matrice symétrique Définition Une matrice carrée A = (a i j ) d ordre n est dite anti-symétrique si cette matrice est égale à l opposée de sa transposée c est à dire A = A t, en d autres termes si pour tout (i, j ) 1, n 1, n, a i j = a j i 13

8 0 5 9 Exemple est une matrice anti-symétrique Remarque Si une matrice est anti-symétrique, tous les éléments de sa diagonale principale sont nuls 146 Matrices idempotentes Définition Une matrice carrée A = (a i j ) d ordre n est dite idempotente si A 2 = A Remarque Si une matrice A est idempotente alors A p = A pour tout entier naturel p supérieur ou égal à un En effet, A 3 = A A 2 = A A = A 2 = A car A 2 = A puisque A est idempotente On peut appliquer le même raisonnement à A 4 et de proche en proche on peut prouver par récurrence que A p = A, p N Exemple 15 ( ) et sont des matrices idempotentes La vérification est laissée en exer cice 147 Matrices nilpotente Définition Une matrice carrée A = (a i j ) d ordre n est dite niloptente s il existe p N tel que A p = O n Le plus petit entier naturel p vérifiant A p = O n est l indice de nilpotence de la matrice Exemple 16 Vérifier que la matrice A = est nilpotente d indice

9 148 Matrices échelonnées, échelonnées réduites Définition Le pivot d une ligne est le premier élément non nul de cette ligne en partant de la gauche Définition Une matrice est dite échelonnée (en lignes) si le nombre de zéros précédant le pivot de chaque ligne augmente ligne par ligne et si les lignes contenant que des zéros sont placées en bas de la matrice Une matrice est dite échelonnée réduite si tous les pivots valent un et si le pivot de chaque ligne est le seul élément non nul de sa colonne Exemple 17 Voici un exemple de matrice échelonnée (les désignent des coefficients arbitraires, les des pivots, coefficients non nuls) : Un exemple de matrice échelonnée réduite ou matrice canonique en lignes (les pivots valent 1 et les autres coefficients dans les colonnes des pivots sont nuls) : 149 Matrices inversibles Définition Une matrice A carrée d ordre n est dite inversible s il existe une matrice carrée B de même ordre que A telle que AB = B A = I n Cette matrice B est notée A 1, la matrice inverse de A L inverse d une matrice lorsqu il existe est unique GL n (R) est l ensemble des matrices inversibles de M n (R) Exemple 18 A = Remarque ( ), A 1 = 1 2 ( ) et A A 1 = A 1 A = I 2 (1) Pour vérifier que deux matrices carrées A et B d ordre n sont inverse l une de l autre il suffit de vérifier que leur produit est égal à la matrice identité Un seul sens du produit suffit AB = I ou B A = I car si on a l un on a forcément l autre (la preuve de ce résultat dépasse le cadre de ce cours, elle correspond au théorème sur les endomorphismes d un espace vectoriel de dimension n : u est bijectif si et seulement si il est de rang n et il est bijectif si et seulement si il est injectif (respectivement surjectif) (2) Une erreur commune à éviter : Il est faux de penser que pour inverser une matrice il suffit d inverser tous ses éléments, ce n est pas ainsi qu on procède Il existe des technique pour inverser une matrice carrée quand c est possible, nous verrons plus tard la méthode de Gauss-Jordan et la méthode de la matrice adjointe 15

10 (3) Une matrice inversible est dite régulière et une matrice non inversible est dite singulière 1410 Matrices orthogonales Définition Une matrice A carrée d ordre n est dite orthogonale si A 1 = A t c est à dire que la matrice inverse de A est sa matrice transposée et donc A A t = A t A = I n Remarque Comme pour les matrices inversibles il suffit de montrer qu un seul sens du produit A A t ou A t A est égale à I dès lors l autre égalité est aussi acquise (voir remarque précédente) Exemple 19 La matrice A = est orthogonale, pour le vérifier on peut calculer sa transposée et vérifier que A A t = A t A = I 3 donc A 1 = A t 16

11 15 Propriétés Soient A, B et C trois matrices compatibles pour l addition ou le produit de matrices selon les cas, k et m des scalaires (1) A + B = B + A (commutativité ) (2) A + (B +C ) = (A + B) +C (associativité de la somme de matrices) (3) k(a + B) = k A + kb (distributivité d un scalaire sur une somme) (4) (k + m)a = k A + m A (distributivité d une somme sur un produit) (5) A (B C ) = (A B) C (associativité du produit de matrices) (6) A (B +C ) = A B + A C (distributivité à gauche du produit sur une somme) (7) (A + B) C = A C + B C (distributivité à droite du produit sur une somme) (8) k(a B) = (k A) B (associativité des produits) (9) k(m A) = (km)a (10) (A + B) t = A t + B t (la trasnposée de la somme de deux matrices est la some des transposée) (11) (A t ) t = A (involution) (12) (k A) t = k A t (13) (A 1 ) 1 = A (involution) (14) A p = (A 1 ) p (15) (A 1 ) t = (A t ) 1 (la transposée de l inverse est l inverse de la transposée) (16) (A B) t = B t A t (la transposée du produit de deux matricess est le produit des transposées de chaque matrice dans l ordre inversé) (17) (A B) 1 = B 1 A 1 (l inverse du produit de deux matrices est le produit des inverses de chaque matrice dans l ordre inversé donné) Exemple 20 Soit A une matrice carrée d ordre n (1) (A + A t ) t est une matrice symétrique En effet si on pose B = A + A t il suffit de montrer que B t = B pour prouver que B est symétrique Or B t = (A + A t ) t = A t + (A t ) t = A t + A = A + A t = B en utilisant successivement P10, P11 et P1 (2) De la même manière on peut montrer que A A t est une matrice anti-symétrique (laissée en exercice) (3) A A t et A t A sont des matrices symétriques En posant C = A A t, il suffit de montrer que C t = C or C t = (A A t ) t = (A t ) t A t = A A t = C en utilisant succesivement P15 et P11 17

12 18

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

201-105-RE SOLUTIONS CHAPITRE 1

201-105-RE SOLUTIONS CHAPITRE 1 Chapitre1 Matrices 1 201-105-RE SOLUTIONS CHAPITRE 1 EXERCICES 1.2 1. a) 1 3 Ë3 7 3 2 Ë 1 16 pas défini d) 16 30 17 3 e) Ë 7 68 22 16 13 Ë 5 18 6 2. a) 0 4 4 4 0 4 Ë4 4 0 Ë 0 4 32 4 4 0 4 32 32 4 0 4 4

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Mathématiques appliquées à l'économie et à la Gestion

Mathématiques appliquées à l'économie et à la Gestion Mathématiques appliquées à l'économie et à la Gestion Mr Makrem Ben Jeddou Mme Hababou Hella Université Virtuelle de Tunis 2008 Continuité et dérivation1 1- La continuité Théorème : On considère un intervalle

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Compter à Babylone. L écriture des nombres

Compter à Babylone. L écriture des nombres Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015 et et Journées Télécom-UPS «Le numérique pour tous» David A. Madore Télécom ParisTech david.madore@enst.fr 29 mai 2015 1/31 et 2/31 : définition Un réseau de R m est un sous-groupe (additif) discret L

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2 33 Corrigé Corrigé Problème Théorème de Motzkin-Taussky Partie I I-A : Le sens direct et le cas n= 2 1-a Stabilité des sous-espaces propres Soit λ une valeur propre de v et E λ (v) le sous-espace propre

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */.

MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Page 1 de 9 MATLAB : COMMANDES DE BASE Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Aide help, help nom_de_commande Fenêtre de travail (Command Window) Ligne

Plus en détail

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) : Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1 [http://mpcpgedupuydelomefr] édité le 3 avril 215 Enoncés 1 Exercice 1 [ 265 ] [correction] On note V l ensemble des matrices à coefficients entiers du type a b c d d a b c c d a b b c d a et G l ensemble

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.

Plus en détail

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques : MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE

Plus en détail

Équations d amorçage d intégrales premières formelles

Équations d amorçage d intégrales premières formelles Équations d amorçage d intégrales premières formelles D Boularas, A Chouikrat 30 novembre 2005 Résumé Grâce à une analyse matricielle et combinatoire des conditions d intégrabilité, on établit des équations

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12 1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

Algèbre binaire et Circuits logiques (2007-2008)

Algèbre binaire et Circuits logiques (2007-2008) Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Cours 7 : Utilisation de modules sous python

Cours 7 : Utilisation de modules sous python Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Codage d information. Codage d information : -Définition-

Codage d information. Codage d information : -Définition- Introduction Plan Systèmes de numération et Représentation des nombres Systèmes de numération Système de numération décimale Représentation dans une base b Représentation binaire, Octale et Hexadécimale

Plus en détail

Architecture des Systèmes d Information Architecture des Systèmes d Information

Architecture des Systèmes d Information Architecture des Systèmes d Information Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Cryptographie et fonctions à sens unique

Cryptographie et fonctions à sens unique Cryptographie et fonctions à sens unique Pierre Rouchon Centre Automatique et Systèmes Mines ParisTech pierre.rouchon@mines-paristech.fr Octobre 2012 P.Rouchon (Mines ParisTech) Cryptographie et fonctions

Plus en détail

Déterminants. Marc SAGE 9 août 2008. 2 Inverses et polynômes 3

Déterminants. Marc SAGE 9 août 2008. 2 Inverses et polynômes 3 Déterminants Marc SAGE 9 août 28 Table des matières Quid des formes n-linéaires alternées? 2 2 Inverses et polynômes 3 3 Formule de Miller pour calculer un déterminant (ou comment illustrer une idée géniale)

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Triangle de Pascal dans Z/pZ avec p premier

Triangle de Pascal dans Z/pZ avec p premier Triangle de Pascal dans Z/pZ avec p premier Vincent Lefèvre (Lycée P. de Fermat, Toulouse) 1990, 1991 1 Introduction Nous allons étudier des propriétés du triangle de Pascal dans Z/pZ, p étant un nombre

Plus en détail

Démonstration de la conjecture de Dumont

Démonstration de la conjecture de Dumont C. R. Acad. Sci. Paris, Ser. I 1 (005) 71 718 Théorie des nombres/combinatoire Démonstration de la conjecture de Dumont Bodo Lass http://france.elsevier.com/direct/crass1/ Institut Camille Jordan, UMR

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Séquence 10. Géométrie dans l espace. Sommaire

Séquence 10. Géométrie dans l espace. Sommaire Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

La persistance des nombres

La persistance des nombres regards logique & calcul La persistance des nombres Quand on multiplie les chiffres d un nombre entier, on trouve un autre nombre entier, et l on peut recommencer. Combien de fois? Onze fois au plus...

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions HQ = He 1 He 2 He 3 He 4 HQ e 5 comme anneaux (avec centre Re 1 Re 2 Re 3 Re 4

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS?

PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS? PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS? Pierre Baumann, Michel Émery Résumé : Comment une propriété évidente visuellement en dimensions deux et trois s étend-elle aux autres dimensions? Voici une

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Premiers exercices d Algèbre. Anne-Marie Simon

Premiers exercices d Algèbre. Anne-Marie Simon Premiers exercices d Algèbre Anne-Marie Simon première version: 17 août 2005 version corrigée et complétée le 12 octobre 2010 ii Table des matières 1 Quelques structures ensemblistes 1 1.0 Ensembles, relations,

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Consigne : je remplis le tableau en tenant compte des informations de la ligne supérieure et de la colonne de gauche (droite pour les gauchers)

Consigne : je remplis le tableau en tenant compte des informations de la ligne supérieure et de la colonne de gauche (droite pour les gauchers) Découverte du monde : traiter deux informations Compétence : Savoir utiliser un tableau à double entrée. Matériel : - un plateau de jeu quadrillé : cinq lignes et cinq colonnes, - quatre pièces "couleur",

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail