Corrigé TD N 2. Le graphe de l exercice est planaire car on peut le représenter de la façon suivante : C D E A 6 10 B 8

Dimension: px
Commencer à balayer dès la page:

Download "Corrigé TD N 2. Le graphe de l exercice est planaire car on peut le représenter de la façon suivante : C D E A 6 10 B 8"

Transcription

1 Corrigé TD N 2 GESTION D AUTOROUTES (1) Le graphe G = (X, E, v) correspondant au réseau autoroutier, où les sommets sont les villes et deux villes sont reliées s il existe une autoroute entre ces deux villes, est donné donc par sa matrice d adjacence, où : M(i, j) = v(i, j) = coût du trajet allant de i à j Cette matrice est symétrique, le graphe est donc non orienté Un graphe simple non orienté est dit planaire si et seulement s il admet une représentation dans le plan, où les sommets sont des points et les arêtes sont des segments de droite, telle que deux segments ne s intersectent pas (en dehors éventuellement de leurs extrémités lorsqu ils sont adjacents). On parle alors de planarité. Pour quelques résultats dans ce domaine très riche voir le poly Le graphe de l exercice est planaire car on peut le représenter de la façon suivante : C D E A 10 B H 12 G 12 F (2) Le problème consiste à calculer les itinéraires les plus économique à partir de la ville A, c est donc un problème de plus courts chemins d un sommet vers tous les autres, le critère à minimiser est ici le coût monétaire des chemins. Pour cela on peut appliquer l algorithme de DIJKSTRA, il est applicable car toutes les valuations sont positives À chaque étape, le graphe est partitionné en trois sous-ensembles de sommets : les sommets visités, V, sommets x pour lesquels on connaît définitivement la plus courte distance de A à x, les sommets atteints, A, sommets non visités, voisins des précédents, pour lesquels on a une estimation de la distance, et les autres, c est-àdire ceux de X (V A), pour lesquels la distance est infinie Initialement V contient A, A contient ses voisins, B, C, D, G et H, leurs distances estimées correspondent aux valuations des arêtes correspondantes, soit,, 5, et 15, et les autres sommets ont une distance infinie L étape courante de l algorithme consiste simplement à prendre dans A un des sommets x dont la distance estimée est la plus petite, ce sommet devient visité, ses voisins non visités ni atteints deviennent atteints. Leurs distances estimées est celle de x plus la valuation de l arête et ses voisins déjà atteints peuvent voir leurs distances estimées diminuer et leurs prédécesseurs changer, voir suite L algorithme se termine quand tous les sommets sont visités 1

2 Etape initiale : V = {A}, d(a) = 0, A = {B, C, D, G, H} (ce sont les voisins de A) avec d(b) =, d(c) =, d(d) = 5, d(g) = et d(h) = 15 et p(b) = d(c) = p(d) = p(g) = p(h) = A, tous les autres sommets ont une distance infinie et leurs prédécesseurs sont à 0 Première étape : D est choisi donc V = {A, D} et sa distance (définitive) est d(d) = 5, A = {B, C, E, G, H}, d(b) =, d(c) =, d(e) = 11, d(g) = et d(h) = 15, p(b) = p(c) = p(g) = p(h) = A et p(e) = D, les autres sommets ont un distance infinie et sont sans prédécesseur. Dans la suite, nous ne mentionnerons plus ces sommets, seuls seront mentionnés les sommets de V et A Deuxième étape : C est choisi, G aurait pu être choisi à sa place, donc V = {A, C, D} et sa distance est d(c) =, d où A = {B, E, G, H}, d(b) =, d(e) = 11, d(g) = et d(h) = 14, p(b) = p(g) = A, p(e) = D et p(h) = C Troisième étape : G est choisi donc V = {A, C, D, G} et sa distance est d(g) =, d où A = {B, E, F, H}, d(b) =, d(e) = 11, d(f) = 1 et d(h) = 14, p(b) = A, p(e) = D, p(f) = G et p(h) = C Quatrième étape : B est choisi, on aurait pu choisir C, donc V = {A, B, C, D, G} et sa distance est d(b) =, d où A = {E, F, H}, d(e) = 11, d(f) = 1 et d(h) = 14, p(e) = D, p(f) = B et p(h) = C Cinquième étape : E est choisi donc V = {A, B, C, D, E, G} et sa distance est d(e) = 11, d où A = {F, H}, d(f) = 1 et d(h) = 14, p(f) = B et p(h) = C Sixième étape : H est choisi, donc V = {A, B, C, D, E, G, H} et sa distance est d(h) = 14, d où A = {F}, d(f) = 1 et p(f) = B Septième et dernière étape (car à l issue de cette étape tous les sommets sont visités) : F est choisi donc V = {A, B, C, D, E, F, G, H} sa distance est d(f) = 1 et p(f) = B On peut aussi représenter, de façon assez pertinente, les différentes étapes par un tableau : B C D E F G H V = {A}, A, A 5, A, A 15, A V = {A, D}, A, A - 11, D, A 15, A V = {A, C, D}, A , D, A 14, C V = {A, C, D, G}, A , D 1, G - 14, C V = {A, B, C, D, G} , D 1, B - 14, C V = {A, B, C, D, E, G} , B - 14, C V = {A, B, C, D, E, G, H} , B - - V = {A, B, C, D, E, F, G, H}, A, A 5, A 11, D 1, B, A 14, C La première colonne contient l évolution de l ensemble des sommets visités. Dans chaque case figurent la distance de A au sommet concerné (qu elle soit finie ou infinie) et le précédent, quand il existe (soit de façon définitive soit relativement à la distance estimée) dans le plus court chemin de A à ce sommet. Lorsque qu un couple (distance, précédent) est définitif il est affiché en gras 2

3 Le graphe partiel correspondant aux plus courts chemins est obtenu en utilisant le tableau des prédécesseurs, cela donne le graphe suivant : C () D (5) E (11) 5 A(0) B () H (14) G () F (1) (3) Si l agence envisage de s installer en B, quels sont alors les meilleurs itinéraires aux autres villes? Il n est pas nécessaire de tout recalculer : entre A et B le plus court chemin est (A, B), et comme le plus court chemin de A à F est (A, B, F) alors le plus courts chemins de B à F est (B, F), d après le principe d optimalité Il reste donc à calculer les plus courts chemins de B à C, D, E, G et H En appliquant l algorithme de DIJKSTRA à partir de B, nous obtenons facilement les plus courts chemins (B, D), (B, G) et (B, E), qui sont adjacents à B, puis (B, A, C) et (B, G, H), ou (B, A, C, H) D où le nouveau graphe partiel des plus courts chemins à partir de B : C (14) D (10) E (14) A () B (0) 10 H (22) 12 G (10) F () Il s agit maintenant de comparer les itinéraires obtenus d une part à partir de A et d autre part à partir de B Si l on est en A, le coût moyen d un itinéraire pour aller à l une des autres villes est égal à / 7, alors qu à partir de B, le coût moyen est de / 7. Pour les «touristes», il est plus économique de rester en A, pour l agence il est sans doute plus «rentable» de s installer en B 3

4 (4) Il faut construire un graphe partiel du réseau autoroutier, autrement dit un graphe obtenu à partir du graphe de départ en supprimant certaines arêtes, qui permette d atteindre toute ville à partir de toute autre ville et qui soit à la fois minimal en nombre de liaisons et le plus rentable possible pour la société gérant le réseau. La structure cherchée correspond donc à un Arbre Recouvrant, car connexe et minimal en nombre d arêtes. Il faut aussi que celui-ci soit de rentabilité maximale, il correspond donc un Arbre Recouvrant de coût Maximal Rappelons quelques propriétés caractérisant les Arbres, c est-à-dire les graphes simples non orientés connexes et sans cycle (voir les polycopiés «Graphes» et «Arbre Recouvrant Minimal») : Théorème Si G = (X, E) est un graphe simple non orienté ayant au moins deux sommets alors les propriétés suivantes sont équivalentes : (a) G est un arbre (ie connexe sans cycle) (b) G est sans cycle et m = n 1 (c) G est connexe et m = n 1 (d) G est sans cycle et l ajout d une arête entre deux sommets quelconque créé exactement un cycle (e) G est connexe et la suppression d une arête quelconque le déconnecte (f) Dans G tout couple de sommets est relié par une chaîne unique Précisons que l ajout (resp. la suppression) d une arête entre deux sommets x et y consiste uniquement à rajouter (resp. supprimer) la liaison entre ces sommets (pas de sommet ajouté ni supprimé) Ci-dessous une preuve possible de ce Théorème Tout d abord, une propriété utile : un arbre a toujours au moins deux feuilles Considérons une chaîne élémentaire (sans répétition de sommets) maximale, c est-à-dire qu on ne peut pas prolonger, il en existe au moins une car le graphe est fini, alors ses deux extrémités sont des feuilles sinon elles auraient chacune un autre voisin dans la chaîne, créant ainsi au moins un cycle (a) (b) Par récurrence sur n C est vrai si n = 2, 3, Supposons la propriété vraie jusqu à n 1 (n 3). Soit G un graphe connexe sans cycle, alors G a au moins un sommet pendant, x. Donc G x est connexe et sans cycle, et a donc (hypothèse de récurrence) n 2 arêtes. G a donc n 1 arêtes (b) (c) Si G n est pas connexe soient G 1, G 2, et G k ses composantes connexes, elles sont connexes et sans cycle, donc, d après (a) (b), m i = n i 1 pour chacune d entre elles. D où : D où k = 1, autrement dit : G est connexe k k n " 1 = m = # m i = # ( n i " 1 ) = n " k i = 1 i = 1 (c) (d) G est sans cycle sinon par suppressions successives d arêtes on crée un graphe partiel G de qui est connexe (trivialement la suppression de n importe quelle arête d un cycle ne déconnecte pas le graphe) et sans cycle ayant m < n 1 arêtes, ce qui est impossible d après (a) (b) Si l ajout d une arête ne crée pas de cycle, on obtient un graphe connexe sans cycle ayant n arêtes, ce qui est impossible d après (a) (b), ce cycle créé est nécessairement unique sinon il en existait déjà un dans G, impossible 4

5 (d) (e) G est connexe car si l ajout d une arête quelconque xy crée un cycle cela signifie que x et y était déjà connectés dans G. De même si la suppression d une arête xy ne déconnecte pas G c est qu il existe une chaîne C reliant x à y dans G xy, donc C + xy est un cycle de G : impossible par hypothèse (e) (f) Soient x et y deux sommets quelconques de G. S il existe deux chaînes distinctes reliant x et y dans G elles diffèrent au moins par un sommet donc par deux arêtes, la suppression de l une d entre elles ne déconnecte donc pas G (f) (a) Par hypothèse G est connexe et s il G contenait un cycle il existerait deux chaînes distinctes reliant deux sommets de G Revenons à notre problème Nous pouvons utiliser soit l algorithme de KRUSKAL soit l algorithme de PRIM, qui permettent de construire un Arbre Recouvrant de coût Minimal. En effet, pour obtenir un Arbre Recouvrant de valuation Maximale, il suffit, par exemple, de calculer un Arbre Recouvrant de valuation Minimale en considérant une nouvelle valuation v = v M v où v M est une constante strictement supérieure à toute valuation v(x, y) Dans notre exemple, nous pouvons prendre par exemple v M = 20, d où le graphe G : C D E A B 12 H G F Avec cette nouvelle valuation v, pour tout arbre recouvrant A de G, on a : v' (A) = # v' (a) = (n $1)vM $ # v(a) = (n $1)vM $ v(a) a" A a" A car tout arbre recouvrant de G a exactement n 1 arêtes Soit A 0 l Arbre Recouvrant Minimal trouvé avec v et A, un arbre recouvrant quelconque de G, alors : v (A 0 ) = (n 1)v M v(a 0 ) v (A) = (n 1)v M v(a) Donc : v(a 0 ) v(a), ce qui démontre que l arbre trouvé, A 0, est bien un Arbre Recouvrant Maximal Détaillons les algorithmes sur le graphe G 5

6 L algorithme de KRUSKAL considère les arêtes de G dans l ordre croissant des coûts, donc dans l ordre : AH, BE, FG, GH, BD, BG, EF, AB, BF, CH, DE, AC, AG et AD, en prenant, à coût égal, l ordre lexicographique Une arête n est retenue que si elle ne forme pas de cycle avec celles déjà retenues. L algorithme se termine dès que n 1 arêtes sont obtenues Les arêtes retenues sont donc : AH, BE, FG, GH, BD, BG et CH. Les arêtes EF, AB et BF sont rejetées car elles forment respectivement les cycles (B, E, F, G, B), (A, B, G, H, A) et (B, F, G, B) Remarquons que EF aurait pu être choisie à la place de BG L algorithme de PRIM, partant d un sommet initial, construit l arbre par voisinage en stockant, à chaque étape, l arête de coût minimal reliant l arbre en construction avec le reste du graphe. Il se termine lorsque tous les sommets sont atteints Dans notre cas, en partant du sommet A, nous obtenons successivement les arêtes AH, HG, GF, GB, BE, BD et HC. Remarquons, là aussi, qu au lieu de GB, on aurait pu choisir FE, de même coût, 10 Question : appliquer à nouveau l algorithme en partant d un autre sommet que A Nous obtenons alors l arbre recouvrant minimal : C D E A 10 B H G F Il y a donc deux solutions possibles : soit avec BG, soit avec EF (arêtes en pointillé) L Arbre Recouvrant Maximal cherché est donc l un des deux arbres possibles, de coût 1 : C D E A 10 B H 12 G 12 F Nous pouvons remarquer que l algorithme obtenu correspond tout simplement à appliquer l algorithme de KRUSKAL, ou de PRIM, sur le graphe initial en prenant à chaque étape l arête de plus grand coût parmi les arêtes possibles Remarquons aussi que l on aurait pu prendre des valuations de signe opposé, c est-à-dire v = - v

7 (5) Si la liaison AD n est plus utilisable alors, pour la question (2), seuls les plus courts chemins de A à D et E sont concernés, ce sont en effet les seuls utilisant l arête AD. Il faut alors reprendre l algorithme de DIJKSTRA à partir de A et recalculer ces chemins. Nous trouvons facilement (A, C, D), de longueur 11, pour D et (A, C, D, E), de longueur 17, pour E. D où le nouveau graphe partiel des plus courts chemins : C () 5 D (11) E (17) A (0) B () H (14) G () F (1) Le coût moyen d un plus court chemin est maintenant de 7 / 7 Pour la question (3), le graphe partiel des plus courts chemins partant de B reste le même car l arête AD n est pas utilisée Enfin, aucun des deux Arbres Recouvrants Maximaux solutions n utilisent l arête AD, ils restent donc les mêmes eux aussi Pour la question (2), si la liaison AB n est pas utilisable alors les plus courts chemins à modifier seront uniquement ceux de A à B et F, car ce sont les seuls à utiliser AB. Nous obtenons facilement : C () D (5) E (11) 5 10 A(0) B (15) H (14) G () 12 F (1) Le coût moyen d un plus court chemin est maintenant de 75 / 7 7

8 Pour la question (3), il faut calculer à nouveau les plus courts chemins de B à A et C, nous obtenons : C (15) 5 D (10) E (14) A (15) B (0) 10 H (22) 12 G (10) F () Le coût moyen d un plus court chemin est maintenant de 94 / 7 mêmes Enfin, aucun des deux Arbres Recouvrants Maximaux solutions n utilisent l arête AB, ils restent donc les Si AH n est pas utilisable, les solutions restent les mêmes pour (2) et (3) car AH n y apparaît pas. Par contre, pour la question (4), le sommet A se retrouve isolé, il suffit alors de le relier au reste du graphe par l arête AB qui est l arête de coût minimal dans G, c est-à-dire de coût maximal dans G, adjacente à A

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

1 Première section: La construction générale

1 Première section: La construction générale AMALGAMATIONS DE CLASSES DE SOUS-GROUPES D UN GROUPE ABÉLIEN. SOUS-GROUPES ESSENTIEL-PURS. Călugăreanu Grigore comunicare prezentată la Conferinţa de grupuri abeliene şi module de la Padova, iunie 1994

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

1 Définition et premières propriétés des congruences

1 Définition et premières propriétés des congruences Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Introduction à la théorie des graphes. Solutions des exercices

Introduction à la théorie des graphes. Solutions des exercices CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques : MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Séquence 10. Géométrie dans l espace. Sommaire

Séquence 10. Géométrie dans l espace. Sommaire Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

Optimisation Discrète

Optimisation Discrète Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

2.4 Représentation graphique, tableau de Karnaugh

2.4 Représentation graphique, tableau de Karnaugh 2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

MIS 102 Initiation à l Informatique

MIS 102 Initiation à l Informatique MIS 102 Initiation à l Informatique Responsables et cours : Cyril Gavoille Catherine Pannier Matthias Robine Marc Zeitoun Planning : 6 séances de cours 5 séances de TD (2h40) 4 séances de TP (2h40) + environ

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle

Plus en détail

Votre succès notre spécialité!

Votre succès notre spécialité! V ccè pécé! C Cchg Fm Igé Rcm V ccè pécé! L p mbx mché. E MPS I C g démq p ff pé pf d chq c : p é. N Fc: EMPSI Cg éé céé 2010 P Bddd Bchb q pé p d 8 d md d p. I dévpp N cmp xgc d é d. N c pfm mé d q gg

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

VMware ESX : Installation. Hervé Chaudret RSI - Délégation Centre Poitou-Charentes

VMware ESX : Installation. Hervé Chaudret RSI - Délégation Centre Poitou-Charentes VMware ESX : Installation VMware ESX : Installation Créer la Licence ESX 3.0.1 Installation ESX 3.0.1 Outil de management Virtual Infrastructure client 2.0.1 Installation Fonctionnalités Installation Virtual

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Premiers exercices d Algèbre. Anne-Marie Simon

Premiers exercices d Algèbre. Anne-Marie Simon Premiers exercices d Algèbre Anne-Marie Simon première version: 17 août 2005 version corrigée et complétée le 12 octobre 2010 ii Table des matières 1 Quelques structures ensemblistes 1 1.0 Ensembles, relations,

Plus en détail

Exercices de géométrie

Exercices de géométrie Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Chapitre 14. La diagonale du carré

Chapitre 14. La diagonale du carré Chapitre 4 La diagonale du carré Préambule Examinons un puzzle tout simple : on se donne deux carrés de même aire et on demande, au moyen de quelques découpages, de construire un nouveau carré qui aurait

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2) Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

Algorithmique et Programmation Fonctionnelle

Algorithmique et Programmation Fonctionnelle Algorithmique et Programmation Fonctionnelle RICM3 Cours 9 : Lambda-calcul Benjamin Wack Polytech 2014-2015 1 / 35 La dernière fois Typage Polymorphisme Inférence de type 2 / 35 Plan Contexte λ-termes

Plus en détail

NOTIONS DE PROBABILITÉS

NOTIONS DE PROBABILITÉS NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...

Plus en détail

Map-Reduce : un cadre de programmation parallèlle pour l analyse de grandes données. Stéphane Genaud ENSIIE

Map-Reduce : un cadre de programmation parallèlle pour l analyse de grandes données. Stéphane Genaud ENSIIE Map-Reduce : un cadre de programmation parallèlle pour l analyse de grandes données Stéphane Genaud ENSIIE Traitement de données distribuées Google a introduit Map-Reduce [Dean and Ghemawat 2004] Ils s

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Algorithmes de recherche

Algorithmes de recherche Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: Nicolas.Thiery@u-psud.fr URL: http://nicolas.thiery.

Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: Nicolas.Thiery@u-psud.fr URL: http://nicolas.thiery. Cours de Recherche Opérationnelle IUT d Orsay Nicolas M. THIÉRY E-mail address: Nicolas.Thiery@u-psud.fr URL: http://nicolas.thiery.name/ CHAPTER 1 Introduction à l optimisation 1.1. TD: Ordonnancement

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6 Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6 1 1.But et théorie: Le but de cette expérience est de comprendre l'intérêt de la spectrophotométrie d'absorption moléculaire

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

ÉPREUVE COMMUNE DE TIPE 2008 - Partie D

ÉPREUVE COMMUNE DE TIPE 2008 - Partie D ÉPREUVE COMMUNE DE TIPE 2008 - Partie D TITRE : Les Fonctions de Hachage Temps de préparation :.. 2 h 15 minutes Temps de présentation devant le jury :.10 minutes Entretien avec le jury :..10 minutes GUIDE

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail