Analyse des données et algèbre linéaire

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Analyse des données et algèbre linéaire"

Transcription

1 Analyse des données et algèbre linéaire Fondamentaux pour le Big Data c Télécom ParisTech 1/15 Machine-Learning : Une donnée x i = un ensemble de features (caractères) d un individu i x i = (x i,1,..., x i,p ) ex : x i = (âge i, taille i, poids i, revenu i, loyer i ) les données = une (grande) matrice. Rôle clé de l algèbre linéaire.

2 Objectifs du cours d algèbre Fondamentaux pour le Big Data c Télécom ParisTech 2/15 Vérifier que que les notions de bases abordées sont connues. Si certains points posent problème, servez vous du cours comme guide de lecture pour travailler, par exemple avec

3 Plan du cours d algèbre Fondamentaux pour le Big Data c Télécom ParisTech 3/15 Semaine 1 Matrices Semaine 2 Produit scalaire, projections, interprétations géométriques Réductions de matrices

4 Espace vectoriel réel Fondamentaux pour le Big Data c Télécom ParisTech 4/15 Un espace vectoriel est une famille E d objets (vecteurs, matrices, fonctions,...) que l on peut additionner entre eux et multiplier par un scalaire (= un nombre réel ou complexe). La famille doit contenir un vecteur nul noté 0 E ou 0. Par exemple, le plan : E = {(x, y), x R, y R} = R

5 Espace vectoriel réel Fondamentaux pour le Big Data c Télécom ParisTech 4/15 Un espace vectoriel est une famille E d objets (vecteurs, matrices, fonctions,...) que l on peut additionner entre eux et multiplier par un scalaire (= un nombre réel ou complexe). La famille doit contenir un vecteur nul noté 0 E ou 0. Le vecteur nul 0 vérifie, pour tout x E, x + 0 = 0 + x = x, Tout élément x a un opposé noté x, tel que x + ( x) = ( x) + x = 0. ex : Dans ce cours, E = R p, dimension finie. (ex : espace de caractéristiques d individus). Hors programme : Espaces de dimension infinie (ex : RKHS)

6 Fondamentaux pour le Big Data c Télécom ParisTech 5/15 Espace vectoriel engendré par une famille finie (u 1, u 2,..., u K ) E Ensemble V des combinaisons linéaires des u i : { K } V = Vect(u 1,..., u K ) = λ i u i : λ 1,..., λ K R i=1 u v V est un sous-espace vectoriel de E, i.e. V E et V est stable par combinaisons linéaires : x, y F, λ R, x + λy F. ( exo : vérifiez-le!)

7 Sous-espaces : exemples Fondamentaux pour le Big Data c Télécom ParisTech 6/15 Le sous-espace engendré par 0 est {0}. Un vecteur engendre une droite, deux vecteurs engendrent un plan. Une intersection de sous-espaces vectoriels est un sous espace vectoriel (exercice). Exercice : Si E = R n, vérifiez que { F = x = (x 1,..., x n ) : est un sous espace vectoriel de E. Vérifiez également que { G = x = (x 1,..., x n ) : } n x i = 0 i=1 } n x i = 1 i=1 n en est pas un.

8 Dimension, rang Fondamentaux pour le Big Data c Télécom ParisTech 7/15 E est de dimension finie s il existe une famille finie U = (u 1,..., u k ) qui engendre E. La dimension dim(f ) d un SEV F E est le nombre minimal de vecteurs requis pour engendrer F. ex : pour F = E = R p, dim(r p ) = p. Rang d une famille de vecteurs : rang(u 1,..., u K ) := dimvect(u 1,..., u K ) K. si F E est un sous espace de E, dim(f ) dim(e).

9 Familles libres ou liées Fondamentaux pour le Big Data c Télécom ParisTech 8/15 famille liée U = (u 1,..., u K ) de E est liée ou linéairement dépendante s il existe une combinaison linéaire nulle avec au moins un coefficient non nul : (λ 1,..., λ K ) (0,..., 0) tels que λ 1 u λ K u K = 0. Une famille est libre ou linéairement indépendante si... elle n est pas liée. ex : dans R 3 : ((1, 0, 0), (0, 1, 0), (0, 0, 1)) est libre (1, 0, 0), (0, 1, 0), (4, 5, 0) est liée. rang et dépendance linéaire Si U est libre, rang(u) = K, sinon rang(u) < K

10 Fondamentaux pour le Big Data c Télécom ParisTech 9/15 Bases U = (u 1,..., u K ) E est appelée base de E si elle est libre et si elle engendre E (i.e., si Vect(U) = E). Si dim(e) = p, les bases de E ont toutes p éléments. Dans une base U donnée, pour x E, il existe une unique combinaison linéaire des u i telle que x = p x i u i. i=1 x i est la i eme coordonnée de x dans la base U. x = i x iu i, ne veut pas dire x = (x 1,..., x p ). Les coordonnées x i dépendent de la base choisie. ex : dans la base U = ((0, 1), (1, 1)) de R 2, que vaut 1 u u 2? comparer avec le vecteur (1, 2).

11 Fondamentaux pour le Big Data c Télécom ParisTech 10/15 déf : E = R p, F = R n. Une fonction est une application linéaire si f (x + y) = f (x) + f (y) f (λx) = λf (x) f : E F x f (x) Si U = (u 1,..., u p ) est une base de E = R p, f est déterminée par l image de U : {f (u 1 ),..., f (u p )}. En effet, si x = x i u i, f (x) = f (x 1 u 1 + x p u p ) = x 1 f (u 1 ) + x p f (u p ) par linéarité.

12 Composition d applications linéaires Fondamentaux pour le Big Data c Télécom ParisTech 11/15 Soient f : E F et g : F G, linéaires. on définit la composée de f par g g f : E G x g[f (x)] Exo : vérifier que la composée g f est encore une application linéaire, cette fois de E dans G.

13 Image, surjectivité Fondamentaux pour le Big Data c Télécom ParisTech 12/15 Soit g : E F, linéaire. Image de g Im g = {y F : x E, y = g(x)} Im g est un SEV de F (vérification : exercice). Rang de g : dimension de l image rang(g) = dim(im g) déf : g est surjective si Im g = F. prop : rang g = dim F Im g = F, i.e. g surjective.

14 Noyau, injectivité Fondamentaux pour le Big Data c Télécom ParisTech 13/15 g : E F linéaire Noyau de g Ker g = {x E : g(x) = 0} Ker g est aussi un SEV de E (exercice). déf : g est injective si {g(x) = g(x )} x = x. prop : g injective Ker g = {0}

15 Bijections, Inverse Fondamentaux pour le Big Data c Télécom ParisTech 14/15 déf : g est bijective si g est injective et surjective. On a alors : y F,!x E tel que y = g(x). g : E F bijective, linéaire. g envoie toute base de E sur une base de F, donc E et F ont la même dimension inverse de g (si g bijective) : l application g 1 : F E y x tel que g(x) = y g 1 est bien définie car x existe et est unique. g 1 est linéaire, bijective. g g 1 = I F (application identité de F, y y) g 1 g = I E (application identité de E, x x)

16 Fondamentaux pour le Big Data c Télécom ParisTech 15/15 Théorème du rang Dimension de l espace de départ = dimension de l image + dimension du noyau dim(e) = dim(im g) + dim(ker g) E Ker g g F Im g conséquence : si dim E = dim F (par exemple si E = F ) g injective g surjective g bijective.

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

Résumé de cours: Espaces vectoriels (Généralités) 1 Vocabulaire : 1.3 Régles de calcul : 1.1 Loi de composition interne :

Résumé de cours: Espaces vectoriels (Généralités) 1 Vocabulaire : 1.3 Régles de calcul : 1.1 Loi de composition interne : Résumé de cours : Espaces vectoriels Partie I : Généralités. : Source disponible sur : c Dans tout le chapitre K désigne un sous corps de C, et en général sauf mention du contraire, Q ou R ou bien C et

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires :

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires : Exo7 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes sont linéaires : f 1 : R R f 1 x,y = x + y,x y f : R R f x,y,z = xy,x,y f : R R f x,y,z = x + y + z,y z,x

Plus en détail

Applications linéaires

Applications linéaires Chapitre IV Applications linéaires Révisions Définition. Soient E, deux espaces vectoriels sur le même corps commutatif est dite linéaire si quels que soient x, y E et λ,. Une application f : E f x y f

Plus en détail

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F.

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Espaces vectoriels Convention 1. Dans toute la suite, k désignera un corps quelconque. Définition 2.

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

APPLICATIONS LINÉAIRES

APPLICATIONS LINÉAIRES 21-10- 2007 J.F.C. A.L. p. 1 APPLICATIONS LINÉAIRES I GÉNÉRALITÉS 1. Définition et vocabulaire 2. Conséquences de la définition 3. Caractérisation II OPÉRATIONS SUR LES APPLICATION LINÉAIRES 1. Somme,

Plus en détail

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires 2MA01-Licence de Mathématiques Espaces vectoriels Exercice 1 Soit E un espace vectoriel. Pour x, y E et λ, µ K, montrer

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Rappels d Algèbre Linéaire de P.C.S.I

Rappels d Algèbre Linéaire de P.C.S.I Rappels d Algèbre Linéaire de PCSI Table des matières 1 Structure d espace vectoriel sur IK 3 11 Définition et règles de calcul 3 12 Exemples de référence 3 13 Espace vectoriel produit 4 14 Sous-espaces

Plus en détail

IV.1 Dual d un espace vectoriel... 77

IV.1 Dual d un espace vectoriel... 77 76 IV FORMES LINÉAIRES, DUALITÉ IV Formes linéaires, dualité Sommaire IV.1 Dual d un espace vectoriel.......... 77 IV.1.a Rappels sur les e.v................... 77 IV.1.b Rappels sur les applications linéaires........

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 3 4 Master d économie Cours de M. Desgraupes MATHS/STATS Document : Solution des exercices d algèbre linéaire Table des matières

Plus en détail

1. Montrer que B est une base de. 2. Donner la dimension de f ( 3 ), puis la dimension de Ker f, qu en conclure?

1. Montrer que B est une base de. 2. Donner la dimension de f ( 3 ), puis la dimension de Ker f, qu en conclure? Chapitre Applications linéaires Testez vos connaissances Pourquoi s intéresse-t-on au applications linéaires en économie? Qu est-ce qu un noyau, un rang et une image d une application linéaire? Donner

Plus en détail

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Tatiana Labopin-Richard Mercredi 18 mars 2015 L algèbre linéaire est une très grosse partie du programme de Maths. Il est

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

1 Programme de Colles : Espaces vectoriels.

1 Programme de Colles : Espaces vectoriels. Lycée Louis le grand Année scolaire 2007/2008 Mathématiques Supérieure MPSI Semaine 12 11 mai 2009 1 Programme de Colles : Espaces vectoriels. On note K le corps R ou C. 1.1 Axiomes d espace vectoriel.

Plus en détail

Chapitre IV Bases et dimension d un espace vectoriel

Chapitre IV Bases et dimension d un espace vectoriel Chapitre IV Bases et dimension d un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d un espace vectoriel général. Dans ce chapitre désigne

Plus en détail

LISTE DE QUESTIONS DE COURS

LISTE DE QUESTIONS DE COURS LISTE DE QUESTIONS DE COURS sur le polycopié d Algèbre de 2008/2009 Chapitre 1 1. Définition 1.1 : Espace vectoriel. 2. Proposition 1.3 : Espace vectoriel produit. 3. Définition 1.2 : Sous-espaces vectoriels.

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Les espaces vectoriels

Les espaces vectoriels Agrégation interne UFR MATHÉMATIQUES 1. Généralités Les espaces vectoriels Dans tout le chapitre, K représente un corps commutatif. 1.1. Notion d espace vectoriel On considère un ensemble E sur lequel

Plus en détail

Formulaire de maths Algèbre linéaire et multilinéaire

Formulaire de maths Algèbre linéaire et multilinéaire Formulaire de maths Algèbre linéaire et multilinéaire Nom Formule Espaces vectoriels Famille libre On dit que la famille est libre si Famille liée On dit que la famille est liée si Théorème de la base

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Espace vectoriel de dimensions finies MPSI

Espace vectoriel de dimensions finies MPSI Espace vectoriel de dimensions finies MPSI 22 juin 2008 Table des matières 1 Partie libre - Partie liée - Partie génératrice 2 1.1 Partie finie liée.......................... 2 1.1.1 Vecteurs colinéaires....................

Plus en détail

Résumé de Math Sup et compléments : algèbre linéaire

Résumé de Math Sup et compléments : algèbre linéaire Résumé de Ma Sup et compléments : algèbre linéaire I - Espaces vectoriels - Sous espaces vectoriels 1) Structure de K-espace vectoriel Soient K un sous-corps de C et E un ensemble non vide muni d une l.d.c.i.

Plus en détail

Applications Bilinéaires et Formes Quadratiques

Applications Bilinéaires et Formes Quadratiques Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

Applications linéaires

Applications linéaires le 8 Février UTBM MT Arthur LANNUZEL http ://mathutbmal.free.fr Applications linéaires Exemples et définitions. Soit E et F, espaces vectoriels sur K = R ou C. On s intéresse aux applications qui conservent

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Chapitre 14 Espaces vectoriels de dimension finie Dans tout le chapitre K désigne R ou C. 14.1 Espaces vectoriels de dimension finie 14.1.1 Bases et dimension Ò Ø ÓÒ ½ º½ Espace vectoriel de dimension

Plus en détail

22 Cours - Espaces vectoriels.nb 1/8. Espaces vectoriels. I) Généralités II) Applications linéaires III) Sous espaces vectoriels IV) Générateurs

22 Cours - Espaces vectoriels.nb 1/8. Espaces vectoriels. I) Généralités II) Applications linéaires III) Sous espaces vectoriels IV) Générateurs 22 Cours - Espaces vectoriels.nb /8 Espaces vectoriels K -espace vectoriel, loi de composition interne (commutative, associative), élément neutre, symétrique, loi externe, vecteur nul, E, sous espace vectoriel,

Plus en détail

2010/2011. Espaces vectoriels

2010/2011. Espaces vectoriels Université Paris-Est Marne-la-Vallée 010/011 M1 enseignement CD/Préparation au CAPES Espaces vectoriels Dans toute la suite on considèrera des espaces vectoriels sur un corps commutatif K de caractéristique

Plus en détail

C) Fiche : Espaces vectoriels.

C) Fiche : Espaces vectoriels. C) Fiche : Espaces vectoriels. 1) Définition d'un espace vectoriel. K= I ou est le corps des scalaires. E est un K-espace I vectoriel si et seulement si : C'est un ensemble non vide muni de deux opérations,

Plus en détail

Espaces euclidiens. 1 Définitions et exemples. 2 Orthogonalité, norme euclidienne 2. 3 Espaces euclidiens, bases orthonormées 2

Espaces euclidiens. 1 Définitions et exemples. 2 Orthogonalité, norme euclidienne 2. 3 Espaces euclidiens, bases orthonormées 2 Espaces euclidiens Table des matières 1 Définitions et exemples 1 Orthogonalité, norme euclidienne 3 Espaces euclidiens, bases orthonormées 4 Orthogonalisation de Schmidt 3 5 Sous-espaces orthogonaux 3

Plus en détail

Espaces vectoriels. par Pierre Veuillez

Espaces vectoriels. par Pierre Veuillez Espaces vectoriels par Pierre Veuillez 1 Objectifs : Disposer d un lieu où les opérations + et se comportent bien. Déterminer des bases (utilisation de la dimension) Représenter les vecteurs grace à leurs

Plus en détail

Programme mat231, 2009 2010

Programme mat231, 2009 2010 Programme mat231, 2009 2010 (2 septembre 2009) Pierre Bérard Université Joseph Fourier Pierre.Berard@ujf-grenoble.fr Le programme de l ue mat231 a été recentré. Il portera cette année uniquement sur l

Plus en détail

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1.

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1. 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R 2 (2x + y, x y) R 2, f 2 : (x, y, z) R 3 (xy, x, y) R 3 f 3 : (x, y, z) R 3 (2x +

Plus en détail

11. Espaces vectoriels, homomorphismes, bases

11. Espaces vectoriels, homomorphismes, bases 11. Espaces vectoriels, homomorphismes, bases 11.1. Espaces vectoriels, algèbres 11.1.1. Structure d espace vectoriel et d algèbre 11.1.2. Combinaisons linéaires 11.1.3. Espaces vectoriels et algèbres

Plus en détail

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6 Table des matières -1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes.......................................... 5 2 Anneaux.......................................... 5 3 Corps...........................................

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

en dimension finie Table des matières

en dimension finie Table des matières Maths PCSI Cours Algèbre linéaire en dimension finie Table des matières 1 Rappels d algèbre linéaire 2 1.1 Applications linéaires......................................... 2 1.2 Familles libres, génératrices

Plus en détail

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y )

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y ) COR TD 2 Année 21 Exercice 1. Déterminer si les applications f i suivantes sont linéaires : f 1 : R 2 R 2 f 1 x, y = 2x + y, x y f 2 : R R f 2 x, y, z = xy, x, y f : R R f x, y, z = 2x + y + z, y z, x

Plus en détail

Résumé du cours d algèbre de Maths Spé MP

Résumé du cours d algèbre de Maths Spé MP 1 POLYNÔMES Résumé du cours d algèbre de Maths Spé MP 1 Polynômes 1) Formule de Taylor pour les polynômes. Soit P un polynôme non nul de degré n N. a K, P(X) = k=0 P (k) (a) (X a) k et en particulier P(X)

Plus en détail

FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L1

FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L1 FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L TABLE DES MATIÈRES. Déterminer si un ensemble est un sous espace vectoriel sur R ou non.. Une vérification essentielle.2. La stabilité par combinaisons linéaires

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

Algèbre Linéaire. Victor Lambert. 24 septembre 2014

Algèbre Linéaire. Victor Lambert. 24 septembre 2014 Algèbre Linéaire Victor Lambert 24 septembre 2014 Table des matières 1 Généralités 2 1.1 Espaces vectoriels............................ 2 1.2 Applications linéaires.......................... 4 1.3 Familles

Plus en détail

TD 5- Applications linéaires

TD 5- Applications linéaires TD 5- Applications linéaires Exercice 1. Soit f l'application dénie sur R 2 par f(x, y) = (2x y, 3x + y). 1. Montrer que f est un endomorphisme de R 2. 2. Montrer que f est injective. 3. Montrer que f

Plus en détail

Autour du cardinal d un ensemble de matrices binaires

Autour du cardinal d un ensemble de matrices binaires Autour du cardinal d un ensemble de matrices binaires Adrien REISNER 1 Abstract. We here study a couple of algebraic and analytic properties of certain binary matrices in the spaces M n(r). In particular,

Plus en détail

Notes de cours L1 MATH120. Hervé Le Dret

Notes de cours L1 MATH120. Hervé Le Dret Notes de cours L1 MATH120 Hervé Le Dret 18 octobre 2004 40 Chapitre 3 Vecteurs dans R m Dans ce chapitre, nous allons nous familiariser avec la notion de vecteur du point de vue algébrique. Nous reviendrons

Plus en détail

Bref, c'est difficile, mais tout le monde doit y arriver.

Bref, c'est difficile, mais tout le monde doit y arriver. Bonjour à tous, les colles de mardi m'ont permis de vérifier que les notions de base du chapitre espaces vectoriels sont loin d'être acquises. Comme je vous le disais, il est essentiel d'apprendre régulièrement

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Espaces vectoriels de dimension finie 1 Questions de cours 3 Exercices 1. Énoncer et montrer le théorème de la base incomplète. 2. Soit E de dimension finie n et F un sousespace de E. Montrer que F est

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

Cours de Licence. Bernard Le Stum 1 Université de Rennes 1. Version du 19 janvier 2004. 1 bernard.le-stum@univ-rennes1.fr

Cours de Licence. Bernard Le Stum 1 Université de Rennes 1. Version du 19 janvier 2004. 1 bernard.le-stum@univ-rennes1.fr Géométrie Cours de Licence Bernard Le Stum 1 Université de Rennes 1 Version du 19 janvier 2004 1 bernard.le-stum@univ-rennes1.fr 2 Table des matières Table des matières 4 Introduction 5 1 Rappels d algébre

Plus en détail

Université Joseph Fourier, Grenoble. Espaces vectoriels. Bernard Ycart

Université Joseph Fourier, Grenoble. Espaces vectoriels. Bernard Ycart Université Joseph Fourier, Grenoble Maths en Ligne Espaces vectoriels Bernard Ycart Vous devez vous habituer à penser en termes de «vecteurs» dans un sens très général : polynômes, matrices, suites, fonctions,

Plus en détail

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2 Guillaume CARLIER L1, année 2006-2007 2 Ce support de cours est basé sur le poly de Tristan Tomala des années précédentes.

Plus en détail

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Chapitre 17 Matrices et applications linéaires Sommaire 171 Matrices et applications

Plus en détail

λ i f( x i ) (doncf(cl( x i ))=cl(f( x i )))

λ i f( x i ) (doncf(cl( x i ))=cl(f( x i ))) A) APPLICATIONS LINÉAIRES REM : dans ce cours,e,f etgdésignent desk-espaces vectoriels. I) GÉNÉRALITÉS. 1) Définition. DEF : Soit f une application de E dans F ; on dit que f est K-linéaire (ou que c est

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

Table des matières. Applications linéaires.

Table des matières. Applications linéaires. Table des matières Introduction...2 I- s et exemples...3 1-...3 2- Exemples...4 II- Noyaux et images...5 1- Rappels : images directes et images réciproques...5 a- s...5 b- Quelques exemples...5 2- Ker

Plus en détail

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f Université Lyon 1 Algèbre générale S.P. Groupes III I. Groupe symétrique et géométrie. On se donne un ensemble E (souvent un espace euclidien ou une partie de cet espace) et une bijection f : E E (souvent

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

19. APPLICATIONS LINÉAIRES

19. APPLICATIONS LINÉAIRES 19. APPLICATIONS LINÉAIRES 1 Dénitions générales. 1. 1 Applications linéaires. On dit qu'une application d'un espace vectoriel E dans un espace vectoriel F est linéaire si elle est compatible avec les

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Espaces vectoriels euclidiens. Groupe orthogonal

Espaces vectoriels euclidiens. Groupe orthogonal 19 Espaces vectoriels euclidiens. Groupe orthogonal Dans un premier temps, E est un espace vectoriel réel de dimension n 1. 19.1 Espaces vectoriels euclidiens Dénition 19.1 On dit qu'une forme bilinéaire

Plus en détail

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Exo Formes quadratiques Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

Applications linéaires, matrices, déterminants

Applications linéaires, matrices, déterminants Applications linéaires, matrices, déterminants Exercice 1. Soit u: R 3 R défini pour tout x = (x 1, x, x 3 R 3 par u(x = (x 1 + x + x 3, x 1 + x x 3 1. Montrer que u est linéaire.. Déterminer ker(u. Allez

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Laurent Garcin MPSI Lycée Jean-Baptiste Corot ESPACES VECTORIELS 1 Définition et exemples fondamentaux 1.1 Définition Définition 1.1 Espace vectoriel Soient K un corps et E un ensemble muni d une loi interne + et d une loi externe. i.e. d une application

Plus en détail

I. SYMÉTRIES. F = {x E σ(x) =x }, G = {x E σ(x) = x }.

I. SYMÉTRIES. F = {x E σ(x) =x }, G = {x E σ(x) = x }. Dans tout ce qui suit on désigne par k un corps commutatif de caractéristique différente de 2 (par exemple R ou C) etpare un k-espace vectoriel de dimension finie n>0. On appelle L(E) l anneau des endomorphismes

Plus en détail

133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie

133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie 133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie Pierre Lissy March 8, 2010 On considère un espace vectoriel euclidien de dimension nie n, le produit scalaire sera noté

Plus en détail

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume.

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume. Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Feuille 3 : Quelques corrections

Feuille 3 : Quelques corrections Université de Poitiers Mathématiques L1 SPIC, Module 2L02 2010/2011 Feuille : Quelques corrections Exercice 5 : 1. Existence : commençons par regarder à quoi f doit ressembler si elle existe. On suppose

Plus en détail

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT Table analytique des matières 1. La structure d'espace vectoriel 1. Espaces

Plus en détail

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices Réduction pratique de matrices Exercice 1 - Diagonalisation - 1 - L1/L2/Math Spé - Diagonaliser les matrices suivantes : 0 2 1 A = 3 2 0 B = 2 2 1 0 3 2 2 5 2 2 3 0 On donnera aussi la matrice de passage

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Rappels sur l algèbre linéaire

Rappels sur l algèbre linéaire Rappels sur l algèbre linéaire Dans tout ce chapitre n et p sont des entiers naturels non nuls et K = R ou C, E un K-espace vectoriel, I un ensemble non vide. I- Espace vectoriel I-1 Définition et exemples

Plus en détail

Cours de remise à niveau Maths 2ème année. Espaces vectoriels

Cours de remise à niveau Maths 2ème année. Espaces vectoriels Cours de remise à niveau Maths 2ème année Espaces vectoriels C. Maugis-Rabusseau GMM Bureau 116 cathy.maugis@insa-toulouse.fr C. Maugis-Rabusseau (INSA) 1 / 33 Plan 1 Généralités 2 Sous-espace vectoriel

Plus en détail

Réduction des endomorphismes et des matrices carrées

Réduction des endomorphismes et des matrices carrées 48 Chapitre 4 Réduction des endomorphismes et des matrices carrées La motivation de ce chapitre est la suivante. Étant donné un endomorphisme f d un espace E de dimension finie, déterminé par sa matrice

Plus en détail

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f.

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f. escp-eap 2(Ecole de commerce) OPTION SCIENTIFIQUEMATHEMATIQUES I adapté en retirant certaines question qui sont du cours de PC et en ajoutant le dernier exemple.. a) question de cours b) P(f) est un polynôme

Plus en détail

ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE. - Notes de cours et de travaux dirigés - PHILIPPE MALBOS

ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE. - Notes de cours et de travaux dirigés - PHILIPPE MALBOS UNIVERSITÉ CLAUDE BERNARD LYON Licence Sciences, Technologies, Santé Enseignement de mathématiques des parcours Informatique ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE - Notes de cours et de travaux

Plus en détail

Fiche n 1: Groupe, sous-groupe, ordre

Fiche n 1: Groupe, sous-groupe, ordre Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 1: Groupe, sous-groupe, ordre Exercice 1 On considère sur R la loi de composition définie par x y = x + y xy. Cette loi est-elle associative, commutative?

Plus en détail

Groupes et Actions de groupes. 1 Groupes, morphismes et actions de groupes.

Groupes et Actions de groupes. 1 Groupes, morphismes et actions de groupes. Groupes et Actions de groupes On présente ici des notions de base de théorie des groupes pour l agrégation interne. 1 Groupes, morphismes et actions de groupes. Un groupe (G, ), ou plus simplement G, est

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

ESPACES VECTORIELS. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016)

ESPACES VECTORIELS. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016) ESPACES VECTORIELS Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016) 1. Espaces et sous-espaces vectoriels Dans ce qui suit, K est un corps, que l on

Plus en détail

Énoncés des exercices

Énoncés des exercices Énoncés Énoncés des exercices Exercice 1 [ Indication ] [ Correction ] Soit f un endomorphisme de E, commutant avec tous les endomorphismes de E. Montrer que f est de la forme λid, avec λ IK. Exercice

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes de Hamming et les codes cycliques - Chapitre 6 (suite et fin)- Les codes de Hamming Principe La distance minimale d un code linéaire L est le plus petit nombre

Plus en détail

Base : une axiomatique

Base : une axiomatique Autour des groupes de réflexions Master 2 Mathématiques fondamentales Cours : Michel Broué Université Paris VII Denis Diderot TD : Vincent Beck Année 2005 2006 Base : une axiomatique a) D après (i), on

Plus en détail

Université Paris 6 Année universitaire 2011-2012 Cours Groupes finis et leurs représentations Corrigé de l examen terminal du 21 mai 2012.

Université Paris 6 Année universitaire 2011-2012 Cours Groupes finis et leurs représentations Corrigé de l examen terminal du 21 mai 2012. Université Paris 6 Année universitaire 011-01 Cours Groupes finis et leurs représentations Corrigé de l examen terminal du 1 mai 01 Exercice 1 Questions de cours Soit G un groupe fini et soit p un nombre

Plus en détail

Chapitre 3. Espaces vectoriels

Chapitre 3. Espaces vectoriels Département de mathématiques et informatique L1S1, module A ou B Chapitre 3 Espaces vectoriels Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) On suppose rga + rgb n. Montrer qu il existe U, V GL n (K) tels que

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) On suppose rga + rgb n. Montrer qu il existe U, V GL n (K) tels que [http://mp.cpgedupuydelome.fr] édité le 0 juillet 204 Enoncés Rang d une matrice Exercice [ 0070 ] [correction] Soit A M n K une matrice carrée de rang. a Etablir l existence de colonnes X, Y M n, K vérifiant

Plus en détail

3.7 Somme, Somme directe, Sous-Espaces Supplémentaires... 27

3.7 Somme, Somme directe, Sous-Espaces Supplémentaires... 27 Table des matières 1 Calcul matriciel 3 11 Dénitions et propriétés 3 12 Opérations sur les matrices 4 121 Addition 4 122 Multiplication par un scalaire 5 123 Multiplication des matrices 5 13 Matrices élémentaires

Plus en détail

1 Espaces vectoriels, compléments

1 Espaces vectoriels, compléments CHAPITRE 1 Espaces vectoriels, compléments Sommaire 1 Somme directe... 3 1.1 Somme... 3 1.2 Somme directe... 3 1.3 Supplémentaire... 4 1.4 Cas de la dimension finie... 4 2 Décomposition de E en somme directe...

Plus en détail