Chapitre 13 Comportement d une suite. Table des matières. Chapitre 13 Comportement d une suite TABLE DES MATIÈRES page -1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 13 Comportement d une suite. Table des matières. Chapitre 13 Comportement d une suite TABLE DES MATIÈRES page -1"

Transcription

1 Chapitre 13 Comportemet d ue suite TABLE DES MATIÈRES page -1 Chapitre 13 Comportemet d ue suite Table des matières I Exercices I I I I-1 4 Méthode de Héro I I I I I I I I I I I I I I I-7 II Cours II-1 1 Ses de variatio d ue suite umérique II-1 1a Défiitio II-1 1b Méthodes pour détermier le ses de variatio d ue suite II-1 1c Exemple II-1 2 Limite d ue suite Exemples II-1

2 Chapitre 13 Comportemet d ue suite I EXERCICES page I-1 I Exercices 1 La suite (u ) est défiie par u = 2 + Comportemet d ue suite Exemples 1. Utiliser u tableur pour obteir la liste des termes de u 0 à u Faire esuite tracer par le tableur la représetatio graphique de la suite (u ). 3. La suite (u ) semble-t-elle croissate? décroissate? i l ue i l autre? 4. Les valeurs de u semblet-elles tedre vers + (deveir extrêmemet grades?) 5. Les valeurs de u semblet-elles s approcher d u ombre? Rappels pour la représetatio graphique Sélectioer le tableau, meu «Isertio», cliquer sur «Diagramme...». Type de diagramme : cliquer sur «Liges» puis sur «Poits seuls», (ou sur «Poits et liges» selo les cas) puis sur «Suivat» Plage de doées : Cocher «Série de doées e coloes», «1ère lige comme étiquette», «1ère coloe comme étiquette» Cliquer sur «Termier» 2 Meme exercice que le précédet avec les suites défiies par (1) u = 0, 6 (2) u = 20 1 pour 1 (3) u = ( 1) (4) u = ( 1, 1) 3 La suite (u ) est la suite défiie par u 0 = 4 et pour tout etier aturel par u +1 = u + 4 ( 1) Écrire u 1, u 2, u 3 sous forme de somme de fractios sas réduire au même déomiateur. 2. Utiliser u tableur pour obteir la liste des termes de u 0 à u Faire esuite tracer par le tableur la représetatio graphique de la suite (u ), e preat seulemet les termes de u 0 à u Les termes de cette suite s approchet très letemet d u ombre bie cou. Lequel? 4 Méthode de Héro Héro d Alexadrie est u igéieur, u mécaicie et u mathématicie grec du Ier siècle après J.-C. La méthode de Héro cosiste à calculer les termes successifs de la suite défiie ci-dessous pour obteir des valeurs approchées de 2. La suite (u ) est la suite défiie par u 0 = 1, 5 et pour tout etier aturel par u +1 = 1 (u + 2 ) 2 u 1. Écrire la valeur approchée de 2 doée par la calculatrice : Utiliser le tableur pour afficher les termes successifs de cette suite. 3. E combie d étapes obtiet-o la valeur doée par la calculatrice?

3 Chapitre 13 Comportemet d ue suite I EXERCICES page I-2 5 Les suites (u ) et (v ) sot défiies par u = et v = , 05 Utiliser le tableur et ue représetatio graphique pour comparer les comportemets de ces deux suites. À partir de quel rag l ue dépasse-t-elle l autre? 6 1. Voici u algorithme : Etrée : lire a Traitemet pred la valeur 0 u pred la valeur 1 Tat que u > a pred la valeur + 1 u pred la valeur 0, 6 Fi du Tat que Sortie : afficher. (a) Exécuter cet algorithme pour a = 0, 1 e complétat le tableau ci-dessous. u > a? 0 u 1 (b) Quel ombre est affiché e sortie? (c) Que sigifie ce ombre exactemet? (d) Programmer cet algorithme das AlgoBox ou à la calculatrice, puis le tester avec a = 0, 1. (e) À partir de quel rag a-t-o 0, 6 < 0, ? (f) Commet évolue la valeur de 0, 6 lorsque deviet aussi grad qu o veut? 7 1. Écrire u algorithme qui permettet de détermier das l exercice sur fiche o 5 à partir de quel rag ue suite dépasse l autre. O pourra s ispirer de l exercice précédet. 2. Das AlgoBox ou à la calculatrice, programmer cet algorithme puis l exécuter.

4 Chapitre 13 Comportemet d ue suite I EXERCICES page I-3 8 Ses de variatio d ue suite O reviet sur la suite (u ) défiie par u = 2 + de l exercice sur fiche o 1. Nous allos démotrer le ses de variatio de cette suite de deux maières différetes. 1. Première méthode : sige de u +1 u Dire qu ue suite u est croissate sigifie que pour tout etier aturel, u +1 u autremet dit que u +1 u 0 (a) Écrire u +1 u e foctio de, puis développe et réduire l expressio sous la forme a + b (b) Étudier le sige de u +1 u selo les valeurs de, et justifier que la suite (u ) est croissate. 2. Deuxième méthode : ses de variatio de la foctio f telle que u = f() La suite (u ) état défiie par u = 2 + la foctio f est la foctio défiie par f(x) = x 2 +x Si la foctio f est croissate sur [0 ; + [, alors la suite u est croissate. Si la foctio f est décroissate sur [0 ; + [, alors la suite u est décroissate. (a) Justifier d abord le ses de variatio de la foctio f sur [0 ; + [. (b) E déduire le ses de variatio de la suite (u ). Rappels pour la représetatio graphique sur calculatrice Le mode suite : touche mode, 4 e lige, Suit au lieu de Fct. Défiitio de la suite : touche f(x), et compléter aisi Mi=0 u()= 2 + umi= Réglage du tableau de valeurs : 2de [déftable], DébTable=0 et PasTable=1 Tableau de valeurs : 2de [table] Représetatio graphique : Appuyer sur 2de [format], et sélectioer f() e haut à gauche. Appuyer sur feêtre et compléter O pourra predre Mi=0 et Max=25, mêmes valeurs pour Xmi et Xmax, utiliser le tableau de valeurs (table) pour détermier Ymi et Ymax Touche graphe 9 Das l exercice sur fiche o 2, les représetatios graphiques de plusieurs suites ot été obteue à l aide d u tableur. Nous allos maiteat démotrer leur ses de variatio comme das l exercice précédet. 1. Démotrer le ses de variatio suite défiie par u = 0, 6 e étudiat le sige de u +1 u, pour cela, (a) écrire u +1 u e foctio de, puis factoriser l expressio ; (b) justifier le sige de u +1 u ; (c) e déduire le ses de variatio de la suite (u ).

5 Chapitre 13 Comportemet d ue suite I EXERCICES page I-4 2. Démotrer le ses de variatio suite défiie par u = 20 1 u +1 u, pour cela, ( 1) e étudiat le sige de 10 (a) justifier d abord que u = 20 1 (b) écrire u +1 u e foctio de, puis réduire au même déomiateur, (c) justifier le sige de u +1 u ; (d) e déduire le ses de variatio de la suite (u ). 3. Démotrer le ses de variatio suite défiie par u = 20 1 e étudiat le ses de variatio de la foctio défiie par f(x) = 20x 1 sur [1 ; + [. x 4. Pour chacue des suites défiies par u = ( 1) et u = ( 1, 1), rappeler la répose doée das l exercice sur fiche o 2, puis justifier. Justifier le ses de variatio de chacue des suites défiies ci-dessous, par la méthode de so choix. (1) u = 3 1, 05 (2) u = 1 (3) u = (4) u = Limite d ue suite Exemples La suite (u ) défiie par u = 2 +, étudiée das l exercice sur fiche o 1 semblait tedre vers +. La défiitio de l expressio «tedre vers +» est pas doée au lycée, mais o peut doer l idée suivate : si je choisis u ombre positif a aussi grad que je veux, je pourrai toujours trouver u rag, tel que à partir de ce rag o a u a. Nous allos voir quelques exemples ci-dessous. 1. Répodre aux questios suivates à l aide de la calculatrice, sas justifier. (a) À partir de quel rag a-t-o ? (b) À partir de quel rag a-t-o ? (c) À partir de quel rag a-t-o ? 2. À partir de quel rag a-t-o ? Répodre e résolvat l iéquatio Idicatio : O peut aussi résoudre le problème à l aide d u algorithme. Etrée : lire a Traitemet pred la valeur 0 u pred la valeur 0 Tat que u < a pred la valeur + 1 u pred la valeur 2 + Fi du Tat que Sortie : afficher.

6 Chapitre 13 Comportemet d ue suite I EXERCICES page I-5 12 (a) Exécuter d abord cet algorithme pour a = 25 e complétat le tableau ci-dessous. u < a? 0 u 0 (b) Quelle est le ombre affiché e sortie? (c) Que sigifie ce ombre exactemet? (d) Programmer cet algorithme à la calculatrice ou sur AlgoBox, puis le tester pour a = 25, a = (ue dizaie de secodes de calcul), a = (u peu plus d ue miute de calcul). La suite (u ) est défiie par u = Observer la représetatio graphique de cette suite à la calculatrice. 2. Cette suite semble-t-elle tedre vers +? 3. À partir de quel rag a-t-o ? O utilisera u algorithme pour répodre. (a) Écrire cet algorithme sur le cahier e modifiat l algorithme de l exercice précédet. (b) Utiliser la calculatrice ou AlgoBox pour obteir le résultat. Pour chacue des suites défiies ci-dessous idiquer sa limite (+, ou u ombre) ou idiquer qu il y pas de limite. O utilisera le tableur (de préférece) ou la calculatrice. (1) u = (2) u = (3) u = 1, 3 (4) u = 3+2 ( 1) (5) u = 3 14 Même exercice que le précédet avec la suite défiie par u 0 = 1 et u +1 = 0, 7u Nous allos étudier la suite de l exercice précédet par u procédé graphique. Explicatios Das le repère page suivate la foctio défiie par f(x) = 0, 7x + 5 est représetée par la courbe D f et (d) est la droite d équatio y = x. Le ombre u 0 est représeté par le poit A sur l axe des abscisses. Les segmets [AB] et [BC] permettet de costruire l image de u 0 par la foctio f, or f(u 0 ) = u 1, doc le poit C représete u 1 sur l axe des ordoées. O trace le segmet [CD]. Le poit D état sur la droite (d) d équatio y = x o sait que ses coordoées sot (u 1 ; u 1 ). O trace le segmet [DE], et le poit E représete doc u 1 sur l axe des abscisses. De maière aalogue f(u 1 ) = u 2, et, les segmet [EF] et [EG] permettet d obteir le poit G qui représete u 2 sur l axe des ordoées ; les segmet [GH] et [HK] permettet d obteir le poit K qui représete u 2 sur l axe des abscisses.

7 Chapitre 13 Comportemet d ue suite I EXERCICES page I-6 Cosiges : 1. Poursuivre cette costructio le plus loi possible, pour obteir graphiquemet les termes suivats u 3, u 4, u 5,... sur l axe des abscisses. 2. Que costate-t-o? D f (d) u 2 G F H u 1 C B D 16 A E K u 0 u 1 u 2 La costructio de l exercice précédet peut être faite à la calculatrice. Il s agit toujours de la suite défiie par u 0 = 1 et u +1 = 0, 7u + 5. Régler la calculatrice e mode suite. Défiir la suite Mi=0 u()=0.7u(-1)+5 u(mi)=1

8 Chapitre 13 Comportemet d ue suite I EXERCICES page I-7 Touche 2de [format], et sélectioer Esc e haut. Touche feêtre, compléter : Mi=0 Max=50, et pour les autres valeurs, voir exercice précédet. Appuyer sur graphe O voit alors se tracer la droite d équatio y = x et la courbe représetative de la foctio f. Appuyer sur trace, puis plusieurs fois sur, ce qui trace u escalier ou ue spirale. 17 La suite (u ) est défiie par u 0 = 1 et u +1 = 0, 6u Tracer u repère e prévoyat des abscisses et des ordoées etre 0 et Tracer la droite d équatio y = x et la représetatio graphique de la foctio défiie par f(x) = 0, 6x (a) Étudier graphiquemet cette suite e utilisat la méthode décrite das l exercice sur fiche o 15. (b) Cette suite a-t-elle ue limite (+, ou u ombre)? Si cette suite a ue limite qui est u ombre, doer u arrodi au millième de ce ombre, e utilisat u tableur ou la calculatrice. 4. Repredre la costructio avec cette fois-ci u 0 = 15. Même questio pour la limite évetuelle. 1. La suite (u ) est défiie par u 0 = 1 et u +1 = 0, 7u (a) Étudier graphiquemet la suite à l aide d ue figure sur le cahier ou à la calculatrice. (b) Cette suite a-t-elle ue limite (+, ou u ombre)? Si cette suite a ue limite qui est u ombre, doer u arrodi au millième de ce ombre, e utilisat u tableur ou la calculatrice. 2. Mêmes cosiges (a) et (b) pour la suite (u ) défiie par u 0 = 3, 5 et u +1 = 1, 4u Mêmes cosiges (a) et (b) pour la suite (u ) défiie par u 0 = 4 et u +1 = 1, 1u + 10.

9 Chapitre 13 Comportemet d ue suite II COURS page II-1 II Cours 1 Ses de variatio d ue suite umérique. 1a Défiitio Dire qu ue suite u est croissate sigifie que pour tout etier aturel, u +1 u ; Dire qu ue suite u est décroissate sigifie que pour tout etier aturel, u +1 u ; Dire qu ue suite u est costate sigifie que pour tout etier aturel, u +1 = u ; 1b Méthodes pour détermier le ses de variatio d ue suite Étudier le sige de u +1 u C est la méthode la plus géérale, elle peut s appliquer à tous les types de suites. Si pour tout etier aturel, u +1 u 0, alors la suite u est croissate. Si pour tout etier aturel, u +1 u 0, alors la suite u est décroissate. Étudier le ses de variatio d ue foctio Cette méthode est valable que pour les suites où u est défii e foctio de (u = f()). Ue foctio f est défiie sur [0 ; + [ et pour pour tout etier aturel u = f(). Si la foctio f est croissate sur [0 ; + [, alors la suite u est croissate. Si la foctio f est décroissate sur [0 ; + [, alors la suite u est décroissate. 1c Exemple Ses de variatio de la suite défiie pour tout etier aturel par u = 2 + Première méthode : sige de u +1 u u +1 u = ( + 1) 2 + ( + 1) ( 2 + ) = = Or est etier aturel doc 0, doc 1 doc u +1 u 0, doc la suite (u ) est croissate. Deuxième méthode : ses de variatio de f telle u = f() u = 2 + doc f(x) = x 2 + x f (x) = 2x + 1 2x x 1 2 doc la foctio f est croissate sur doc la suite (u ) est croissate. [ 1 2 ; + [, doc la foctio f est croissate sur [0 ; + [, 2 Limite d ue suite Exemples. Voir les exercices sur fiche o 11 à 18.

11 Soit (u n ) définie sur N par u 0 = 1 et. u n+1 = f(u n ). On a construit ci-dessous la courbe représentative

11 Soit (u n ) définie sur N par u 0 = 1 et. u n+1 = f(u n ). On a construit ci-dessous la courbe représentative Activités metales u est la suite défiie pour tout etier aturel par u = + +. Calculer u 4. u est la suite défiie pour tout etier aturel o ul par u =. Calculer les trois premiers termes de la suite. u est

Plus en détail

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 )

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 ) Exercice Suites umériques u O cosidère la suite ( u ) défiie pour tout par u = et u = + u + O admettra que pour tout etier aturel, u >. a) Calculer u et u b) Cette suite est-elle arithmétique? Est-elle

Plus en détail

Fiche sur suites et calculatrices pour les calculatrices TI

Fiche sur suites et calculatrices pour les calculatrices TI Fiche sur suites et calculatrices pour les calculatrices TI Objectifs : O doe ue suite. O veut obteir : - u tableau de valeurs des termes de la suite ; - ue représetatio graphique des termes de la suite.

Plus en détail

5 Pour tout entier naturel n, on pose : 6 Démontrer que, pour tout entier naturel n : n k k! = (n + 1)! 1

5 Pour tout entier naturel n, on pose : 6 Démontrer que, pour tout entier naturel n : n k k! = (n + 1)! 1 Exercices 7 SUITES NUMÉRIQUES Récurrece O appelle factorielle et o écrit! le produit des etiers cosécutifs de à : Par covetio : 0! =.! = 3 ) Pour ue foctio f, o ote f ) sa dérivée - ième. Soit f défiie

Plus en détail

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M Termiale S Exercices sur le chapitre «Suites umériques» Page Exercice : O cosidère la suite ( p ) défiie sur N par ) O cosidère l algorithme suivat : Variables u etier aturel et deux ombres réels Iitialisatio

Plus en détail

FRLT Page 1 15/08/2014

FRLT Page 1 15/08/2014 Algorithmes à aalyser O cosidère l algorithme : - u est du type ombre - q est du type ombre - p est du type ombre - S est du type ombre - Lire u - Lire q - Lire p - S pred la valeur de u - Tat que (u >

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

s'exprime en fonction de u 10. Calculer u n ). u et on étudie son signe. = 2. Déterminer le sens de variation de cette suite.

s'exprime en fonction de u 10. Calculer u n ). u et on étudie son signe. = 2. Déterminer le sens de variation de cette suite. Première S / mathématiques Préparatio Termiale S Mme MAINGUY Défiir ue suite umérique Sythèse Ê SUITES NUMÉRIQUES u s'exprime e foctio de Cette suite est défiie par u = f ( ) Ê par ue formule explicite

Plus en détail

Chapitre 1 METHODES SUR LES SUITES

Chapitre 1 METHODES SUR LES SUITES Chapitre 1 METHODES SUR LES SUITES Nous allos voir commet : 1) Cojecturer le comportemet d ue suite ) Raisoer par récurrece 3) Utiliser les suites arithmétiques et géométriques 4) Étudier le comportemet

Plus en détail

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9.

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9. Liba 13 v 0 = 1 O cosidère la suite umérique ( v ) défiie pour tout etier aturel par 9 v +1 = 6 v Partie A 1 O souhaite écrire u algorithme affichat, pour u etier aturel doé, tous les termes de la suite,

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique.

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique. Suites 6 AU CŒUR DE LA TOILE Objectif Notios utilisées Traduire, à l aide d ue suite, u processus géométrique itératif et redre compte de so évolutio. Mettre e place les premiers pricipes d étude d ue

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

Durée : 4 heures. x + x x + x, lim 1 x sin

Durée : 4 heures. x + x x + x, lim 1 x sin PCSI DEVOIR SURVEILLÉ de MATHÉMATIQUES 9/0/00 QUESTIONS de COURS : Durée : 4 heures Soit f : I IR, soit a u réel adhéret à I Que sigifie la otatio lim fx +? x a + si x Ex Détermier lim, lim x + x x + x,

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

Suites. =3v n pour = 5.

Suites. =3v n pour = 5. Suites 1 Gééralités 11 Défiitio Défiitio : O appelle suite ue foctio sur N ou sur ue partie de N das R Exemples: Les foctios: u : +1 ; v : sot des suites Notatio : Soit u ue suite défiie sur D partie de

Plus en détail

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand?

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand? Exercice : Détermier la limite de chaque suite (u ). a) u = si π b) u = () c) u = + d) 0,5 + cos(π) Exercice 2 : la costate d Apéry Pour tout etier, u = 3 + + 2 3 +. + 3 ) Doer u miorat de cette suite.

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

Statistiques à deux variables

Statistiques à deux variables Statistiques à deux variables. Approche des séries statistiques à deux variables.. Nuage de poits Sur ue classe de BTSA, le professeur a relevé les moyees de élèves e mathématiques et e agroomie. Les otes

Plus en détail

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f.

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f. TS DEVOIR 3 ludi 3 ovembre 207 sur 4,5 poits Calculer les trois ites suivates : a) 3x 4 x x 2 x b) 2si( x) x x c) 8x 5 x 2 x 3 2 sur 3,5 poits Soit f ue foctio défiie sur dot o doe ci-dessous le tableau

Plus en détail

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées Termiale S Ch1 SUITES PARTIE 1 récurrece et suites borées Das tout le chapitre, les etiers cosidérés sot aturels, c'est-à-dire positifs ouls I Raisoemet par récurrece 1 / Itroductio Exercice 1 : soit u

Plus en détail

Exercices sur les fonctions trigonométriques réciproques

Exercices sur les fonctions trigonométriques réciproques Eercices sur les foctios trigoométriques réciproques O cosidère la foctio f défiie par f Arcta ) Détermier l esemble de défiitio D de f ) Simplifier l epressio de f pour D Idicatio : Poser y Arccos Soit

Plus en détail

DAEUB EXAMEN PREMIERE SESSION 2013/2014

DAEUB EXAMEN PREMIERE SESSION 2013/2014 DAEUB EXAMEN PREMIERE SESSION 2013/2014 LE SUJET EST COMPOSE DE TROIS EXERCICES INDEPENDANTS. LE CANDIDAT DOIT TRAITER TOUS LES EXERCICES. Les calculatrices sot autorisées. Les portables doivet être éteits.

Plus en détail

Contrôle du vendredi 13 février 2015 (30 min) 1 ère S1. respectivement la médiane, le premier quartile et le troisième quartile de la série.

Contrôle du vendredi 13 février 2015 (30 min) 1 ère S1. respectivement la médiane, le premier quartile et le troisième quartile de la série. 1 ère S1 Cotrôle du vedredi 13 février 015 (30 mi) O ote M, Q 1, Q 3 respectivemet la médiae, le premier quartile et le troisième quartile de la série. M... Q1... Q3... Préom : Nom : Note :. / 0 I. (4

Plus en détail

STAGE DE MISE A NIVEAU EN MATHEMATIQUES

STAGE DE MISE A NIVEAU EN MATHEMATIQUES STAGE DE MISE A NIVEAU EN MATHEMATIQUES Les foctios racie carrée, valeur absolue ou partie etière Eercice Détermier la limite de + + quad ted vers Eercice Vérifier que ( 5) = 6 5 A-t-o l'égalité 6 5 =

Plus en détail

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction)

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction) LOGARITHME NÉPÉRIEN Exercice 0 ) E utilisat la courbe de la foctio expoetielle dessiée ci-cotre, détermier u ecadremet au dixième du réel a tel que e a = 7 ) E faisat avec la calculatrice u tableau de

Plus en détail

Comportement d une suite

Comportement d une suite CHAPITRE 6 Comportemet d ue suite ACTIVITÉS Activité L aire ajoutée (celle d u carré compese exactemet l aire elevée a p 6 ; p 5 ; p 6 6 b La suite (p est géométrique de raiso car la logueur de la lige

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques «I» : Suites arithmétiques 1/ Défiitio Suites arithmétiques et géométriques La suite (u ) est arithmétique de raiso r sigifie que : Pour tout etier aturel : u +1 = u + r Exemple : La suite ( ; 5 ; 8 ;

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

I- Nombre dérivé de f en a

I- Nombre dérivé de f en a I- Nombre dérivé de f e a Défiitio 1: Soit f ue foctio défiie sur u itervalle I, a I et h R* tel que a+h I f est dérivable e a I, si, et seulemet si, ( a + h) f ( a) Cette limite est le ombre dérivé de

Plus en détail

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème Exercices Limites de suites Exercice Limite d ue suite Das les exercices suivats, détermier la limite de la suite (u ) e précisat le théorème utilisé. ) u = + + + + ) u = cos(), N 3) u = + cos 4 3 4) u

Plus en détail

Amérique du Nord. Terminale S mai 2014

Amérique du Nord. Terminale S mai 2014 Termiale S mai 2014 Amérique du Nord 1 Exercice 1 (5 poits) Das cet exercice, tous les résultats demadés serot arrodis à 10 3 près Ue grade eseige de cosmétiques lace ue ouvelle crème hydratate Partie

Plus en détail

1 Définition et premiers exemples

1 Définition et premiers exemples Master Eseigemet Aalyse 1 2015-2016 Uiversité Paris 13 Devoir maiso d aalyse Le but de ce petit problème est d étudier les foctios covexes. À partir de la défiitio géométrique, o démotrera les propriétés

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite.

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite. ECG JP A 00-00 F. FRANZOSI & A. WENGER http://math.aki.ch 5. Défiitio et gééralités Défiitio : Ue suite réelle est ue applicatio de * N das R, doc si U est ue telle suite, o aura : U : N * R U ( ) U U

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

CH5 Algèbre : Suites numériques

CH5 Algèbre : Suites numériques ème Scieces CH5 Algèbre : Suites umériques Décembre 9 A LAATAOUI I Présetatio des suites umériques : Défiitio d ue suite : Ue suite (u ) est ue foctio défiie sur l'esemble N qui à tout etier aturel associe

Plus en détail

France métropolitaine Enseignement spécifique

France métropolitaine Enseignement spécifique Frace métropolitaie 202 Eseigemet spécifique EXERCICE 3 (6 poits (commu à tous les cadidats Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie

Plus en détail

Compléments sur les suites Suites adjacentes

Compléments sur les suites Suites adjacentes DERNIÈRE IMPRESSION LE 7 février 07 à 6:3 Complémets sur les suites Suites adjacetes I Ecadremet d ue suite EXERCICE ) Motrer que pour tout k N et pour tout x [k ; k+], o a : k+ k+ k x dx k ) O pose u

Plus en détail

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme Statistiques I. Tableaux d effectifs, de fréqueces : 1. Calculer la fréquece d'ue valeur ou d'ue classe : Diviser l effectif de la valeur par l effectif total fréquece La somme des fréqueces est 1 (ou

Plus en détail

Août 2017 (1 heure et 45 minutes)

Août 2017 (1 heure et 45 minutes) Août 017 (1 heure et 45 miutes) 1. a) Soit A, sous-esemble majoré o vide de IR. Défiir: - poit d accumulatio de A - supremum et maximum de A (1 pt.) b) Compléter chaque lige du tableau suivat par u sous-esemble

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

SUITES. I. Suites géométriques. 1) Définition

SUITES. I. Suites géométriques. 1) Définition SUITES I Suites géométriues ) Défiitio Exemple : Cosidéros ue suite umériue (u ) où le rapport etre u terme et so précédet reste costat et égale à 2 Si le premier terme est égal à 5, les premiers termes

Plus en détail

2 2 2) Compléter, en donnant dans chaque cas, l ensemble des solutions de l équation dans [-π,π]

2 2 2) Compléter, en donnant dans chaque cas, l ensemble des solutions de l équation dans [-π,π] Premières S Devoir 9 Jeudi 9 mai 06 Exercice (A complèter directemet sur la feuille de texte) sur poits Les trois questios sot idépedates ) Compléter, das chaque cas, par le réel de [-π,π] qui coviet :

Plus en détail

c. Démontrer par récurrence la conjecture du a)...

c. Démontrer par récurrence la conjecture du a)... Eercice O cosidère l algorithme suivat : Etrée : u etier aturel. Iitialisatio : Doer à u la valeur iitiale. Traitemet : Tat que u > 0 Affecter à u la valeur u 0. Sortie : Afficher u. Quelle est la valeur

Plus en détail

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

BACCALAUREAT GENERAL. Bac Blanc n 2 Lycée Gambetta-Carnot Arras

BACCALAUREAT GENERAL. Bac Blanc n 2 Lycée Gambetta-Carnot Arras BACCALAUREAT GENERAL Bac Blac Lycée Gambetta-Carot Arras ANNEE 06-07 MATHEMATIQUES Série : S DUREE DE L EPREUVE : 4 heures - COEFFICIENT : 7 Ce sujet comporte 6 pages umérotées de à 6 L utilisatio de la

Plus en détail

Suites. Suites arithmétiques. Suites géométriques

Suites. Suites arithmétiques. Suites géométriques CHAPITRE Suites Suites arithmétiques Suites géométriques ACTIVITÉS Activité a) 8 + 7 coureurs b) x 9 + 0 d où x 78 L équipe a reçu les dossards umérotés de 9 à 78 x + d où x 6 0 0 + aées (page 8) a) itervalles,

Plus en détail

UNIVERSITE D ANGERS Mathematiques L2. Devoir. Corrigé sur le web le 31/10/2014

UNIVERSITE D ANGERS Mathematiques L2. Devoir. Corrigé sur le web le 31/10/2014 UNIVERSITE D ANGERS Mathematiques L. Devoir. Corrigé sur le web le 1/10/014 O traitera au choix l u des deux exercices ou. Exercice 1 : ci-dessous : Détermier la ature de chacue des 6 séries dot le terme

Plus en détail

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. D.S. º4 : Suites, Probabilités, Complexes, expoetielle TS1 Samedi 15 décembre 01, h, Calculatrices autorisées. Ce sujet est à redre avec la copie. Nom :.................... Préom :................. Commuicatio

Plus en détail

Calcul d'intégrales 2

Calcul d'intégrales 2 de même largeur égale à 5 de même largeur égale à 5 Mr ABIDI Farid Termiales Calcul d'itégrales Activité : méthode des rectagles I Résultats prélimiaires Démotrer par récurrece que, pour tout etier aturel,

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C Amérique du Sud EXERCICE 6 poits Commu à tous les cadidats Ue etreprise est spécialisée das la fabricatio de ballos de football. Cette etreprise propose deux tailles de ballos : ue petite taille, ue taille

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

Devoir de synthèse n 2

Devoir de synthèse n 2 Lycée IBN RACHIK RADES Mr ABIDI Farid Exercice 1: (6 poits) Devoir de sythèse 2 MATHEMATIQUES Classe : 3 SE 1 Durée : 3H Mai 2017 O cosidère la foctio f défiie sur 3, par fx 2x 2 x 3 u Soit la suite défiie

Plus en détail

» car lim 3n 2 8=+ et lim 2 n 2 +5=+

» car lim 3n 2 8=+ et lim 2 n 2 +5=+ TS. 2014/2015. Lycée Prévert. Corrigé du devoir commu du premier trimestre. Durée : heures. Vedredi 14/11/2014 Exercice 1 : ( 7 pts). A ) Étudier les limites suivates : a) lim 2 8 2 2 +5. Il s'agit d'ue

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2.

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2. BAC BLANC DE MATHEMATIQUES EN TM et TM2. L ordre des exercices a pas d importace. La clarté de la rédactio et des raisoemets iterviedrot pour ue part importate das l appréciatio des copies. La calculatrice

Plus en détail

2. Correction : Limites, continuité, dérivabilité

2. Correction : Limites, continuité, dérivabilité Correctio : Limites, cotiuité, dérivabilité Exercices de base U algorithme a est la valeur de la variable x pour laquelle o cherche ( x ), p est la précisio utilisée das le calcul : plus o avace das la

Plus en détail

Comportement asymptotique des suites

Comportement asymptotique des suites Comportemet asymptotique des suites Table des matières 1 Itroductio 2 2 Limite d ue suite 2 2.1 Limite fiie d ue suite........................................... 2 2.2 Limite ifiie d ue suite..........................................

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES.

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES. Vedredi 0 octobre 07. CONTRÔLE DE MATHEMATIQUES N Classe de TERM 07. E salle 06, deux heures de 8 h à 0 h : LES SUITES et PROBABILITES. La première feuille de ce devoir doit être ue feuille double. Lisez

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

Chapitre 1. Arithmétique. Partie 5 : PGCD

Chapitre 1. Arithmétique. Partie 5 : PGCD Chapitre 1 Arithmétique Partie 5 : PGCD Propriété/Défiitio : (PGCD) O se doe deux etiers relatifs a et b o uls. L esemble des diviseurs positifs commus à a et b admet u plus grad élémet que l o PGCD a

Plus en détail

Exercice 1 (10 points)

Exercice 1 (10 points) Devoir surveillé 2 L usage de la calculatrice est autorisé La qualité de la présetatio et de la rédactio de la copie sera prise e compte das so évaluatio Sauf metio du cotraire, toute répose doit être

Plus en détail

Chapitre 11. (Étude élémentaire des) Séries numériques

Chapitre 11. (Étude élémentaire des) Séries numériques ECE - Aée 05-06 Lycée fraçais de Viee Mathématiques - F. Gauard http://frederic.gauard.com Chapitre. (Étude élémetaire des) Séries umériques Ce chapitre présete la otio de série umérique aisi que les premiers

Plus en détail

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( )

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( ) Termiale S Chapitre : Foctios, cotiuité et TVI Page sur 5 Ce que dit le programme : Défiitio Soiet f ue foctio défiie sur u itervalle I de R et a = O dit que f est cotiue e a si lim f x f a O dit que f

Plus en détail

Chapitre 4 : Fonction logarithme népérien

Chapitre 4 : Fonction logarithme népérien I. Logarithme épérie d u réel strictemet positif La foctio epoetielle est cotiue et strictemet croissate sur, à valeurs das 0;. Pour tout réel a de 0; l'équatio e a admet ue uique solutio das.. Défiitio

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 7 Ce sujet comporte 7 pages umérotées de 1 à 7 Ce sujet écessite l utilisatio d ue feuille de papier

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

TS Limites de suites (3)

TS Limites de suites (3) TS Limites de suites (3) I. Rappels sur les suites majorées, miorées, borées ) Défiitio (suite majorée, miorée, borée) 5 ) Propriété Si u réel M est u majorat d ue suite u, alors tous les réels supérieurs

Plus en détail

BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES. Série ES ENSEIGNEMENT SPECIFIQUE. Durée de l épreuve : 3 heures. Coefficient : 5

BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES. Série ES ENSEIGNEMENT SPECIFIQUE. Durée de l épreuve : 3 heures. Coefficient : 5 BACCALAURÉAT GÉNÉRAL Sessio 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT SPECIFIQUE Durée de l épreuve : 3 heures Coeiciet : 5 Les calculatrices électroiques de poche sot autorisées, coormémet à la réglemetatio

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

Cours sur les suites numériques

Cours sur les suites numériques Suites umériques Cours sur les suites umériques M HARCHY TS 2 -Lycée Agora-205/206 Raisoemet par récurrece Théorème : Axiome de récurrece Soit P ue propriété portat sur les etiers aturels Si elle vérifie

Plus en détail

TDN 6 1ère TSI 1 Suites réelles et complexes. ( 1) n sin 2 n n. 2 sin

TDN 6 1ère TSI 1 Suites réelles et complexes. ( 1) n sin 2 n n. 2 sin CPGE- Lycée techique ère TSI Suites réelles et complexes Exercice : Soiet u ) N et v ) N deux suites réelles telles que u + v ) N et u v ) N coverget. Motrer que u ) N et v ) N coverget. o pose : N w =

Plus en détail

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé Exterat Notre Dame Bac Blac Tle S) javier 06 durée : 4 h Propositio de corrigé calculatrice autorisée Das tout ce devoir, la qualité de la rédactio et le soi serot pris e compte das la otatio. Les exercices

Plus en détail

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4 Atilles-Guyae septembre 5 EXERCICE 6 POINTS Commu à tous les cadidats 6 poits Soit u etier aturel o ul. O cosidère la foctio f défiie et dérivable sur l esemble des ombres réels par f (x) = x e x O ote

Plus en détail

Janvier 2014 (2 heures et 30 minutes)

Janvier 2014 (2 heures et 30 minutes) Javier 014 ( heures et 30 miutes) 1. a) Soit A, u sous-esemble o vide de IR. Défiir: - majorat, supremum et maximum de A - poit d accumulatio de A (1.5 pt.) b) Compléter chaque lige du tableau suivat par

Plus en détail

Soit u n la suite définie par u n. La suite u est strictement décroissante et converge vers 0. u et. v les suites définies par. Soit.

Soit u n la suite définie par u n. La suite u est strictement décroissante et converge vers 0. u et. v les suites définies par. Soit. TS Exercices sur les limites de suites () Réposes Soit u ue suite géométrique de premier terme u 0 et de raiso q Das chacu des cas suivats, doer la limite de la suite u ) u0 ; q ) u 0 ; q ) 0 ) u0 6 ;

Plus en détail

Affecter. Fin tant que Afficher U Afficher V

Affecter. Fin tant que Afficher U Afficher V EXERCICE 1 5 poits Commu à tous les cadidats Soit f la foctio dérivable, défiie sur l itervalle ] 0 ; + [ par : f () = e + 1. 1. Étude d ue foctio auiliaire a. Soit la foctio g dérivable, défiie sur [

Plus en détail

ENSEIGNEMENT OBLIGATOIRE

ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficiet : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Cours Termiale S La foctio logarithme épérie O a vu das u chapitre précédet que la foctio epoetielle est cotiue et strictemet croissate sur R et que l image de R par cette

Plus en détail

Bac Blanc Terminale ES - Février 2017 Correction de l Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2017 Correction de l Épreuve de Mathématiques (durée 3 heures) Bac Blac Termiale ES - Février 2017 Correctio de l Épreuve de Mathématiques (durée 3 heures) Exercice 1 (5 poits) pour les cadidats ayat pas choisi la spécialité MATH 1. Depuis le 28 jui 2007, la ville

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

Correction Bac ES Liban juin 2010

Correction Bac ES Liban juin 2010 Correctio Bac ES Liba jui 2010 EXERCICE 1 (4 poits) Commu à tous les cadidats 1) A et B sot deux évéemets idépedats et o sait que p(a) = 0,5 et p(b) = 0,2. La probabilité de l évéemet A B est égale à :

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

Correction du TD 3 : Séries numériques

Correction du TD 3 : Séries numériques Mme Marceli - Lycée Clemeceau Séries umériques Correctio du TD : Séries umériques Exercice A chaque fois, puisqu'o demade la covergece et la valeur, o reviet à la somme partielle : esuite, soit o recoaît

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

Cours de Mathématiques : Polynômes et Suites

Cours de Mathématiques : Polynômes et Suites Uiversité de Cergy-Potoise Départemet de Mathématiques L MIPI - S2 205/206 Cours de Mathématiques : Polyômes et Suites - Polycopié d Exercices Chapitre : Nombres complexes Exercice a) Détermier la partie

Plus en détail