TD - Programmation CUDA

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "TD - Programmation CUDA"

Transcription

1 TD - Programmation CUDA P. Bakowski P.Bakowski 1

2 Terminologie de CUDA L'hôte. est le CPU, c'est lui qui demande au périphérique (le GPU) d'effectuer les calculs. P.Bakowski 2

3 Terminologie de CUDA Un kernel est une portion parallèle de code à exécuter. sur le périphérique. Chacune de ses instances s'appelle un thread. threads kernel kernel P.Bakowski 3

4 Terminologie de CUDA Une grille est constituée de blocs. Chaque bloc est constitué de threads. P.Bakowski 4

5 Terminologie de CUDA Un bloc est un élément des. calculs,, dissociable d'autres blocs. Les blocs peuvent être exécutés parallèlement ou consécutivement. Les threads ne peuvent communiquer qu'avec des threads du même bloc. P.Bakowski 5

6 Terminologie de CUDA Un warp est un ensemble de 32 threads,. envoyés ensemble à l'exécution, et exécutés simultanément.. Quel que soit le GPU utilisé, quel que soit la quantité de données à traiter, dans n'importe quel cas, un warp sera exécuté sur deux cycles. P.Bakowski 6

7 Terminologie de CUDA Le calcul hétérogène est l'utilisation des deux types. de processeur disponibles sur nos ordinateurs : les CPU et les GPU. Il s'agit donc d'utiliser le bon type de processeur pour la bonne tâche. P.Bakowski 7

8 Les kernels Un kernel est une fonction exécutée sur le GPU.. Il en existe différent types, qualifiés de : 1 global 2 device device 3 host Le premier correspond à un kernel exécuté sur le GPU mais appelé par le CPU ; le deuxième, à un kernel exécuté et appelé par le GPU ; le troisième, à une fonction exécutée et appelée par le CPU. Ce dernier n'est pas obligatoire : c'est le mode de fonctionnement par défaut. P.Bakowski 8

9 Les kernels Un appel de kernel se fait en spécifiant 2 paramètres. entre triples chevrons précédant les paramètres passés au kernel. kernel <<< nblocs, threadsparbloc >>> (arguments); P.Bakowski 9

10 Les kernels kernel <<< nblocs, threadsparbloc >>> (arguments); nblocs est le nombre de subdivisions appliquées à la grille à calculer et est de type: dim3 - le cast à partir d'un entier N initialise le dim3 à {N, 1, 1}) threadsparbloc indique le nombre de threads à exécuter simultanément pour chaque bloc. Ici encore, cette valeur est de type dim3. P.Bakowski 10

11 Les kernels Chaque kernel dispose de variables implicites en lecture seule (toutes de type dim3). blockidx : index du bloc dans la grille, threadidx : index du thread dans le bloc, blockdim : nombre de threads par bloc (valeur de threadsparbloc du paramétrage du kernel). La grille est ici considérée comme un seul et unique bloc à une seule dimension. P.Bakowski 11

12 Les kernels global void vecadd(float *A,float *B,float *C) { int i = threadidx.x; C[i] = A[i] + B[i]; } int main() { } vecadd<<<1, N>>>(A, B, C); 1 bloc avec N threads i=1 i=2 i=n-1 N threads P.Bakowski 12

13 Les kernels global void vecadd(float *A,float *B,float *C) { int i = blockidx.x * blockdim.x + threadidx.x; C[i] = A[i] + B[i]; } int main() { } vecadd<<<nblocks, nthreadsperblocks>>>(a, B, C); N blocs avec N threads blockidx.x P.Bakowski 13

14 Compilation NVIDIA propose un environnement complet pour le développement des applications hétérogènes tournant sur le CPU et le GPU. P.Bakowski 14

15 Compilation Dans l environnement LINUX/UBUNTU on utilise la commande/script nvcc pour effectuer la compilation d un programme program.cu préparé pour une exécution hétérogène. %nvcc o o prog prog.cu P.Bakowski 15

16 Multiplication de matrices carrées Voici le fonctionnement que décrira notre programme: 1. CPU : Initialisation des matrices M, N et P, toutes carrées ; 2. CPU : Remplissage des matrices d'entrée M et N ; 3. GPU : Calcul du produit matriciel de M et de N, dont le résultat est stocké sur P ; 4. CPU : Écriture de la matrice P ; 5. CPU : Nettoyage de la mémoire et fin de l'exécution du programme. P.Bakowski 16

17 Multiplication de matrices carrées Exercice: Ecrire l application avec les deux parties: La partie principale main() où on initialise la mémoire globale de la carte graphique (device( device) La partie kernel dans laquelle on écrit une boucle d exécution par groupe de threads, chaque groupe est de taille Width. P.Bakowski 17

18 Multiplication de matrices carrées Eléments de la fonction sur CPU main(): float *Md; float *Nd; float *Pd; const int size = Width * Width * sizeof(float); cudamalloc( (void**) & Md, size); cudamemcpy(md, M, size, cudamemcpyhosttodevice); P.Bakowski 18

19 Multiplication de matrices carrées Eléments de la fonction sur CPU main(): dim3 dimgrid(1,1); dim3 dimblock(width Width,Width); ongpu<<< <<<dimgrid,dimblock>>> >>>(Md, (Md,Nd,Pd,Width);.. cudamemcpy(p, Pd,, size, cudamemcpydevicetohost); Width Width x P.Bakowski 19 y

20 Multiplication de matrices carrées Mémoire globale: cudamemcpy() cudamemcpy(md, M, size, cudamemcpyhosttodevice); cudamemcpy(nd, N, size, cudamemcpyhosttodevice); // appel du kernel cudamemcpy(p, Pd, size, cudamemcpydevicetohost); type du transfer P.Bakowski 20

21 Multiplication de matrices carrées for(int i=0;i<n;i++) ;i++) for(int j=0;j<n;j++) ;j++) for(int k=0;k<n;k++) ;k++) C[j+i*N]+= A[k+j*N]*B[j+k* ]*B[j+k*N];]; P.Bakowski 21

22 ongpu multiplication sur CPU global void ongpu(float *Md,float *Nd,float *Pd, int Width) { int tx = threadidx.x; int ty = threadidx.y; float Pvaleur = 0, MdElement =0, NdElement =0; for (int i = 0; i < Width; ++i) {..// à compléter } Pd[ty * Width + tx] = Pvaleur; } P.Bakowski 22

23 Evénements CUDA La performance des exécutions sur le GPU peut être testée grâce à l utilisation des événements (CUDA events). Voici le code de test basé sur le mécanisme d événements qui peut encadrer la programme à tester. cudaeventcreate(&start); cudaeventcreate(&stop); cudaeventrecord(start,0); // code du programme a tester cudaeventrecord(stop,0); cudaeventsynchronize(stop); cudaeventelapsedtime(& (&elapsedtime,start,stop); P.Bakowski 23

24 Exercice 2: Evénements CUDA Ecrire le code de multiplication des matrices pour un CPU et comparer le temps d exécution avec le code pour le GPU. // set events if(impl==0) // solution GPU mat_mul mul<<< <<<dimgrid,dimblock>>>( >>>(dev_a, _A,dev_B,dev_C,DIM); // solution CPU // test events P.Bakowski 24

25 Résumé terminologie de CUDA les kernels exemple de multiplication de matrices événements CUDA comparaison de performances (CPU/GPU) P.Bakowski 25

Introduction à CUDA. gael.guennebaud@inria.fr

Introduction à CUDA. gael.guennebaud@inria.fr 36 Introduction à CUDA gael.guennebaud@inria.fr 38 Comment programmer les GPU? Notion de kernel exemple (n produits scalaires): T ci =ai b ( ai, b : vecteurs 3D, ci for(int i=0;i

Plus en détail

Programmation parallèle en CUDA C

Programmation parallèle en CUDA C 4 Programmation parallèle en CUDA C Au chapitre précédent, nous avons vu qu il était très facile d écrire du code pour qu il s exécute sur le GPU. Nous avons même été jusqu à additionner les deux nombres

Plus en détail

GPU = coprocesseur «graphique»

GPU = coprocesseur «graphique» GPUs et CUDA Daniel Etiemble d@lif de@lri.fr GPU = coprocesseur «graphique» GPU avec DRAM locale (coprocesseur) PCI CPU (hôte) 1 Architecture CPU+GPU Architecture hétérogène Le CPU exécute les threads

Plus en détail

Introduction à la programmation GPU. P. Fortin UPMC / LIP6 ANR TaMaDi 27/10/2010

Introduction à la programmation GPU. P. Fortin UPMC / LIP6 ANR TaMaDi 27/10/2010 Introduction à la programmation GPU P. Fortin UPMC / LIP6 ANR TaMaDi 27/10/2010 Les processeurs graphiques (GPU) GPU : Graphics Processing Unit GPGPU : General Purpose computation on Graphics Processing

Plus en détail

NVIDIA CUDA. Compute Unified Device Architecture. Sylvain Jubertie. Laboratoire d Informatique Fondamentale d Orléans 2011-2012

NVIDIA CUDA. Compute Unified Device Architecture. Sylvain Jubertie. Laboratoire d Informatique Fondamentale d Orléans 2011-2012 NVIDIA CUDA Compute Unified Device Architecture Sylvain Jubertie Laboratoire d Informatique Fondamentale d Orléans 2011-2012 Sylvain Jubertie (LIFO) NVIDIA CUDA 2011-2012 1 / 58 1 Introduction 2 Architecture

Plus en détail

Architecture des GPU et principes de base de CUDA

Architecture des GPU et principes de base de CUDA M2 Informatique/SSSR - ALA Architecture des GPU et principes de base de CUDA Stéphane Vialle Stephane.Vialle@centralesupelec.fr http://www.metz.supelec.fr/~vialle Architecture des GPU et principes de base

Plus en détail

INSTALLATION ET CONFIGURATION POUR LA PROGRAMMATION

INSTALLATION ET CONFIGURATION POUR LA PROGRAMMATION INSTALLATION ET CONFIGURATION POUR LA PROGRAMMATION PARALLELES SOUS WINDOWS I. PREPARATION DE L ENVIRONNEMENT Tous d abord il va vous falloir télécharger quelques logiciels afin de pouvoir commencer à

Plus en détail

Analyse des textures en temps réel exploitant une architecture parallèle multi-coeurs et GPU

Analyse des textures en temps réel exploitant une architecture parallèle multi-coeurs et GPU Analyse des textures en temps réel exploitant une architecture parallèle multi-coeurs et GPU Moulay Akhloufi, MScA, MBA (moulay.akhloufi@crvi.ca ) Gilles Champagne (gilles.champagne@crvi.ca) Mario Jr Laframboise

Plus en détail

Calcul Haute Performance et Parallélisme Historique et exemples

Calcul Haute Performance et Parallélisme Historique et exemples Calcul Haute Performance et Parallélisme Historique et exemples Emmanuel Hermellin LIRMM Janvier 2014 Sommaire 1 Le Calcul Haute Performance Naissance des super-calculateurs Évolution des super-calculateurs

Plus en détail

Implémentation et analyse des performances d algorithmes de calcul scientifique sur GPU

Implémentation et analyse des performances d algorithmes de calcul scientifique sur GPU Université de Liège Faculté des Sciences Appliquées Institut Montefiore Implémentation et analyse des performances d algorithmes de calcul scientifique sur GPU Marsic Nicolas Mémoire de fin d études réalisé

Plus en détail

Introduction à la programmation // sur GPUs en CUDA et Python

Introduction à la programmation // sur GPUs en CUDA et Python Introduction à la programmation // sur GPUs en CUDA et Python Denis Robilliard Équipe CAMOME: C. Fonlupt, V. Marion-Poty, A. Boumaza LISIC ULCO Univ Lille Nord de France BP 719, F-62228 Calais Cedex, France

Plus en détail

. Plan du cours. . Architecture: Fermi (2010-12), Kepler (12-?)

. Plan du cours. . Architecture: Fermi (2010-12), Kepler (12-?) Plan du cours Vision mate riel: architecture cartes graphiques NVIDIA INF 560 Calcul Paralle le et Distribue Cours 3 Vision logiciel: l abstraction logique de l architecture propose e par le langage CUDA

Plus en détail

CUDA 4 et Architecture Fermi GPUDirect2.0 et UVA

CUDA 4 et Architecture Fermi GPUDirect2.0 et UVA CUDA 4 et Architecture Fermi GPUDirect2.0 et UVA Pierre Kunzli - hepia 5 septembre 2012 1 Introduction La version 4.0 de CUDA introduit avec l'architecture Fermi deux nouveautés concernant la gestion de

Plus en détail

Parallélisme. Cours 4 - Introduction à CUDA. Eric Goubault Commissariat à l Energie Atomique & Chaire Ecole Polytechnique/Thalès Saclay

Parallélisme. Cours 4 - Introduction à CUDA. Eric Goubault Commissariat à l Energie Atomique & Chaire Ecole Polytechnique/Thalès Saclay Parallélisme Cours 4 - Introduction à CUDA CUDA? Compute Unified Device Architecture Programmation massivement parallèle en C sur cartes NVIDIA Tirer parti de la puissance des cartes graphiques: Eric Goubault

Plus en détail

Calcul multi GPU et optimisation combinatoire

Calcul multi GPU et optimisation combinatoire Année universitaire 2010 2011 Master recherche EEA Spécialité : SAID Systèmes Automatiques, Informatiques et Décisionnels Parcours : Systèmes Automatiques Calcul multi GPU et optimisation combinatoire

Plus en détail

Calcul Québec - Université Laval. Atelier CUDA/GPU

Calcul Québec - Université Laval. Atelier CUDA/GPU Atelier CUDA/GPU Maxime Boissonneault Université Laval - Octobre 2014 Adaptation du "CUDA/GPU Workshop", par Dan Mazur , Université McGill

Plus en détail

3.Programmation des processeurs graphiques avec l'architecture de programmation parallèle CUDA

3.Programmation des processeurs graphiques avec l'architecture de programmation parallèle CUDA Travaux pratiques d'informatique Parallèle et distribuée,, TP 3 1 3.Programmation des processeurs graphiques avec l'architecture de programmation parallèle CUDA 3.1.Objectifs Les objectifs de la séance

Plus en détail

Introduction à la programmation des GPUs

Introduction à la programmation des GPUs Introduction à la programmation des GPUs Anne-Sophie Mouronval Mesocentre de calcul de l Ecole Centrale Paris Laboratoire MSSMat Avril 2013 Anne-Sophie Mouronval Introduction à la programmation des GPUs

Plus en détail

Calcul parallèle sur processeurs GPU

Calcul parallèle sur processeurs GPU Calcul parallèle sur processeurs GPU Nicolas GAC Maitre de Conférence - Université Paris Sud 11 Laboratoire des Signaux et Systèmes (L2S) Cours à l ESIEE Paris 5ième année - Majeure Informatique 19 septembre

Plus en détail

Programmation multigpu OpenMP versus MPI

Programmation multigpu OpenMP versus MPI 17 février 2011 Gabriel Noaje Programmation multigpu OpenMP versus OpenMP 1 Programmation multigpu OpenMP versus MPI Gabriel Noaje, Michaël Krajecki, Christophe Jaillet gabriel.noaje@univ-reims.fr Équipe

Plus en détail

Rappels, SISD, SIMD. Calculateurs hybrides (GPU-OpenCL) Rappels, MIMD mémoire partagée. Rappels, MIMD mémoire partagée. Rappels... SISD,...

Rappels, SISD, SIMD. Calculateurs hybrides (GPU-OpenCL) Rappels, MIMD mémoire partagée. Rappels, MIMD mémoire partagée. Rappels... SISD,... Rappels, SISD, SIMD Calculateurs hybrides (GPU-OpenCL) Rappels... SISD,... SIMD Formation d Ingénieurs de l Institut Galiléee MACS 3 Philippe d Anfray Philippe.d-Anfray@cea.fr CEA DSM 2013-2014 SISD :

Plus en détail

CONVOLUTION SUR PROCESSEURS GRAPHIQUES]

CONVOLUTION SUR PROCESSEURS GRAPHIQUES] 2010 Semestre 4 Thème TI IUT de Cachan [ITHMES DE CONVOLUTION SUR PROCESSEURS GRAPHIQUES] Programmation massivement parallèle «Le langage est source de malentendus.» St. Exupéry Date de réception du rapport...

Plus en détail

Programmation sur GPU avec CUDA

Programmation sur GPU avec CUDA Programmation sur GPU avec CUDA Initiation François Cuvelier Laboratoire d'analyse Géométrie et Applications Institut Galilée Université Paris XIII. 24 mars 2014 Cuvelier F. (Ecole Doctorale) Programmation

Plus en détail

Comment compiler un programme MATLAB

Comment compiler un programme MATLAB Comment compiler un programme MATLAB 1- Introduction Le compilateur MATLAB génère un code source C à partir d une fonction MATLAB. Le code C généré par le compilateur MATLAB peut être: soit un code source

Plus en détail

Optimisation d'algorithmes de traitement d'images sur une architecture utilisant le GPGPU Rapport de stage ST40 - P2013

Optimisation d'algorithmes de traitement d'images sur une architecture utilisant le GPGPU Rapport de stage ST40 - P2013 Optimisation d'algorithmes de traitement d'images sur une architecture utilisant le GPGPU Rapport de stage ST40 - P2013 AUBREE Loïs Département Informatique Filière Imagerie, Interaction et Réalité Virtuelle

Plus en détail

Délégation GPU des perceptions agents : application aux boids de Reynolds

Délégation GPU des perceptions agents : application aux boids de Reynolds Délégation GPU des perceptions agents : application aux boids de Reynolds JFSMA 2015 LIRMM - Université de Montpellier - CNRS Emmanuel Hermellin, Fabien Michel {hermellin, fmichel}@lirmm.fr Mercredi 1

Plus en détail

Calcul scientifique performant sur GPU

Calcul scientifique performant sur GPU Calcul performant sur Applications en : Accélération d un algorithme d Inpainting pour le calcul P. Kestener Y. Moudden CEA-Saclay, IRFU, SEDI, France Service d Electronique, Informatique et Détecteurs

Plus en détail

Parallélisme. Cours 1

Parallélisme. Cours 1 Parallélisme Cours 1 TD : 20% - TP : 30% - Examen : 50% Feuille A4 manuscrite (pas de photocopie) Fabrice.Huet@etu.unice.fr (prendre rdv par mail pr le contacter) A quoi sert le parallélisme? Augmenter

Plus en détail

Practice HPC. Retour d expérience Xeon PHI. Février 2012. Damien DUBUC Expert HPC software. 28/03/2013 ANEO Tous droits réservés 1

Practice HPC. Retour d expérience Xeon PHI. Février 2012. Damien DUBUC Expert HPC software. 28/03/2013 ANEO Tous droits réservés 1 Retour d expérience Xeon PHI Damien DUBUC Expert HPC software Février 2012 28/03/2013 ANEO Tous droits réservés 1 Quel est notre rôle? Présenter o Gérer un portefeuille clients nécessitant des optimisations

Plus en détail

Calculs Haute Performance. Une Introduction aux Calculs Haute Performance

Calculs Haute Performance. Une Introduction aux Calculs Haute Performance Calculs Haute Performance Une Introduction aux Calculs Haute Performance Ivan LABAYE Tizi-Ouzou 2015 1 Plan de l'exposé Calculs Haute Performance? Pour quoi Faire? Modèles de calculateurs (HPC) Outils

Plus en détail

Portage d elsa sur GPU

Portage d elsa sur GPU ENSEIRB Informatique PRCD CERFACS CSG Portage d elsa sur GPU Auteur : Julien BRUNEAU Maître de stage : Tuteur de stage : Mme. Isabelle D Ast M. Brice Goglin PFE Année 2009/2010 Résumé Ce rapport présente

Plus en détail

Une bibliothèque de templates pour CUDA

Une bibliothèque de templates pour CUDA Une bibliothèque de templates pour CUDA Sylvain Collange, Marc Daumas et David Defour Montpellier, 16 octobre 2008 Types de parallèlisme de données Données indépendantes n threads pour n jeux de données

Plus en détail

LIF1 : ALGORITHMIQUE ET PROGRAMMATION IMPÉRATIVE, INITIATION

LIF1 : ALGORITHMIQUE ET PROGRAMMATION IMPÉRATIVE, INITIATION Licence STS Université Claude Bernard Lyon I LIF1 : ALGORITHMIQUE ET PROGRAMMATION IMPÉRATIVE, INITIATION 1 COURS 5 : Les Tableaux PLAN DE LA SÉANCE Comprendre l utilité des tableaux Apprendre à manipuler

Plus en détail

Chapitre 3 : Pointeurs et références

Chapitre 3 : Pointeurs et références p. 1/18 Chapitre 3 : Pointeurs et références Notion de pointeur L adresse d une variable est une valeur. On peut donc la stocker dans une variable. Un pointeur est une variable qui contient l adresse d

Plus en détail

Rashyd ZAABOUL Sylvie Malardel, Patrick Lemoigne et Ryad El Khatib. CNRM - GMAP & GMME Toulouse

Rashyd ZAABOUL Sylvie Malardel, Patrick Lemoigne et Ryad El Khatib. CNRM - GMAP & GMME Toulouse Gestion des blocs NPROMA dans SURFEX Rashyd ZAABOUL Sylvie Malardel, Patrick Lemoigne et Ryad El Khatib CNRM - GMAP & GMME Toulouse Du 01 Juillet 2005 au 14 Août 2005 Pourquoi découper en sous domaines

Plus en détail

Architecture des ordinateurs. Optimisation : pipeline. Pipeline (I) Pipeline (II) Exemple simplifié : Instructions de type R

Architecture des ordinateurs. Optimisation : pipeline. Pipeline (I) Pipeline (II) Exemple simplifié : Instructions de type R Architecture des ordinateurs Licence Informatique - Université de Provence Jean-Marc Talbot Optimisation : pipeline jtalbot@cmi.univ-mrs.fr L3 Informatique - Université de Provence () Architecture des

Plus en détail

Résolution massivement parallèle de problèmes combinatoires ; cas particulier du problème de Langford

Résolution massivement parallèle de problèmes combinatoires ; cas particulier du problème de Langford Université de Reims Champagne-Ardennes Julien Loiseau Résolution massivement parallèle de problèmes combinatoires ; cas particulier du problème de Langford Master 1 Informatique TER : Travail d Etude et

Plus en détail

Simulation Numérique

Simulation Numérique Ecole Nationale de Techniques Avancées Simulation Numérique Chapitre 4 Surcharge des opérateurs Eric Lunéville Surcharge des opérateurs Le C++ utilise des opérateurs prédéfinis tels que + - * / sur les

Plus en détail

Cours 1. Contenu du cours : " Premières applications. " Compilation, Exécution, Chemin. " Affichage et saisie. " Types de données. " Flux de contrôle

Cours 1. Contenu du cours :  Premières applications.  Compilation, Exécution, Chemin.  Affichage et saisie.  Types de données.  Flux de contrôle Cours 1 1 Contenu du cours : " Premières applications " Compilation, Exécution, Chemin " Affichage et saisie " Types de données " Flux de contrôle " Applets " Arrays " OO de base Edition Le fichier texte

Plus en détail

Cuda. Xavier Juvigny. February 2013 ONERA/CHP

Cuda. Xavier Juvigny. February 2013 ONERA/CHP Cuda Xavier Juvigny ONERA/CHP February 2013 Vue d ensemble CPU GPU le CPU utilise le GPU comme un coprocesseur scientifique pour certains calculs bien adaptés aux architectures SIMD ; Le CPU et le GPU

Plus en détail

BE de programmation OpenMP

BE de programmation OpenMP BE-OpenMP Page 1 of 2 Calcul parallèle et distribué, et Grilles de calculs Cours de 3ème année IIC à Supélec BE de programmation OpenMP Objectifs du Bureau d'etude : (parallélisation en mémoire partagée)

Plus en détail

Problématique des accès mémoires irréguliers causés par les maillages non structurés :

Problématique des accès mémoires irréguliers causés par les maillages non structurés : Problématique des accès mémoires irréguliers causés par les maillages non structurés :! étude comparative entre les machines massivement multicoeurs et les GPU Loïc Maréchal / INRIA! LJLL, Demi-Journée

Plus en détail

INF 560 Calcul Parallèle et Distribué Cours 4

INF 560 Calcul Parallèle et Distribué Cours 4 INF 560 Calcul Parallèle et Distribué Cours 4 Eric Goubault CEA, LIST & Ecole Polytechnique 3 février 2014 Plan du cours CUDA, en mode PRAM : exemple du scan (sauf de pointeur) attention au modèle mémoire!

Plus en détail

Eléments de syntaxe du langage Java

Eléments de syntaxe du langage Java c jan. 2014, v3.0 Java Eléments de syntaxe du langage Java Sébastien Jean Le but de ce document est de présenter es éléments de syntaxe du langage Java : les types primitifs, les opérateurs arithmétiques

Plus en détail

Introduction aux systèmes d exploitation

Introduction aux systèmes d exploitation Introduction aux systèmes d exploitation Le système d exploitation est un ensemble de logiciels qui pilotent la partie matérielle d un ordinateur. Les principales ressources gérées par un système d exploitation

Plus en détail

NFP 121. Java et les Threads. Présentation : Thierry Escalarasse Mai 2007

NFP 121. Java et les Threads. Présentation : Thierry Escalarasse Mai 2007 NFP 121 Java et les Threads Présentation : Thierry Escalarasse Mai 2007 Plan du cour Présentation de la notion de Threads La classe Thread L interface Runnable Les états d un thread La Synchronisation

Plus en détail

Tableaux (introduction) et types de base

Tableaux (introduction) et types de base Tableaux (introduction) et types de base A. Motivation..................................................... 4 B. Les tableaux.................................................... 5 C. Construction des tableaux.......................................

Plus en détail

Programmation récursive

Programmation récursive Année 2004-2005 F. Lévy IUT De Villetaneuse Dép t informatique Cours d'algorithmique 2 éme Année Cours 8 Programmation récursive 1. Qu'est-ce que la programmation récursive Définition : la programmation

Plus en détail

C++ COURS N 2 : CLASSES, DONNÉES ET FONCTIONS MEMBRES Classes et objets en C++ Membres d'une classe Spécification d'une classe Codage du comportement

C++ COURS N 2 : CLASSES, DONNÉES ET FONCTIONS MEMBRES Classes et objets en C++ Membres d'une classe Spécification d'une classe Codage du comportement C++ COURS N 2 : CLASSES, DONNÉES ET FONCTIONS MEMBRES Classes et objets en C++ Membres d'une classe Spécification d'une classe Codage du comportement des objets d'une classe Utilisation d'une classe Droit

Plus en détail

Algorithmique et Programmation, IMA 3

Algorithmique et Programmation, IMA 3 Algorithmique et Programmation, IMA 3 Cours 4 : Vecteurs/Tableaux Université Lille 1 - Polytech Lille Vecteurs et Tableaux Algorithmes sur les tableaux d entiers Algorithmes de mots Tableaux2d - Matrices

Plus en détail

TD 5 LES POINTEURS. Définition: Pointeur

TD 5 LES POINTEURS. Définition: Pointeur TD 5 LES POINTEURS d'après le site de F. Faber http://www.ltam.lu/tutoriel_ansi_c Définition: Pointeur Un pointeur est une variable spéciale qui peut contenir l'adresse d'une autre variable. En C, chaque

Plus en détail

Licence Bio Informatique Année 2004-2005. Premiers pas. Exercice 1 Hello World parce qu il faut bien commencer par quelque chose...

Licence Bio Informatique Année 2004-2005. Premiers pas. Exercice 1 Hello World parce qu il faut bien commencer par quelque chose... Université Paris 7 Programmation Objet Licence Bio Informatique Année 2004-2005 TD n 1 - Correction Premiers pas Exercice 1 Hello World parce qu il faut bien commencer par quelque chose... 1. Enregistrez

Plus en détail

Licence E.E.A. TD N 2 de Langage C/C++

Licence E.E.A. TD N 2 de Langage C/C++ TD N 2 de Langage C/C++ 1 Licence E.E.A. TD N 2 de Langage C/C++ Ce TD a pour objectif de vous faire découvrir et utiliser le langage C et peut être C++. Il s agira de transcrire sous la forme d un programme

Plus en détail

RAPPORT DE STAGE Calcul parallèle sur GPU

RAPPORT DE STAGE Calcul parallèle sur GPU Université Joseph Fourier Département Licence Sciences & Technologie RAPPORT DE STAGE Calcul parallèle sur GPU D Aguanno Carlotta Laboratoire d accueil : INRIA Directeur du laboratoire : GROS Patrick Responsable

Plus en détail

GPU Computing : début d'une ère ou fin d'une époque? eric.mahe@massiverand.com

GPU Computing : début d'une ère ou fin d'une époque? eric.mahe@massiverand.com GPU Computing : début d'une ère ou fin d'une époque? eric.mahe@massiverand.com Plan Génèse du projet OpenGPU Misères et grandeurs des GPUs Quelle place pour OpenCL? Les avancées de l'architecture Kepler

Plus en détail

DE L ALGORITHME AU PROGRAMME INTRO AU LANGAGE C 51

DE L ALGORITHME AU PROGRAMME INTRO AU LANGAGE C 51 DE L ALGORITHME AU PROGRAMME INTRO AU LANGAGE C 51 PLAN DU COURS Introduction au langage C Notions de compilation Variables, types, constantes, tableaux, opérateurs Entrées sorties de base Structures de

Plus en détail

GESTION DES PROCESSUS

GESTION DES PROCESSUS CHAPITRE 2 : GESTION DES PROCESSUS Objectifs spécifiques Connaître la notion de processus, Connaître les caractéristiques d un processus ainsi que son contexte Connaître la notion d interruptions et de

Plus en détail

Chapitre 5 : Les procédures stockées PL/SQL

Chapitre 5 : Les procédures stockées PL/SQL I. Introduction Une procédure ou une fonction stockée est un bloc PL/SQL nommé pouvant accepter des paramètres et être appelée. Généralement, on utilise une fonction pour calculer une valeur. Les procédures

Plus en détail

Intégration d'un joystick dans le logiciel Perfly SGI

Intégration d'un joystick dans le logiciel Perfly SGI Intégration d'un joystick dans le logiciel Perfly SGI 1) Le joystick 1.1) Description C'est le modèle Flybox, de base, de la société BG SYSTEMS INC. Ce joystick possède 3 axes, 2 manettes, 2 boutons «classiques»

Plus en détail

Cours de Systèmes d Exploitation

Cours de Systèmes d Exploitation Licence d informatique Synchronisation et Communication inter-processus Hafid Bourzoufi Université de Valenciennes - ISTV Introduction Les processus concurrents s exécutant dans le système d exploitation

Plus en détail

Introduction à la Programmation Parallèle: MPI

Introduction à la Programmation Parallèle: MPI Introduction à la Programmation Parallèle: MPI Frédéric Gava et Gaétan Hains L.A.C.L Laboratoire d Algorithmique, Complexité et Logique Cours du M2 SSI option PSSR Plan 1 Modèle de programmation 2 3 4

Plus en détail

Trier des tableaux en C++ : efficacité du std::sort (STL) et tris paramétrés

Trier des tableaux en C++ : efficacité du std::sort (STL) et tris paramétrés Trier des tableaux en C++ : efficacité du std::sort (STL) et tris paramétrés Hélène Toussaint, juillet 2014 Sommaire 1. Efficacité du std::sort... 1 1.1. Conditions expérimentales... 1 1.2. Tableaux de

Plus en détail

Généralités sur le Langage Java et éléments syntaxiques.

Généralités sur le Langage Java et éléments syntaxiques. Généralités sur le Langage Java et éléments syntaxiques. Généralités sur le Langage Java et éléments syntaxiques....1 Introduction...1 Genéralité sur le langage Java....1 Syntaxe de base du Langage...

Plus en détail

S. Laporte C# mode console DAIGL TS1

S. Laporte C# mode console DAIGL TS1 Bases du langage C# I. C# en mode console (mode texte) Avantages par rapport au mode graphique (Application Windows): - C'est un mode plus proche de l'approche algorithmique (pas de notions de composants,

Plus en détail

Erik PERNOD Calcul Scientifique 3 ème Année RESEAUX DE NEURONES

Erik PERNOD Calcul Scientifique 3 ème Année RESEAUX DE NEURONES Erik PERNOD Calcul Scientifique 3 ème Année RESEAUX DE NEURONES 1 TABLE DES MATIERES TABLE DES MATIERES... 2 I PERCEPTRON SIMPLE... 3 I.1 Introduction... 3 I.2 Algorithme... 3 I.3 Résultats... 4 1er exemple

Plus en détail

Les tableaux ne sont pas ni des objets ni des types simples.

Les tableaux ne sont pas ni des objets ni des types simples. Cours 5 Tableaux Tableaux à 2 dimensions Tableaux d objets POO 1 Les tableaux ne sont pas ni des objets ni des types simples. Un tableau se rapproche d un objet Il est manipulé par référence (adresse)

Plus en détail

Département Informatique L3 Mention Informatique Jean-Michel Richer Architecture des Ordinateurs jean-michel.richer@univ-angers.

Département Informatique L3 Mention Informatique Jean-Michel Richer Architecture des Ordinateurs jean-michel.richer@univ-angers. Département Informatique L3 Mention Informatique Jean-Michel Richer Architecture des Ordinateurs jean-michel.richer@univ-angers.fr 2015/2016 Travaux Dirigés 1 Représentation de l information En informatique,

Plus en détail

INTRODUCTION A JAVA. Fichier en langage machine Exécutable

INTRODUCTION A JAVA. Fichier en langage machine Exécutable INTRODUCTION A JAVA JAVA est un langage orienté-objet pur. Il ressemble beaucoup à C++ au niveau de la syntaxe. En revanche, ces deux langages sont très différents dans leur structure (organisation du

Plus en détail

Questions à choix multiples Page 1 de 11

Questions à choix multiples Page 1 de 11 INF3172 Principes des systèmes d'exploitation Examen intra hiver 2015 Question #1 Quel est l'objectif d'un système d'exploitation? a) Protéger les composants de l'ordinateur b) Fournir une abstraction

Plus en détail

TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile

TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile Dans ce TP, vous apprendrez à définir le type abstrait Pile, à le programmer en Java à l aide d une interface

Plus en détail

Cours d Analyse, Algorithmique Elements de programmation

Cours d Analyse, Algorithmique Elements de programmation 1 de 33 Cours d Analyse, Algorithmique Elements de programmation Florent Hivert Mél : Florent.Hivert@lri.fr Adresse universelle : http://www.lri.fr/ hivert 2 de 33 Données et instructions Un programme

Plus en détail

I00 Éléments d architecture

I00 Éléments d architecture I00 I Exemples d ordinateur Pour les informaticiens, différentes machines de la vie courante sont des ordinateurs : par exemple les ordinateurs portables, les ordinateurs fixes, mais aussi les supercalculateurs,

Plus en détail

Sauvegarde de données sous TwinCAT. Guide pratique VERSION : 1.1 - JC DATE : 23-04 -13

Sauvegarde de données sous TwinCAT. Guide pratique VERSION : 1.1 - JC DATE : 23-04 -13 Sauvegarde de données sous TwinCAT Guide pratique VERSION : 1.1 - JC DATE : 23-04 -13 1 Les variables rémanentes... 3 1.1 Définition... 3 1.2 Les variables «Persistent»... 3 1.3 Généralités... 3 1.4 Ecriture

Plus en détail

Équation de Poisson : programme Python

Équation de Poisson : programme Python Frédéric Legrand Licence Creative Commons 1 Équation de Poisson : programme Python 1. Introduction Ce document présente une interface Python pour le programme C présenté dans Équation de Poisson : programme

Plus en détail

Introduction à la programmation en C

Introduction à la programmation en C Introduction à la programmation en C Cours 1 19/12/2012 La compilation : du langage haut niveau au langage machine. Samy BLUSSEAU, Miguel COLOM Objectifs du cours : - Être capable de construire des programmes

Plus en détail

Pour signifier qu'une classe fille hérite d'une classe mère, on utilise le mot clé extends class fille extends mère

Pour signifier qu'une classe fille hérite d'une classe mère, on utilise le mot clé extends class fille extends mère L'héritage et le polymorphisme en Java Pour signifier qu'une classe fille hérite d'une classe mère, on utilise le mot clé extends class fille extends mère En java, toutes les classes sont dérivée de la

Plus en détail

1 Pointeurs, références, alias et tableaux

1 Pointeurs, références, alias et tableaux 1 Pointeurs, références, alias et tableaux 1 1.1 Définitions Un pointeur est une variable contenant l'adresse d'un objet en mémoire. Un pointeur est déni par le couple (type, adresse) de l'objet pointé.

Plus en détail

PRISE EN MAIN DE VMWARE SERVER ET DE VOS MACHINES VIRTUELLES

PRISE EN MAIN DE VMWARE SERVER ET DE VOS MACHINES VIRTUELLES PRISE EN MAIN DE VMWARE SERVER ET DE VOS MACHINES VIRTUELLES COPIER LES MACHINES VIRTUELLES SUR VOTRE POSTE ÉLÈVE. Commencer par installer EASEUS partition manager, puis lancez-le. Découpez votre disque

Plus en détail

Langage C. Chapitre 2. 2.1 Le langage C, un langage non interprété. 2.1.1 L écriture du programme. 2.1.2 La compilation

Langage C. Chapitre 2. 2.1 Le langage C, un langage non interprété. 2.1.1 L écriture du programme. 2.1.2 La compilation Chapitre 2 Langage C 2.1 Le langage C, un langage non interprété Le C est un langage de programmation comme il en existe beaucoup d autres (C++, Fortran, Python, Matlab, IDL, ADA...). Il existe deux grandes

Plus en détail

Projet Pratique de INF241 Parcours de Tableaux

Projet Pratique de INF241 Parcours de Tableaux Projet Pratique de INF241 Parcours de Tableaux L objectif de ce projet est de travailler sur les tableaux en langage d assemblage ARM. Vous devez réaliser votre projet en partie lors des séances encadrées

Plus en détail

Plan. Tableaux. Utilité. Définition. Exemples. Déclaration d un tableau

Plan. Tableaux. Utilité. Définition. Exemples. Déclaration d un tableau Plan Tableaux Université de Nice - Sophia Antipolis Richard Grin Version 1.0.4 25/11/10 Définition Déclaration d un tableau Création d un tableau Utilisation d un dun tableau Tableau des paramètres de

Plus en détail

Algorithmique - Programmation 1. Cours 10

Algorithmique - Programmation 1. Cours 10 Algorithmique - Programmation 1 Cours 10 Université Henri Poincaré CESS Epinal Automne 2008 1/ 25 Plan Caml fonctionnel vs impératif Caml fonctionnel vs impératif Le type unit Données mutables Les structures

Plus en détail

Architecture des Systèmes d Information Architecture des Systèmes d Information

Architecture des Systèmes d Information Architecture des Systèmes d Information Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau

Plus en détail

Master première année. Mention : Statistiques et Traitement de Données «STD» Rapport de stage

Master première année. Mention : Statistiques et Traitement de Données «STD» Rapport de stage Université Blaise Pascal UFR Sciences et Technologie Département de Mathématique et Informatique 63177 AUBIERE CEDEXFrance Laboratoire de Météorologie Physique (LaMP) 24 avenue des Landais 63177 Aubière

Plus en détail

Avant-propos. 1. Introduction

Avant-propos. 1. Introduction Avant-propos Les sections ou sous-sections marquées d un astérisque (*) ne font pas partie de la matière du cours IFT1969. Elles sont destinées à définir complètement le langage C (ANSI-C99) et à en préciser

Plus en détail

SIMSURF Vers une simulation réaliste des états de surfaces par calculs massivement parallèles sur processeurs graphiques

SIMSURF Vers une simulation réaliste des états de surfaces par calculs massivement parallèles sur processeurs graphiques SIMSURF Vers une simulation réaliste des états de surfaces par calculs massivement parallèles sur processeurs graphiques Félix Abecassis École Normale Supérieure de Cachan Rapport de Stage Février - Juillet

Plus en détail

3ETI, Entrainement Examen [CSC2] Developpement Logiciel en C CPE Lyon

3ETI, Entrainement Examen [CSC2] Developpement Logiciel en C CPE Lyon 3ETI, Examen [CSC2] Developpement Logiciel en C CPE Lyon 2012-2013 (entrainement) durée 1h20 Tous documents et calculatrices autorisés. Le sujet comporte 5 pages Le temps approximatif ainsi que le barème

Plus en détail

Systèmes Informatiques TD 3: langage C opérations élémentaires

Systèmes Informatiques TD 3: langage C opérations élémentaires Systèmes Informatiques TD 3: langage C opérations élémentaires P. Bakowski bako@ieee.org Opérateurs logiques/arithmétiques Le langage C offre une liste importante d opérateurs logiques et arithmétiques.

Plus en détail

Principes de la programmation impérative

Principes de la programmation impérative Séquence d instructions Variables et types Types élaborés Procédures, arguments Gestion de la mémoire Langage compilé, interprété Principes de la programmation impérative Séquence d instructions Variables

Plus en détail

Comparaison entre une architecture matérielle dédiée et un GP-GPU pour l optimisation

Comparaison entre une architecture matérielle dédiée et un GP-GPU pour l optimisation Comparaison entre une architecture matérielle dédiée et un GP-GPU pour l optimisation Université de Bretagne-Sud Lab-STICC, Lorient, France ROADeF Troyes, France 13-15 Février 2013 1/22 Objectifs Après

Plus en détail

Travaux pratiques MPI Liste des exercices

Travaux pratiques MPI Liste des exercices Travaux pratiques MPI Liste des exercices 1 T.P. MPI Exercice 1 : Environnement MPI... 2 2 T.P. MPI Exercice 2 : Ping-pong... 3 3 T.P. MPI Exercice 3 : Communications collectives et réductions... 5 4 T.P.

Plus en détail

Concours de Programmation ULCO 2013

Concours de Programmation ULCO 2013 Concours de Programmation ULCO 2013 Notice d aide à l utilisation de Prog&Play 7 mars 2013 Introduction Le concours de cette année a pour cadre un jeu de stratégie temps réel, basé sur le moteur Spring,

Plus en détail

CHAPITRE 6 : Tableaux. Définition. Tableaux à une dimension (Vecteurs)

CHAPITRE 6 : Tableaux. Définition. Tableaux à une dimension (Vecteurs) Année Universitaire 2006/2007 CHAPITRE 6 : Tableaux Définition Tableaux à une dimension (Vecteurs) Déclaration ; Mémorisation M ; Tableaux à plusieurs dimensions Déclaration Tableaux à deux dimensions

Plus en détail

TP de programmation OpenMP

TP de programmation OpenMP TP-OpenMP Page 1 of 2 Objectifs du TP : Les processeurs d'aujourd'hui sont tous "multi-coeurs", et certaines architectures possèdent plusieurs centaines de processeurs coopérant à travers une mémoire partagée.

Plus en détail

Le «thread local storage» et son utilisation

Le «thread local storage» et son utilisation Résumé Les allocations mémoire sont généralement plus coûteuses que d ordinaire en environnement multi-thread. En effet, la majorité des algorithmes d allocation en usage dans les systèmes d exploitation

Plus en détail

Algorithmique Partie 1

Algorithmique Partie 1 Algorithmique Partie 1 IUT Informatique de Lens, 1ère Année Université d Artois Frédéric Koriche koriche@cril.fr 2011 - Semestre 1 Modalités Sommaire 1 Modalités 2 Programmation 3 Données 4 Opérateurs

Plus en détail

Programmation C. Apprendre à développer des programmes simples dans le langage C

Programmation C. Apprendre à développer des programmes simples dans le langage C Programmation C Apprendre à développer des programmes simples dans le langage C Notes de cours sont disponibles sur http://astro.u-strasbg.fr/scyon/stusm (attention les majuscules sont importantes) Modalités

Plus en détail

M1 MIAGE Option IFD Data Mining et Parallélisme

M1 MIAGE Option IFD Data Mining et Parallélisme M1 MIAGE Option IFD Data Mining et Parallélisme Alexandre Termier 2011-2012 S2 1 / 24 Besoin ˆ Data Mining doit... traiter de gros volumes de données pouvoir eectuer des analyses complexes (gros calculs)

Plus en détail

} 7 Variables (composantes)

} 7 Variables (composantes) Chapitre 4 Tableaux Jusqu ici, nous avons employé les variables pour stocker les valeurs individuelles de types primitifs : une variable de type int pour stocker un entier, une variable de type boolean

Plus en détail

Chap. V : Les interruptions

Chap. V : Les interruptions UMR 7030 - Université Paris 13 - Institut Galilée Cours Architecture et Système Nous étudions dans ce chapitre les interruptions matérielles (ou externes), c est-à-dire déclenchées par le matériel (hardware)

Plus en détail