UNITÉ 1: LA CINÉMATIQUE

Dimension: px
Commencer à balayer dès la page:

Download "UNITÉ 1: LA CINÉMATIQUE"

Transcription

1 UNITÉ 1: L CINÉMTIQUE Cinémaique: es la branche e la physique qui raie e la escripion u mouemen objes sans référence aux forces ni aux causes régissan ce mouemen. 1.1 L VITESSE ET L VITESSE VECTORIELLE - UNE DIMENSION GRNDEURS SCLIRES: Définion : Disance: son les graneurs qui n on qu une graneur e une unié. ex: emps, masse, longueur, olume es la graneur un parcour. ex: J ai parcouru 8 mères sur la pise e course. Viesse moyenne: isance oale parcourue iisée par le emps oal u raje Formule: Viesse insananée: iesse à une insan onné DEVOIR: page 7 #1

2 GRNDEURS VECTORIELLES: Définiion: son les graneurs elles que la posiion e le éplacemen, qui on une graneur, une unié, un sens e une irecion. ex: posiion, éplacemen N.B.: Un eceur es représené en posan une flèche au-essus u symbole e en iniquan le sens après l unié, enre croches. Posiion: la isance un obje par rappor à un poin e référence Déplacemen: le isance enre la posiion finale e la posiion iniiale ex: Un éplacemen e 8, km, plein es, s écri: ) = 8, km [E]. N.B.: - ) es uilisée pour représener changemen e, augmenaion e, baisse e, ifférence ou ineralle. Représenaion u éplacemen sur un chemin reciligne: = 36 km = 18 km -18 km -1 km = -18 km 1 km = 7 km = 18 km Le changemen e posiion es onné par l équaion suiane: ) = 2-1 où 1 = la posiion iniiale 2 = la posiion finale ) = le éplacemen Ex 1: Si un éhicule parcourai une isance e -18 km à e, e là, à 2 km quelle serai son éplacemen.

3 Viesse ecorielle: - aux e ariaion e posiion Viesse ecorielle insananée:- eceur iesse à un insan onné Viesse ecorielle moyenne: - eceur iesse pour une ceraine ineralle e emps TRVIL: À l aie u graphique en classe, rouer le éplacemen, la isance, la iesse ecorielle insananée e la iesse ecorielle moyenne aux momens iniqués. DEVOIRS: p. 7 #1 à 6 P. 9 #2 p. 1 #7,8,9,1,11

4 1.2 LES GRPHIQUES POSITION-TEMPS - VITESSE VECTORIELLE - Viesse ecorielle uniforme: 1.1 À parir u momen où l on roue une ligne roie sur un graphique posiion-emps, on sai que la iesse ecorielle es uniforme. Exemple e iesse ecorielle uniforme sur un graphique posiion-emps - - Une ligne roie parallèle à l axe u emps représene un éplacemen nul (zéro). - Une ligne légèremen incurée sur le graphique - représene une ariaion e la iesse qu on appelle une accéléraion ou une écéléraion.

5 La pene u graphique posiion-emps éermine la iesse ecorielle. (m) 2 Posiion - Temps = ) = pene u graphique - ) (s) B- La iesse ecorielle moyenne: - pren en consiéraion l ensemble u éplacemen e le emps oal nécessaire pour le éplacemen. moy = ) ) La iesse moyenne es onnée par la pene e la roie relian eux poins u graphique posiion-emps. (m) Posiion - Temps moy 2 1 (s) EXEMPLE 1: (p. 7) EXEMPLE 2: (p.9)

6 C - La iesse ecorielle insananée: es une iesse à un insan bien précis. ins = lim ) ) º ) La iesse insananée es onnée par la pene e la angene à la courbe en un poin u graphique posiion-emps. (m) Posiion - Temps P (s) PROBLÈME 3: (P. 11) PROBLÈME 4: (P. 13)

7 nalyse es graphiques iesse ecorielle- emps Pour une iesse uniforme nous uilisons la relaion ) = ), pour rouer le éplacemen oal. Le éplacemen, uran un ineralle e emps onné, correspon à la surface sous la courbe u graphique - ans ce ineralle. (m/s) 1 Viesse - Temps B (m) 5 Déplacemen - Temps 5 25 C O (s) (s) Pour une iesse arian uniformémen nous rouons la surface sous la courbe u graphique - pour rouer le éplacemen (m/s) 12 Viesse - Temps 8 (m) 32 Déplacemen - Temps 4 16 O (s) (s) Deoirs: p.13 #14,15,16,17

8 1.3 L VITESSE VECTORIELLE EN DEUX DIMENSIONS Disance: Déplacemen: Traje oal parcourue e la posiion iniiale à finale. (N.B.: sans irecion) Traje enre la posiion iniiale e finale ayan un sens e une irecion. Exemple: B B B Le éplacemen e à B es le même ans chaque cas mais la isance parcourue es ifférene pour chacun. La iesse ecorielle en eux imensions Pour rouer la iesse comme graneur ecorielle, on aiionne les ifférens éplacemens. Trois façons e faire: Voir PROBLÈME 5 (p. 15) - Soluion graphique: aiion ou sousracion e eceurs B- Soluion mahémaique: aiion es composanes C- Soluion mahémaique: loi e cosinus

9 - Soluion graphique: aiion ou sousracion e eceurs On place les eceurs bou à bou e le eceur résulan relie l origine u premier eceur à la poine u ernier eceur. B B R B ou B R Donc B = B B B R

10 Sousracion e eceurs: On aiionne le premier eceur aec l inerse u secon. - B = (-B) où le sens u eceur sousrai change B -B (-B) -B R -B R enion: Un représener un éplacemen, une iesse ou une accéléraion. eceur peu

11 B- Soluion mahémaique: aiion es composanes Composanes orhogonales ou recangulaires: son es composanes perpeniculaires l une à l aure. N.B.: Un eceur quelconque peu êre représené par es composanes e l axe es x e e l axe es y (x, y). Y *y* = sin 2 ** y e *x* = cos 2 ** x X PROBLÈME 5:

12 C- Soluion mahémaique: loi e cosinus Voir soluion ans le manuel (p.15) DEVOIRS: p. 13 #14,15,16,17 p. 16 #18,2 p. 17 #2,4,5,7

13 1.4 CCÉLÉRTION N.B.: Pour représener graphiquemen - à parir un graphique -, on exrai e ce ernier une série e penes e on pore les aleurs obenues sur le graphique -. Comparaison es graphiques - e - (oir les graphiques à la page 55) arrê iesse uniforme posiie - iesse uniforme négaie - accéléraion uniforme posiie - accéléraion uniforme négaie ccéléraion: es le aux e ariaion e la iesse par rappor au emps. N.B.: La pene u graphique - nous onne l accéléraion. Cee accéléraion peu êre posiie, négaie ou nulle. a = ) ou a = 2-1 ) ) où a = l accéléraion (m/s 2 ) ) = la ariaion e iesse (m/s) 1 = la iesse iniiale (m/s) 2 = la iesse finale (m/s) ) = l ineralle e emps au cours uquel a lieu l accéléraion (s)

14 La pene u graphique iesse-emps éermine l accéléraion. a = ) = pene u graphique - ) (m/s) 2 Viesse - Temps (s) ccéléraion posiie, négaie e neure accéléraion posiie accéléraion négaie accéléraion neure ccéléraion uniforme: es lorsque les ariaions e iesse son égaux pour es ineralles e emps égaux. ex: accéléraion ue à la graié (9,8 m/s 2 ) La formule une accéléraion uniforme es: a = ) ) où a = l accéléraion uniforme (m/s 2 ) ) = la ariaion e iesse (m/s) ) = l ineralle e emps (s)

15 ccéléraion moyenne: ien compe e la ariaion e iesse globale e e la urée oale e cee ariaion. a moy = ) ) L accéléraion moyenne es onnée par la pene e la roie relian eux poins u graphique iesse-emps. (m/s) Viesse - Temps a moy a2 a1 (s) N.B.: Quan l accéléraion es uniforme, l accéléraion moyenne e l accéléraion insananée on la même aleur PROBLÈME 1: page 19 PROBLÈME 2 page 19

16 ccéléraion insananée: es une accéléraion à un insan bien précis. a ins = lim ) ) º ) (m/s) Viesse - Temps P L accéléraion insananée es onnée par la pene e la angene à la courbe en un poin u graphique iesse-emps. (s) Lien enre les graphiques Comparaison es graphiques - e a- N.B.: Pour représener graphiquemen a- à parir un graphique -, on exrai e ce ernier une série e penes e on pore les aleurs obenues sur le graphique a-. La ariaion e iesse ans un ineralle onné es représenée par la surface siuée sous la courbe u graphique a- ans ce ineralle. a ccéléraion - Temps surface = a = PROBLÈME 3: (Page 22)

17 Pour passer un graphique - à un graphique -, on uilise la même echnique que pour passer un graphique - à un graphique a-. pene pene graphique - graphique - graphique a- aire 1 = aire 1 = DEVOIRS: p. 2 #1-7 P. 23 #8,9,11

18 1.5 ccéléraion- aec formules À l aie e la surface sous la courbe u graphique - suian, nous pouons ressorir rois équaions ifférenes. (m/s) 2 Viesse - Temps surface = 1/2 1 surface = (s) Équaion 1: 2 = 1 a) Équaion 2a: ) = (1 2) ) 2 Équaion 2b: ) = moy ) Équaion 3: ) = 1 ) ½ a ()) 2 Équaion 4: ) = 2) - ½ a ()) 2 Équaion 5: 2 2 = 1 2 2a) PROBLÈME 4: (page 25) PROBLÈME 5: (page 26) PROBLÈME 6: (page26) PROBLÈME 7: (Page 28)

19 L accéléraion es un eceur a moy = ) ) a ins = lim ) º ) 3 1 = 3 m/s (E3S) 2 2 = 5 m/s (E2N) = 39 m/s (E57N) -1 = 3 m/s 5 2 = 5 m/s DEVOIRS: p. 27 #18, 19, 2, 21, 23 p. 29 #24, 25,26,27,28 p. 3 # 6,7,8, 14,15,16

20 1.6 ccéléraion ue à la pesaneur Définiion: - accéléraion un obje qui ombe ericalemen ers la surface e la Terre sous l effe e la pesaneur seulemen chue libre: un obje qui ombe ers la Terre sans subi aure force que le pesaneur Éue u sroboscope : figure 3 (page 33) Commen calculer l accéléraion graiaionnelle: Pour calculer la isance parcourue aec une accéléraion: ) = 1 ) ½ a ()) 2 mais la iesse iniiale es nulle onc, ) = ½ a ()) 2 pour rouer a a = 2) ()) 2 Le résula es oujours a= 9,8m/s 2 [ ] erslebas PROBLÈME 1 (page 36) PROBLÈME 2 (page 36) DEVOIRS p.35 #5, 8 p. 37 #9, 11, 12, 13, 14, 16, 21

21 1.7 LE MOUVEMENT D UN PROJECTILE PROJETÉ HORIZONTLEMENT Projecile: es un obje se éplaçan libremen, sous la seule influence e la pesaneur. Veceur iesse: x ins y S S composane horizonale consane composane ericale augmene N.B.: À es ineralles e emps consans, nous aons un changemen e iesse, ), ienique. Deux billes son projeées, e B. es projeées aec une iesse horizonale e B es projeées sans iesse horizonale, les eux billes frapperon le sol en même emps. Éue e la figure 4 (page 42) Trajecoire (u projecile): es la combinaison es mouemens inépenans horizonal e erical pour prouire un raje curiligne. N.B.: Le emps nécessaire (au projecile) pour aeinre le poin le plus bas, es exacemen le même que s il ombai en chue libre, aec ou sans iesse horizonale. Ceci parce que la iesse ericale es nulle. Pour le mouemen horizonal (x) - l accéléraion es nulle - la composane horizonale e la iesse s applique seulemen - V ix = ) x )

22 Pour le mouemen erical (y) - l accéléraion es g - la iesse augmene aec le emps - les formules accéléraion sur le plan y 2y = 1y a) ) y = 1y ) ½ a y ()) 2 ) = 1 (V 1y V 2y )) 2 2y = 2 1y 2a y ) y 2 ) y = 2 y ) - ½ a y ()) 2 PROBLÈME 1: (page 43) PROBLÈME 2: (page 44) PROBLÈME 3: (page 45) DEVOIRS: p. 46 #1, 2, 3, 4, 5, 7

23 1.8 NLYSE D UNE MOUVEMENT PROJECTILE PLUS COMPLEXE Pour un projecile lancé horizonalemen e accéléran ericalemen les équaions son: 1) ) h = h ) où ) h es le éplacemen horizonal h es la iesse horizonale 2) ) = ½a g ()) 2 où ) es le éplacemen erical Pour un obje lancé selon un angle par rappor au sol (rajecoire parabolique), nous pouons éelopper 4 nouelles équaions. V V1 Vh h h = 1 cos 2 = 1 sin 2 (composane horizonale) (composane ericale) 3) ) h = h ) = 1 ) cos 2 4) ) = 1 ) sin 2 - ½g()) 2 5) ) = 2 1 sin 2 g 6) ) h = 1 2 sin 22 g

24 N.B.: La porée maximale es aeine à un angle éléaion e 45. Les équaions précéenes on éé éeloppé selon 4 hypohèses simplificarices: i) aucune résisance e l air, ii) l accéléraion ue à la pesaneur es consane, iii) la Terre es plae, e i) le projecile rese ans le même plan. PROBLÈME 4: (page 47) DEVOIRS: p. 5 #8, 9 p.5 # 1,2,3,4,5,7, 11

25 1.9 L VITESSE VECTORIELLE RELTIVE- SYSTÈMES DE RÉFÉRENCE Mouemen relaif: C es le mouemen un obje par rappor à un obje B. Dans ce cas, l obje B eien le sysème e référence pour l obje. Sysème e référence e la norme: la Terre car c es une sysème e référence fixe Viesse ecorielle relaie: iesse ecorielle un obje par rappor à un sysème e référence pariculier Discussion: Viesse relaie une oiure qui roule à 1 km/h ers l es sur l auoroue relaie à une aure oiure qui roule à 12 km/h ers l es - relaie à une aure oiure qui roule à 8 km/h ers l es - relaie à une aure oiure qui roule à 12 km/h ers l oues - relaie à la personne qui fai e l auo-sop. nalyse aec un sysème e référence: Un eceur iesse V Les inices V B = la iesse e l obje B= le sysème e référence e.g. V T = 4 km/h [ ] E La iesse e l air par rappor à la Terre es e 4 km/h ers l es.

26 iion e eceurs L équaion V PT = V P V T P= aion T= erre = en V PT = la iesse e l aion par rappor à la Terre = V P = la iesse e l aion par rappor au en = 43 km/h (E) V T = la iesse u en par rappor à la Terre = 9 km/h (E) B B V PT = V P V T = 43 km/h (E) 9 km/h (E) = 52 km/h (E) Sousracion e eceurs L équaion V PT = VP V T VP = V PT -V T P= aion T= erre = en V PT = la iesse e l aion par rappor à la Terre = 4 km/h (E) V P = la iesse e l aion par rappor au en = V T = la iesse u en par rappor à la Terre = 5 km/h (E) VP = V PT -V T = 4 km/h (E) - 5 km/h (E) = 35 km/h (E) On aiionne le premier eceur aec l inerse u secon. - B = (-B) où le sens u eceur sousrai change

27 B -B (-B) -B R -B R enion: Un eceur peu représener un éplacemen, une iesse ou une accéléraion. Le principe es équaions ecorielles: V PT = V CT= PROBLÈME 1: (page 53) PROBLÈME 2: (page 55) PROBLÈME 3: (page 56) DEVOIRS: p. 56 #1, 2,3,4, p.57 #1,2,3,4,5

28 1.1 RÉVISION POUR ÉPREUVE Refaire les quiz Refaire les problèmes en eoirs e les problèmes iscués en classe Compléer la réision p. 63 #1 à 11, 16 à 18 p. 64 #4,8,9,13,14,16,18, 22, 23, 24, 25,27,29, 31,33,35,38, 39,

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

LE PARADOXE DES DEUX TRAINS

LE PARADOXE DES DEUX TRAINS LE PARADOXE DES DEUX TRAINS Énoné du paradoxe Déaillons ou d abord le problème dans les ermes où il es souen présené On dispose de deux oies de hemins de fer parallèles e infinimen longues Enre les deux

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Sciences Industrielles pour l Ingénieur

Sciences Industrielles pour l Ingénieur Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1 Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

Cours d électrocinétique :

Cours d électrocinétique : Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1........................................................................................................ Je prends un bon dépar.......................................................................................

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE

SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE Le seul ballon hybride solaire-hermodynamique cerifié NF Elecricié Performance Ballon hermodynamique 223 lires inox 316L Plaque évaporarice

Plus en détail

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V

Plus en détail

Calcul Stochastique 2 Annie Millet

Calcul Stochastique 2 Annie Millet M - Mahémaiques Appliquées à l Économie e à la Finance Universié Paris 1 Spécialié : Modélisaion e Méhodes Mahémaiques en Économie e Finance Calcul Sochasique Annie Mille 15 14 13 1 11 1 9 8 7 6 5 4 3

Plus en détail

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite DOCUMENT DE TRAVAIL 2003-12 Impac du vieillissemen démographique sur l impô prélevé sur les rerais des régimes privés de reraie Séphane Girard Direcion de l analyse e du suivi des finances publiques Ce

Plus en détail

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB)

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB) Filrage opimal par Mohamed NAJIM Professeur à l École naionale supérieure d élecronique e de radioélecricié de Bordeaux (ENSERB) Filre adapé Définiions Filre adapé dans le cas de brui blanc 3 3 Cas d un

Plus en détail

B34 - Modulation & Modems

B34 - Modulation & Modems G. Pinson - Physique Appliquée Modulaion - B34 / Caracérisiques d'un canal de communicaion B34 - Modulaion & Modems - Définiions * Half Duplex ou simplex : ransmission un sens à la fois ; exemple : alky-walky

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques Universié de Paris I Panhéon Sorbonne U.F.R. de Sciences Économiques Année 2011 Numéro aribué par la bibliohèque 2 0 1 1 P A 0 1 0 0 5 7 THÈSE Pour l obenion du grade de Doceur de l Universié de Paris

Plus en détail

TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A

TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A UIMBERTEAU UIMBERTEAU TRAVAUX PRATIQUES 5 ISTALLATIO ELECTRIQUE DE LA CAE D'ESCALIER DU BATIMET A ELECTROTECHIQUE Seconde B.E.P. méiers de l'elecroechnique ELECTROTECHIQUE HABITAT Ver.. UIMBERTEAU TRAVAUX

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

Séquence 2. Pourcentages. Sommaire

Séquence 2. Pourcentages. Sommaire Séquence 2 Pourcenages Sommaire Pré-requis Évoluions e pourcenages Évoluions successives, évoluion réciproque Complémen sur calcularices e ableur Synhèse du cours Exercices d approfondissemen 1 1 Pré-requis

Plus en détail

Le mécanisme du multiplicateur (dit "multiplicateur keynésien") revisité

Le mécanisme du multiplicateur (dit multiplicateur keynésien) revisité Le mécanisme du muliplicaeur (di "muliplicaeur kenésien") revisié Gabriel Galand (Ocobre 202) Résumé Le muliplicaeur kenésien remone à Kenes lui-même mais il es encore uilisé de nos jours, au moins par

Plus en détail

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2 Les soluions solides e les diagrammes d équilibre binaires 1. Les soluions solides a. Descripion On peu mélanger des liquides par exemple l eau e l alcool en oue proporion, on peu solubiliser un solide

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau Ecole des HEC Universié de Lausanne FINANCE EMPIRIQUE Eric Jondeau FINANCE EMPIRIQUE La prévisibilié des rendemens Eric Jondeau L hypohèse d efficience des marchés Moivaion L idée de base de l hypohèse

Plus en détail

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE Ce aricle es disponible en ligne à l adresse : hp://www.cairn.info/aricle.php?id_revue=ecop&id_numpublie=ecop_149&id_article=ecop_149_0073 Risque associé au conra d assurance-vie pour la compagnie d assurance

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little. Cours de Tronc Commun Scienifique Recherche Opéraionnelle Les files d aene () Les files d aene () Frédéric Sur École des Mines de Nancy www.loria.fr/ sur/enseignemen/ro/ 5 /8 /8 Exemples de files d aene

Plus en détail

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois)

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois) LES GRANDS THÈMES DE L ITB Les iérês simples e les iérês composés RAPPELS THÉORIQUES Les iérês simples : l'iérê «I» es focio de la durée «D» (jour, quizaie, mois, rimesre, semesre, aée) de l'opéraio (placeme

Plus en détail

Estimation des matrices de trafics

Estimation des matrices de trafics Cédric Foruny 1/5 Esimaion des marices de rafics Cedric FORTUNY Direceur(s) de hèse : Jean Marie GARCIA e Olivier BRUN Laboraoire d accueil : LAAS & QoSDesign 7, av du Colonel Roche 31077 TOULOUSE Cedex

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE SEANCE 3 PLANS DE TRESORERIE Obje de la séance 3 : dans la séance 2, nous avons monré commen le besoin de financemen éai couver par des

Plus en détail

3 POLITIQUE D'ÉPARGNE

3 POLITIQUE D'ÉPARGNE 3 POLITIQUE D'ÉPARGNE 3. L épargne exogène e l'inefficience dynamique 3. Le modèle de Ramsey 3.3 L épargne opimale dans le modèle AK L'épargne des sociéés dépend largemen des goûs des agens, de faceurs

Plus en détail

Exercices de révision

Exercices de révision Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi

Plus en détail

Mathématiques financières. Peter Tankov

Mathématiques financières. Peter Tankov Mahémaiques financières Peer ankov Maser ISIFAR Ediion 13-14 Preface Objecifs du cours L obje de ce cours es la modélisaion financière en emps coninu. L objecif es d un coé de comprendre les bases de

Plus en détail

MODÈLE BAYÉSIEN DE TARIFICATION DE L ASSURANCE DES FLOTTES DE VÉHICULES

MODÈLE BAYÉSIEN DE TARIFICATION DE L ASSURANCE DES FLOTTES DE VÉHICULES Cahier de recherche 03-06 Sepembre 003 MODÈLE BAYÉSEN DE TARFCATON DE L ASSURANCE DES FLOTTES DE VÉHCULES Jean-François Angers, Universié de Monréal Denise Desardins, Universié de Monréal Georges Dionne,

Plus en détail

Document de travail FRANCE ET ALLEMAGNE : UNE HISTOIRE DU DÉSAJUSTEMENT EUROPEEN. Mathilde Le Moigne OFCE et ENS ULM

Document de travail FRANCE ET ALLEMAGNE : UNE HISTOIRE DU DÉSAJUSTEMENT EUROPEEN. Mathilde Le Moigne OFCE et ENS ULM Documen de ravail 2015 17 FRANCE ET ALLEMAGNE : UNE HISTOIRE DU DÉSAJUSTEMENT EUROPEEN Mahilde Le Moigne OFCE e ENS ULM Xavier Rago Présiden OFCE e chercheur CNRS Juin 2015 France e Allemagne : Une hisoire

Plus en détail

Un modèle de projection pour des contrats de retraite dans le cadre de l ORSA

Un modèle de projection pour des contrats de retraite dans le cadre de l ORSA Un modèle de proecion pour des conras de reraie dans le cadre de l ORSA - François Bonnin (Hiram Finance) - Floren Combes (MNRA) - Frédéric lanche (Universié Lyon 1, Laboraoire SAF) - Monassar Tammar (rim

Plus en détail

CHAPITRE 4 RÉPONSES AUX CHOCS D INFLATION : LES PAYS DU G7 DIFFÈRENT-ILS LES UNS DES AUTRES?

CHAPITRE 4 RÉPONSES AUX CHOCS D INFLATION : LES PAYS DU G7 DIFFÈRENT-ILS LES UNS DES AUTRES? CHAPITRE RÉPONSES AUX CHOCS D INFLATION : LES PAYS DU G7 DIFFÈRENT-ILS LES UNS DES AUTRES? Les réponses de la poliique monéaire aux chocs d inflaion mondiaux on varié d un pays à l aure Le degré d exposiion

Plus en détail

Ned s Expat L assurance des Néerlandais en France

Ned s Expat L assurance des Néerlandais en France [ LA MOBILITÉ ] PARTICULIERS Ned s Expa L assurance des Néerlandais en France 2015 Découvrez en vidéo pourquoi les expariés en France choisissen APRIL Inernaional pour leur assurance sané : Suivez-nous

Plus en détail

Cahier technique n 114

Cahier technique n 114 Collecion Technique... Cahier echnique n 114 Les proecions différenielles en basse ension J. Schonek Building a ew Elecric World * Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés

Plus en détail

SURVOL DE LA LITTÉRATURE SUR LES MODÈLES DE TAUX DE CHANGE D ÉQUILIBRE: ASPECTS THÉORIQUES ET DISCUSSIONS COMPARATIVES

SURVOL DE LA LITTÉRATURE SUR LES MODÈLES DE TAUX DE CHANGE D ÉQUILIBRE: ASPECTS THÉORIQUES ET DISCUSSIONS COMPARATIVES Ankara Üniversiesi SBF Dergisi, Cil 66, No. 4, 2011, s. 125-152 SURVOL DE LA LITTÉRATURE SUR LES MODÈLES DE TAUX DE CHANGE D ÉQUILIBRE: ASPECTS THÉORIQUES ET DISCUSSIONS COMPARATIVES Dr. Akın Usupbeyli

Plus en détail

NUMERISATION ET TRANSMISSION DE L INFORMATION

NUMERISATION ET TRANSMISSION DE L INFORMATION , Chapire rminale S NUMERISATION ET TRANSMISSION DE L INFORMATION I TRANSMISSION DE L'INFORMATION ) Signal e informaion ) Chaîne de ransmission de l informaion La chaîne de ransmission d informaions es

Plus en détail

CHAPITRE. Le mouvement en deux dimensions CORRIGÉ DES EXERCICES

CHAPITRE. Le mouvement en deux dimensions CORRIGÉ DES EXERCICES CHAPITRE Le mouvement en deux dimensions CORRIGÉ DES EXERCICES Exercices. Les vecteurs du mouvement SECTION. 5. Une montgolfière, initialement au repos, se déplace à vitesse constante. En 5 min, elle

Plus en détail

CANAUX DE TRANSMISSION BRUITES

CANAUX DE TRANSMISSION BRUITES Canaux de ransmissions bruiés Ocobre 03 CUX DE TRSISSIO RUITES CORRECTIO TRVUX DIRIGES. oyer Canaux de ransmissions bruiés Ocobre 03. RUIT DE FOD Calculer le niveau absolu de brui hermique obenu pour une

Plus en détail

La fonction de production dans l analyse néo-classique

La fonction de production dans l analyse néo-classique La oncion de producion dans l analyse néo-classique Jean-Marie Harribey La oncion de producion es une relaion mahémaique éablie enre la quanié produie e le ou les aceurs de producion uilisés, ou encore

Plus en détail

Intégration de Net2 avec un système d alarme intrusion

Intégration de Net2 avec un système d alarme intrusion Ne2 AN35-F Inégraion de Ne2 avec un sysème d alarme inrusion Vue d'ensemble En uilisan l'inégraion d'alarme Ne2, Ne2 surveillera si l'alarme inrusion es armée ou désarmée. Si l'alarme es armée, Ne2 permera

Plus en détail

Pour 2014, le rythme de la reprise économique qui semble s annoncer,

Pour 2014, le rythme de la reprise économique qui semble s annoncer, En France, l invesissemen des enreprises reparira--il en 2014? Jean-François Eudeline Yaëlle Gorin Gabriel Sklénard Adrien Zakharchouk Déparemen de la conjoncure Pour 2014, le ryhme de la reprise économique

Plus en détail

GUIDE DES INDICES BOURSIERS

GUIDE DES INDICES BOURSIERS GUIDE DES INDICES BOURSIERS SOMMAIRE LA GAMME D INDICES.2 LA GESTION DES INDICES : LE COMITE DES INDICES BOURSIERS.4 METHODOLOGIE ET CALCUL DE L INDICE TUNINDEX ET DES INDICES SECTORIELS..5 I. COMPOSITION

Plus en détail

INF601 : Algorithme et Structure de données

INF601 : Algorithme et Structure de données Cours 2 : TDA Arbre Binaire B. Jacob IC2/LIUM 27 février 2010 Plan 1 Introuction 2 Primitives u TDA Arbin 3 Réalisations u TDA Arbin par cellules chaînées par cellules contiguës par curseurs (faux pointeurs)

Plus en détail

MIDI F-35. Canal MIDI 1 Mélodie Canal MIDI 2 Basse Canal MIDI 10 Batterie MIDI IN. Réception du canal MIDI = 1 Reproduit la mélodie.

MIDI F-35. Canal MIDI 1 Mélodie Canal MIDI 2 Basse Canal MIDI 10 Batterie MIDI IN. Réception du canal MIDI = 1 Reproduit la mélodie. / VARIATION/ ACCOMP PLAY/PAUSE REW TUNE/MIDI 3- LESSON 1 2 3 MIDI Qu es-ce que MIDI? MIDI es l acronyme de Musical Insrumen Digial Inerface, une norme inernaionale pour l échange de données musicales enre

Plus en détail

DE L'ÉVALUATION DU RISQUE DE CRÉDIT

DE L'ÉVALUATION DU RISQUE DE CRÉDIT DE L'ÉALUAION DU RISQUE DE CRÉDI François-Éric Racico * Déparemen des sciences adminisraives Universié du Québec, Ouaouais Raymond héore Déparemen Sraégie des Affaires Universié du Québec, Monréal RePAd

Plus en détail

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE 009-01 EFFICIENCE INFORMATIONNELLE DES MARCHES DE L OR A PARIS ET A LONDRES, 1948-008 UNE VERIFICATION ECONOMETRIQUE DE LA FORME FAIBLE Thi Hong Van HOANG Efficience informaionnelle des marchés de l or

Plus en détail

Mathématiques et petites voitures

Mathématiques et petites voitures Mathématiques et petites voitures Thomas Lefebvre 10 avril 2015 Résumé Ce document présente diérentes applications des mathématiques dans le domaine du slot-racing. Table des matières 1 Périmètre et circuit

Plus en détail

Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle

Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle Aricle «Les effes à long erme des fonds de pension» Pascal Belan, Philippe Michel e Berrand Wigniolle L'Acualié économique, vol 79, n 4, 003, p 457-480 Pour cier ce aricle, uiliser l'informaion suivane

Plus en détail

Pouvoir de marché et transmission asymétrique des prix sur les marchés de produits vivriers au Bénin

Pouvoir de marché et transmission asymétrique des prix sur les marchés de produits vivriers au Bénin C N R S U N I V E R S I T E D A U V E R G N E F A C U L T E D E S S C I E N C E S E C O N O M I Q U E S E T D E G E S T I O N CENTRE D ETUDES ET DE RECHERCHES SUR LE DEVELOPPEMENT INTER NATIONAL Pouvoir

Plus en détail

OBJECTIFS LES PLUS DE LA FORMATION

OBJECTIFS LES PLUS DE LA FORMATION Formaion assurance-vie e récupéraion: Quand e Commen récupérer? (Ref : 3087) La maîrise de la récupéraion des conras d'assurances-vie requalifiés en donaion OBJECTIFS Appréhender la naure d un conra d

Plus en détail

Les deux déficits, budgétaire et du compte courant, sont-ils jumeaux? Une étude empirique dans le cas d une petite économie en développement

Les deux déficits, budgétaire et du compte courant, sont-ils jumeaux? Une étude empirique dans le cas d une petite économie en développement Les deux déficis, budgéaire e du compe couran, sonils jumeaux? Une éude empirique dans le cas d une peie économie en développemen (Version préliminaire) Aueur: Wissem AJILI Docorane CREFED Universié Paris

Plus en détail

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12 1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30

Plus en détail

Chapitre. Chapitre 12. Fonctions de plusieurs variables. 1. Fonctions à valeurs réelles. 1.1 Définition. 1.2 Calcul de dérivées partielles

Chapitre. Chapitre 12. Fonctions de plusieurs variables. 1. Fonctions à valeurs réelles. 1.1 Définition. 1.2 Calcul de dérivées partielles 1 Chapitre Chapitre 1. Fonctions e plusieurs variables La TI-Nspire CAS permet e manipuler très simplement les onctions e plusieurs variables. Nous allons voir ans ce chapitre comment procéer, et éinir

Plus en détail

Thèse CIFRE. Développement de modèles statistiques pour l analyse et la prévision des données du secteur des services à la personne.

Thèse CIFRE. Développement de modèles statistiques pour l analyse et la prévision des données du secteur des services à la personne. Moèle aiique pour la préviion e onnée u eceur e ervice à la peronne Thèe CIFRE Développemen e moèle aiique pour l anale e la préviion e onnée u eceur e ervice à la peronne. Enreprie accueil : Jean-Charle

Plus en détail

Mémoire présenté et soutenu en vue de l obtention

Mémoire présenté et soutenu en vue de l obtention République du Cameroun Paix - Travail - Parie Universié de Yaoundé I Faculé des sciences Déparemen de Mahémaiques Maser de saisique Appliquée Republic of Cameroon Peace Wor Faherland The Universiy of Yaoundé

Plus en détail

CHAPITRE. Le mouvement en une dimension CORRIGÉ DES EXERCICES

CHAPITRE. Le mouvement en une dimension CORRIGÉ DES EXERCICES CHAPITRE Le mouvement en une dimension CORRIGÉ DES EXERCICES Exercices. Le mouvement rectiligne uniforme SECTION. 5. Le graphique suivant représente la vitesse d une cycliste en fonction du temps. Quelle

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

L impact de l activisme des fonds de pension américains : l exemple du Conseil des Investisseurs Institutionnels.

L impact de l activisme des fonds de pension américains : l exemple du Conseil des Investisseurs Institutionnels. L impac de l acivisme des fonds de pension américains : l exemple du Conseil des Invesisseurs Insiuionnels. Fabrice HERVE * Docoran * Je iens à remercier ou pariculièremen Anne Lavigne e Consanin Mellios

Plus en détail

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel Simulation Matlab/Simulink une machine à inuction triphasée Constitution un référentiel Capocchi Laurent Laboratoire UMR CNRS 6134 Université e Corse 3 Octobre 7 1 Table es matières 1 Introuction 3 Moélisation

Plus en détail

Les Comptes Nationaux Trimestriels

Les Comptes Nationaux Trimestriels REPUBLIQUE DU CAMEROUN Paix - Travail Parie ---------- INSTITUT NATIONAL DE LA STATISTIQUE ---------- REPUBLIC OF CAMEROON Peace - Work Faherland ---------- NATIONAL INSTITUTE OF STATISTICS ----------

Plus en détail

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble.. 1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉA GÉNÉRAL SUJE PHYSIQUE-CHIMIE Série S DURÉE DE L ÉPREUVE : 3 h 30 COEFFICIEN : 6 L usage d'une calculatrice ES autorisé Ce sujet ne nécessite pas de feuille de papier millimétré Ce sujet comporte

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

Cahier technique n 141

Cahier technique n 141 Collecion Technique... Cahier echnique n 141 Les perurbaions élecriques en BT R. Calvas Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés à l inenion des ingénieurs e echniciens

Plus en détail

Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie

Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie Copules e dépendances : applicaion praique à la déerminaion du besoin en fonds propres d un assureur non vie David Cadoux Insiu des Acuaires (IA) GE Insurance Soluions 07 rue Sain-Lazare, 75009 Paris FRANCE

Plus en détail

Une assurance chômage pour la zone euro

Une assurance chômage pour la zone euro n 132 Juin 2014 Une assurance chômage pour la zone euro La muualisaion au niveau de la zone euro d'une composane de l'assurance chômage permerai de doer la zone euro d'un insrumen de solidarié nouveau,

Plus en détail

MINISTERE DE L ECONOMIE ET DES FINANCES

MINISTERE DE L ECONOMIE ET DES FINANCES Un Peuple - Un Bu Une Foi MINISTERE DE L ECONOMIE ET DES FINANCES DIRECTION DE LA PREVISION ET DES ETUDES ECONOMIQUES Documen d Eude N 08 ENJEUX ECONOMIQUES ET COMMERCIAUX DE L ACCORD DE PARTENARIAT ECONOMIQUE

Plus en détail

Relation entre la Volatilité Implicite et la Volatilité Réalisée.

Relation entre la Volatilité Implicite et la Volatilité Réalisée. Relaion enre la Volailié Implicie e la Volailié Réalisée. Le cas des séries avec la coinégraion fracionnaire. Rappor de Recherche Présené par : Mario Vázquez Velasco Direceur de Recherche : Benoî Perron

Plus en détail

Intégrales généralisées

Intégrales généralisées 3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle

Plus en détail

EPARGNE RETRAITE ET REDISTRIBUTION *

EPARGNE RETRAITE ET REDISTRIBUTION * EPARGNE RETRAITE ET REDISTRIBUTION * Alexis Direr (1) Version février 2008 Docweb no 0804 Alexis Direr (1) : Universié de Grenoble e LEA (INRA, PSE). Adresse : LEA, 48 bd Jourdan 75014 Paris. Téléphone

Plus en détail

DESSd ingéniérie mathématique Université d Evry Val d Essone Evaluations des produits nanciers

DESSd ingéniérie mathématique Université d Evry Val d Essone Evaluations des produits nanciers DESSd ingéniérie mahémaique Universié d Evry Val d Essone Evaluaions des produis nanciers Véronique Berger Cours Janvier-Mars 2003 version du 27 mars 2003 Conens I Présenaion du plan de cours 3 II Insrumens

Plus en détail

No 1996 13 Décembre. La coordination interne et externe des politiques économiques : une analyse dynamique. Fabrice Capoën Pierre Villa

No 1996 13 Décembre. La coordination interne et externe des politiques économiques : une analyse dynamique. Fabrice Capoën Pierre Villa No 996 3 Décembre La coordinaion inerne e exerne des poliiques économiques : une analyse dynamique Fabrice Capoën Pierre Villa CEPII, documen de ravail n 96-3 SOMMAIRE Résumé...5 Summary...7. La problémaique...9

Plus en détail

EVALUATION DE LA FPL PAR LES APPRENANTS: CAS DU MASTER IDS

EVALUATION DE LA FPL PAR LES APPRENANTS: CAS DU MASTER IDS EVALUATION DE LA FPL PAR LES APPRENANTS: CAS DU MASTER IDS CEDRIC TAPSOBA Diplômé IDS Inern/ CARE Regional Program Coordinaor and Gender Specialiy Service from USAID zzz WA-WASH Program Tel: 70 77 73 03/

Plus en détail

CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES

CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES Thomas Jeanjean To cie his version: Thomas Jeanjean. CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES. 22ÈME

Plus en détail

Surface de Volatilité et Introduction au Risque de Crédit

Surface de Volatilité et Introduction au Risque de Crédit Modèles de Taux, Surface de Volailié e Inroducion au Risque de Crédi Alexis Fauh Universié Lille I Maser 2 Mahémaiques e Finance Spécialiés Mahémaiques du Risque & Finance Compuaionelle 214/215 spread

Plus en détail

GESTION DU RÉSULTAT : MESURE ET DÉMESURE 1 2 ème version révisée, août 2003

GESTION DU RÉSULTAT : MESURE ET DÉMESURE 1 2 ème version révisée, août 2003 GESTION DU RÉSULTAT : MESURE ET DÉMESURE 1 2 ème version révisée, aoû 2003 Thomas JEANJEAN 2 Cahier de recherche du CEREG n 2003-13 Résumé : Depuis une vingaine d années, la noion d accruals discréionnaires

Plus en détail

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au 1 2 C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position est constant et il est égal au rayon du cercle. = 3 A- ouvement circulaire non uniforme

Plus en détail