Contrôle du mardi 17 mai 2016 (50 min) TS1. Partie 1 (5 points : 1 ) 1 point ; 2 ) 4 points)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Contrôle du mardi 17 mai 2016 (50 min) TS1. Partie 1 (5 points : 1 ) 1 point ; 2 ) 4 points)"

Transcription

1 TS Contrôl du mardi 7 mai 206 (50 min) rénom : Nom : Not :. / 20 arti (5 points : ) point ; 2 ) 4 points) L tmps d incubation, xprimé n hurs, du irus put êtr modélisé par un ariabl aléatoir X suiant un loi normal d écart-typ 0. On souhait détrminr son spéranc. On not X ' la ariabl aléatoir égal à X. 0 ) Qull loi la ariabl aléatoir X ' suit-ll? Répondr par un phras. I. (2 points : ) point ; 2 ) point) La duré d i (xprimé n hurs) d un pannau élctriqu d affichag d informations st un ariabl aléatoir X qui suit la loi xponntill d paramètr 0 4 (xprimé n h ). ) Qull st la probabilité qu l pannau fonctionn au moins pndant 2000 hurs? On donnra la alur xact. (un sul résultat, sans égalité) 2 ) Qull st l spéranc d la duré d i du pannau? (un sul résultat, sans égalité) 2 ) On donn X 0 0,8. Détrminr. On donnra la alur arrondi au dixièm. II. (4 points : ) 2 points ; 2 ) 2 points) Dans un parc d loisirs, un ds attractions st un dscnt d typ rafting dans ds boués géants. Ls norms d sécurité imposnt qu l bassin d arrié continn un olum d au compris ntr 50 t 70 m d au. Chaqu soir, à la frmtur du parc, l équip d maintnanc ffctu ds érifications t décid, ou non, d intrnir. L olum d au (xprimé n m ) contnu dans l bassin, à la fin d un journé d xploitation d ctt attraction, st modélisé par un ariabl aléatoir X suiant un loi normal d spéranc 60 t d écart-typ 5. On donnra ls alurs arrondis au millièm. ) Qull st la probabilité qu l équip d maintnanc soit obligé d intrnir pour rspctr ls norms d sécurité? 2 ) Qull st la probabilité qu l équip d maintnanc soit obligé, pour rspctr ls norms, d rajoutr d l au dans l bassin à la fin d un journé d ourtur? III. (0 points) Dans ct xrcic, on étudi un maladi du à la propagation d un irus dans un population. Ls dux partis sont indépndants.

2 arti 2 (5 points : ) point ; 2 ) 4 points) On a constaté qu l taux, n nanogramms par millilitr ( ng.ml ), d un substanc Gamma présnt dans l sang st plus élé chz ls prsonns attints d la maladi qu chz ls prsonns qui n n sont pas attints. ) L taux d ctt substanc Gamma dans la population ds prsonns qui n sont pas attints par la maladi st modélisé par un ariabl aléatoir X 2 qui suit la loi normal d spéranc 2 40 t d écart-typ 2 8. On choisit au hasard un prsonn parmi clls qui n sont pas attints par la maladi étudié. Calculr la probabilité qu l taux dans l sang d la substanc Gamma soit supériur à 60 ng.ml. On donnra la alur arrondi au millièm. IV. (4 points : ) a) point ; b) point ; 2 ) a) point ; b) point) Un machin-outil fabriqu ds cylindrs. On msur l écart n dixièms d millimètrs, ntr l diamètr ds cylindrs t la alur d réglag d la machin. On suppos qu ct écart suit un loi xponntill d paramètr,5. Si l écart st infériur à, l cylindr st accpté. Si l écart st compris ntr t 2, on procèd à un rctification qui prmt d accptr l cylindr dans 80 % ds cas. Si l écart st supériur à 2, l cylindr st rfusé. ) On prélè au hasard un cylindr dans la production. our ls dux qustions, on donnra la alur xact puis la alur arrondi au millièm. a) Calculr la probabilité qu il soit accpté. On donnra la alur xact puis la alur arrondi au millièm. (un sul résultat sans égalité) (un sul résultat sans égalité) 2 ) Ds étuds ont mis n éidnc qu l taux moyn d la substanc Gamma chz ls prsonns attints par la maladi étudié st d 50 ng.ml t qu 0 % d ntr lls ont un taux d substanc Gamma infériur à 4 ng.ml. On appll X la ariabl aléatoir qui modélis l taux d la substanc Gamma n ng.ml chz un prsonn attint par la maladi étudié. On admt qu X suit la loi normal d spéranc t d écart-typ. récisr la alur d t détrminr la alur arrondi au millièm d. b) Sachant qu il st accpté, qull st la probabilité qu il ait subi un rctification? On donnra la alur xact puis la alur arrondi au millièm. (un sul résultat sans égalité) (un sul résultat sans égalité) 2 ) On prélè d manièr indépndant 0 cylindrs d la production. On suppos l nombr d cylindrs suffisammnt important pour assimilr c tirag à un tirag succssif ac rmis. our ls dux qustions, on donnra la alur tronqué au millièm. a) Qull st la probabilité qu ls 0 cylindrs soint accptés? (un sul résultat sans égalité) b) Qull st la probabilité qu au moins la moitié ds cylindrs soint accptés? (un sul résultat sans égalité)

3 I. Corrigé du contrôl du La duré d i (xprimé n hurs) d un pannau élctriqu d affichag d informations st un ariabl aléatoir X qui suit la loi xponntill d paramètr 0 4 (xprimé n h ). ) Qull st la probabilité qu l pannau fonctionn au moins pndant 2000 hurs? On donnra la alur xact. 0,2 2 ) Qull st l spéranc d la duré d i du pannau? (un sul résultat, sans égalité) 2 ) Qull st la probabilité qu l équip d maintnanc soit obligé, pour rspctr ls norms, d rajoutr d l au dans l bassin à la fin d un journé d ourtur? On calcul X 50 ou 0 X 50 résultats dont ls prmièrs décimals sont ls mêms. 0,02 (un sul résultat, sans égalité) (puisqu un olum st toujours positif ou nul). Ls dux donnnt ds our 0 X 50, on obtint l affichag suiant sur l écran d la calculatric : 0, our X 50, on put procédr d dux manièrs : C résultat st xprimé n hurs (un sul résultat, sans égalité) èr manièr : X 50 0,5 50 X 60 (rlation du cours qu l on rtrou aisémnt n faisant un On écrit : graphiqu). On obtint l affichag suiant sur l écran d la calculatric : 0, II. Dans un parc d loisirs, un ds attractions st un dscnt d typ rafting dans ds boués géants. Ls norms d sécurité imposnt qu l bassin d arrié continn un olum d au compris ntr 50 t 70 m d au. Chaqu soir, à la frmtur du parc, l équip d maintnanc ffctu ds érifications t décid, ou non, d intrnir. L olum d au (xprimé n m ) contnu dans l bassin, à la fin d un journé d xploitation d ctt attraction, st modélisé par un ariabl aléatoir X suiant un loi normal d spéranc 60 t d écart-typ 5. On donnra ls alurs arrondis au millièm. X suit la loi normal d spéranc 60 t d écart-typ 5. ) Qull st la probabilité qu l équip d maintnanc soit obligé d intrnir pour rspctr ls norms d sécurité? 0,046 (un sul résultat, sans égalité) On calcul X 50 X X 70. Sur calculatric, on obtint l affichag : 0, Rmarqu : L intrall 50 ;70 st la plag d normalité à 95 % d X (formul 2 ; 2 c c résultat, on put donc dir immédiatmnt qu X 50 X 70 ). st niron égal à 5 %. Mais la alur d 95 % n st qu un alur approché t donc l résultat d 5 % manqu d précision. III. 2 manièr : 99 On calcul 0 X 50 dont l résultat st proch d X 50. On obtint l affichag suiant sur l écran d la calculatric : 0, Dans ct xrcic, on étudi un maladi du à la propagation d un irus dans un population. Ls dux partis sont indépndants. arti L tmps d incubation, xprimé n hurs, du irus put êtr modélisé par un ariabl aléatoir X suiant un loi normal d écart-typ 0. On souhait détrminr son spéranc. On not X ' la ariabl aléatoir égal à X. 0 ) Qull loi la ariabl aléatoir X ' suit-ll? Répondr par un phras. X E X On a X ' X 2 ) On donn 0 X 0 X ' 0 donc la ariabl aléatoir T ' suit la loi normal cntré réduit. X 0 0,8. Détrminr. On donnra la alur arrondi au dixièm. 0 X 0 donc X ' 0,8. 0 On not u l rél tl qu u X ' 0,8.

4 0 ar unicité d u, on a : u. ar suit, 0 0u. 0 c la calculatric, on tap 0 0 innorm 0.8, 0, [on n écrit cpndant pas ]. 0 0 innorm 0.8,0, On obtint 9, 2 (alur arrondi au dixièm). arti 2 On a constaté qu l taux, n nanogramms par millilitr ( ng.ml ), d un substanc Gamma présnt dans l sang st plus élé chz ls prsonns attints d la maladi qu chz ls prsonns qui n n sont pas attints. ) L taux d ctt substanc Gamma dans la population ds prsonns qui n sont pas attints par la maladi st modélisé par un ariabl aléatoir X 2 qui suit la loi normal d spéranc 2 40 t d écart-typ 2 8. On choisit au hasard un prsonn parmi clls qui n sont pas attints par la maladi étudié. Calculr la probabilité qu l taux dans l sang d la substanc Gamma soit supériur à 60 ng.ml. On donnra la alur arrondi au millièm. IV. Un machin-outil fabriqu ds cylindrs. On msur l écart n dixièms d millimètrs, ntr l diamètr ds cylindrs t la alur d réglag d la machin. On suppos qu ct écart suit un loi xponntill d paramètr,5. Si l écart st infériur à, l cylindr st accpté. Si l écart st compris ntr t 2, on procèd à un rctification qui prmt d accptr l cylindr dans 80 % ds cas. Si l écart st supériur à 2, l cylindr st rfusé. ) On prélè au hasard un cylindr dans la production. our ls dux qustions, on donnra la alur xact puis la alur arrondi au millièm. a) Calculr la probabilité qu il soit accpté. On donnra la alur xact puis la alur arrondi au millièm.,5 0, 2 0,8 (un sul résultat sans égalité) 0,96 (un sul résultat sans égalité) Considérons ls éénmnts : «l cylindr st accpté» t R : «l cylindr st rctifié». Il st consillé d fair un arbr d probabilités. 0,006 (un sul résultat, sans égalité) 2 ) Ds étuds ont mis n éidnc qu l taux moyn d la substanc Gamma chz ls prsonns attints par la maladi étudié st d 50 ng.ml t qu 0 % d ntr lls ont un taux d substanc Gamma infériur à 4 ng.ml. On appll X la ariabl aléatoir qui modélis l taux d la substanc Gamma n ng.ml chz un prsonn attint par la maladi étudié. On admt qu X suit la loi normal d spéranc t d écart-typ. récisr la alur d t détrminr la alur arrondi au millièm d. On considèr ls éénmnts : E : «l écart st strictmnt infériur à» ; F : «l écart st compris ntr t 2» ; G : «l écart st strictmnt supériur à 2» ; : «l cylindr st accpté» ; R : «l cylindr st rfusé». On put écrir E X, F X 2, G X 2. Slon l énoncé, on a : 50 t X 4 0,. E X La ariabl aléatoir X ' suit la loi normal cntré réduit. 4 X 4 0, donc X ' 0,. On not l rél tl qu X ' 0,. 4 ar unicité d, on a :.,5,5 F G 0,8 0,2 R R On a donc soit d où. c la calculatric, on tap 7/innorm(0.,0,). On sait alors, d après l énoncé, qu : /F 0,8 ; E X,5,5 F X 2. E, F, G constitunt un systèm complt d éénmnts. ; On obtint 5, 462 (alur arrondi au millièm).

5 Donc d après la formul ds probabilités totals, on a : E F G E / E F / F G / G 0,8 0,5 0, 2 0, 8,5,5 c la calculatric, on trou : 0, ,95 (alur arrondi au millièm) On chrch Z 5 qu l on transform n Z 4 pour pouoir utilisr la calculatric. Sur la calculatric, on tap : On obtint Z 5 0, binomfrép 0,0.2^,5 0,8^, 4. ppndic : schéma noté par Cécil Cormir l pour la qustion II. 2 ) X suit la loi normal d spéranc 60 t d écart-typ 5. b) Sachant qu il st accpté, qull st la probabilité qu il ait subi un rctification? On donnra la alur xact puis la alur arrondi au millièm.,5 0,8 0, 2 0,8,5 (un sul résultat sans égalité) 0,5 (un sul résultat sans égalité) Sachant qu l cylindr st accpté, la probabilité qu il ait subi un rctification st R/ R/ R,5 0,8 0,2 0,8,5 c la calculatric, on obtint : R/ 0, X 50 0 X 50 X X 50 0,5 50 X 60 2 ) On prélè d manièr indépndant 0 cylindrs d la production. On suppos l nombr d cylindrs suffisammnt important pour assimilr c tirag à un tirag succssif ac rmis. our ls dux qustions, on donnra la alur tronqué au millièm. a) Qull st la probabilité qu ls 0 cylindrs soint accptés? 0,4 (un sul résultat sans égalité) On prélè d manièr indépndant 0 cylindrs d la production. La ariabl aléatoir Z égal au nombr d cylindrs accptés suit la loi binomial d paramètrs n 0 t p. On chrch 0,5 Z 0 0, 2 0,8 0. c la calculatric, on trou : Z 0 0, b) Qull st la probabilité qu au moins la moitié ds cylindrs soint accptés? 0,999 (un sul résultat sans égalité)

LOI EXPONENTIELLE EXERCICES. La durée T, en minutes, d une conversation téléphonique suit une loi exponentielle de moyenne 4 minutes.

LOI EXPONENTIELLE EXERCICES. La durée T, en minutes, d une conversation téléphonique suit une loi exponentielle de moyenne 4 minutes. EXERIES 3 La duré T, n minuts, d un convrsation téléphoniqu suit un loi xponntill d moynn 4 minuts. ) alculr P(T>5) ) alculr P( < T < 8). Pour un variabl T, xprimé n minuts, qui rprésnt un duré d vi t

Plus en détail

Les trois questions de l exercice sont indépendantes.

Les trois questions de l exercice sont indépendantes. Pondichéry Avril 00 Séri S Exrcic Un urn contint 0 bouls blanchs t n bouls rougs, n étant un ntir naturl supériur ou égal à On fait tirr à un jouur ds bouls d l urn A chaqu tirag, touts ls bouls ont la

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I L sujt comport 8 pags numérotés d 2 à 9 Il faut choisir t réalisr sulmnt trois ds quatr xrcics proposés Parti A EXERCICE I Donnr ls réponss à ct xrcic dans l cadr prévu à la pag 3 On considèr la fonction

Plus en détail

Correction du bac blanc de mathématiques

Correction du bac blanc de mathématiques Corrction du bac blanc d mathématiqus Exrcic (commun à tous ls candidats, point) Rstitution organisé d connaissancs :. Démontrr par récurrnc l inégalité d Brnoulli : pour tout x >, pour n N, (+x) n +nx.

Plus en détail

Entrée à Sciences Po 2013

Entrée à Sciences Po 2013 Entré à Scincs Po 03 Ercic Vrai-Fau FAUX La suit u n st un suit géométriqu d raison 4 t d prmir trm u 0 = donc on sait qu n N,u n = 4 n < 0 S n st donc la somm d n+ trms négatifs Finalmnt, pour tout ntir

Plus en détail

Corrigé du baccalauréat S Nouvelle-Calédonie mars 2017

Corrigé du baccalauréat S Nouvelle-Calédonie mars 2017 Corrigé du baccalauréat S Nouvll-Calédoni mars 7 EXERCICE Commun à tous ls candidats 5 points On considèr la fonction f défini t dérivabl sur [ ; + [ par f (x)= x x. Parti A. On justifi ls informations

Plus en détail

Loi exponentielle. Rappels sur le chapitre précédent :

Loi exponentielle. Rappels sur le chapitre précédent : TS Loi ponntill Rappls sur l chapitr précédnt : On st parti d la loi uniform sur l intrvall [ ; ] puis sur un intrvall [a ; b] qulconqu (formul donnant la probabilité d un intrvall [ ; ] inclus dans [a

Plus en détail

TES- Correction BAC Blanc Février Mathématiques

TES- Correction BAC Blanc Février Mathématiques TES- Corrction BAC Blanc Févrir 0 - Mathématiqus EXERCICE 5 points Commun à tous ls candidats Un ntrpris pint ds jouts. Pour cla, ll utilis dux machins M t M. La machin M pint un quart d la production.

Plus en détail

Corrigé - Baccalauréat blanc TS

Corrigé - Baccalauréat blanc TS Corrigé - Baccalauréat blanc TS - 00 EXERCICE 5 points Commun à tous ls candidats Parti A : Étud d un fonction On considèr la fonction f défini sur ]0 ; + [ par f = + ln On not C la courb rprésntativ d

Plus en détail

Contrôle du mardi 7 mars 2017 (50 minutes) 1 ère S1. III. (7 points : 1 ) 4 points ; 2 ) 3 points)

Contrôle du mardi 7 mars 2017 (50 minutes) 1 ère S1. III. (7 points : 1 ) 4 points ; 2 ) 3 points) 1 èr S1 ontrôl du mardi 7 mars 017 (50 minuts) Prénom t nom :... Not :.. / 0 III. (7 points : 1 ) 4 points ; ) points) On considèr un résau pointé dont la maill élémntair st un triangl équilatéral d côté

Plus en détail

TS Exercices sur la fonction exponentielle (1)

TS Exercices sur la fonction exponentielle (1) TS Ercics sur la fonction ponntill () 4 a. 4 4 b. Simplifir ls prssions suivants : p( ) a. A = p () p () b. B = p () p ( ) c. C p( ) d. D p( ) 4 5 6 (on pourra posr X ) 4 Simplifir ls prssions suivants,

Plus en détail

Correction du devoir de vacances Les suites dans plusieurs situations

Correction du devoir de vacances Les suites dans plusieurs situations L.E.G.T.A. L Chsnoy TB2 21-211 D. Blottièr Mathématiqus Corrction du dvoir d vacancs Ls suits dans plusiurs situations Exrcic 1 : Un pas vrs ls fractals On considèr un carré F 1 d côté d longuur 1. Au

Plus en détail

Exercice 1.sur 10 points Commun à tous les candidats

Exercice 1.sur 10 points Commun à tous les candidats Trminal S Bac Blanc d mathématiqus : duré 4 h Mardi 3 mars 205 Ls calculatrics sont autorisés (mais aucun formulair prsonnl). La qualité d la rédaction, la clarté d la copi,la précision ds raisonnmnts

Plus en détail

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine.

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine. EXERCICE 5 points Commun tous ls candidats Au rayon «imag t son» d'un grand magasin, un télévisur t un lctur d DVD sont n promotion pndant un smain. Un prsonn s présnt : T st l'évènmnt : «la prsonn achèt

Plus en détail

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé Baccalauréat S Antills-Guyan juin 05 Corrigé A. P. M. E. P. EXERCICE Commun à tous ls candidats 6 POINTS. On put calculr par xmpl ls ordonnés ds points d absciss d cs différnts courbs : f ()=ln =0< g 0,05

Plus en détail

TS Bac blanc n 5 Mai 2016

TS Bac blanc n 5 Mai 2016 TS Bac blanc n 5 Mai 6 Ls raisonnmnts doivnt êtr justifiés t ls calculs détaillés. L barèm st indicatif. La calculatric st autorisé mais ls échangs ntr élèvs sont intrdits. Exrcic 5 pts Parti A : Conditionnmnt

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithm népérin Christoph ROSSIGNOL Anné scolair 2011/2012 Tabl ds matièrs 1 Définition, prmièrs propriétés 2 1.1 Définition................................................. 2 1.2 Prmièrs

Plus en détail

Proposition 1. La probabilité de A est égale à 3 7. Proposition 3 P(B) = 7. Proposition 5. Si P(X = 1) = 8 P(X = 0) alors p = 2 3.

Proposition 1. La probabilité de A est égale à 3 7. Proposition 3 P(B) = 7. Proposition 5. Si P(X = 1) = 8 P(X = 0) alors p = 2 3. Polynési sptmbr 009 EXERCICE points Commun à tous ls candidats On considèr l cub OABCDEFG d'arêt d longuur rprésnté ci-dssous. Il n'st pas dmandé d rndr l graphiqu complété avc la copi. Soint ls points

Plus en détail

Master1 Mesures, Instrumentation et Procédés U.E. M105 : Capteurs, Chaînes de mesure 2 ème session Jeudi 18 Juin H00

Master1 Mesures, Instrumentation et Procédés U.E. M105 : Capteurs, Chaînes de mesure 2 ème session Jeudi 18 Juin H00 Mastr1 Msurs, Instrumntation t Procédés U.E. M15 : Capturs, Chaîns d msur 2 èm sssion Judi 18 Juin 29-9H Anné Univrsitair 28-29 Duré : 2H Documnts t calculatric autorisés Ls 2 partis sont indépndants t

Plus en détail

Mathématiques Bac Blanc TES du jeudi 28 mars 2013

Mathématiques Bac Blanc TES du jeudi 28 mars 2013 Mathématiqus Bac Blanc TES du judi 8 mars 03 (3 hurs) Ls calculatrics sont autorisés (mais aucun formulair prsonnl). La qualité d la rédaction, la clarté d la copi t la précision ds raisonnmnts ntrront

Plus en détail

Baccalauréat S Polynésie juin 2012

Baccalauréat S Polynésie juin 2012 Baccalauréat S Polynési juin 1 EXERCICE 1 L plan st rapporté à un rpèr orthonormal On considèr ls points B 1 ; 1 t C 5 ; O ; i ; j. 5 t la droit D d équation y = x. On not f la fonction défini sur R dont

Plus en détail

Exercice n 1 Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué : 5 a) f (x)= (2 x+1) 3 sur I =] 1

Exercice n 1 Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué : 5 a) f (x)= (2 x+1) 3 sur I =] 1 Fich Bac S n 0 Trminal S Intégration - Calcul ds primitivs Exrcic n Détrminr ds primitivs ds fonctions suivants sur l'intrvall indiqué : 5 a) f (x)= (2 x+) 3 sur I =] 2 [ ;+ b) g ( x)= ln x sur I =]0 ;+

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction ponntill A) Fonctions ponntills d bas q Fonction () = q, avc q > 0 Déinition : Soit q un nombr strictmnt positi donné La suit déini, pour tout ntir naturl n, par : n u n = q st un suit géométriqu

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction ponntill A) Fonctions ponntills d bas q Fonction () = q, avc q > 0 Déinition : Soit q un nombr strictmnt positi donné La suit déini, pour tout ntir naturl n, par : n un q st un suit géométriqu

Plus en détail

FONCTION EXPONENTIELLE : EXERCICES

FONCTION EXPONENTIELLE : EXERCICES FONCTION EXPONENTIELLE : EXERCICES A. Calculs algébriqus Exrcic 1 Simplifir ls xprssions suivants : a) 3 4 b) 4 4 c) 5 3 2 4 ) 3 4 d) ) 3 ) 2 5 Exrcic 2 Simplifir ls xprssions suivants : 5 4) 2 5 + 4)

Plus en détail

2.a)Une représentation paramétrique de la droite (d) passant par O et dirigée par n est : y = -t avec t réel z = -t 1 ; 3 1 ) BH = t BC

2.a)Une représentation paramétrique de la droite (d) passant par O et dirigée par n est : y = -t avec t réel z = -t 1 ; 3 1 ) BH = t BC Corrigé baccalauréat S Amériqu du Nord 010 (raiatabac.blogspot.com) Exrcic 1 : On donn A(1 ; - ; ) t B( - ; -6 ; 5) t C(- ; 0 ; -3) 1.a) Ls vcturs AB ( -3 ; - ; 1) t AC ( -5 ; ; -) n sont clairmnt pas

Plus en détail

CHAPITRE IV EQUATIONS DIFFERENTIELLES

CHAPITRE IV EQUATIONS DIFFERENTIELLES CHAPITRE IV EQUATIONS DIFFERENTIELLES Objctifs Un équation différntill st un équation dans laqull l inconnu st un fonction f. D plus, ctt équation fait intrvnir la fonction f ainsi qu ss dérivés, d où

Plus en détail

1 ère L Exercices de statistiques

1 ère L Exercices de statistiques 1 èr L Exrcics d statistiqus 1 Détrminr la médian d chacun ds séris suivants n rédigant a) b) x i 8 10 1 15 x i 150 160 140 130 n i 1 4 3 n i 1000 100 1100 1050 Pour chaqu séri indiqué, calculr, sans utilisr

Plus en détail

Identification des procédés industriels

Identification des procédés industriels Idntification ds procédés industrils Chapitr 7 1 Introduction La fonction d transfrt réll d un procédé industril st pratiqumnt impossibl à détrminr. Il st alors nécssair d utilisr un modèl qui soit l plus

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 25 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 25 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S Lycé Municipal d Adults d la vill d Paris Mardi 5 févrir 04 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Duré d l épruv : 4 HEURES Ls calculatrics sont AUTORISÉES corrction obligatoir t spé L candidat doit

Plus en détail

Théorie des machines thermiques

Théorie des machines thermiques héori ds machins thrmiqus I 7 éfrigératur trithrm, d'après concours Icar 997 ) Définir la notion d machin thrmiqu dans l langag d la thrmodynamiqu ) applr sans démonstration l théorèm d arnot régissant

Plus en détail

2- Le nucléide On appelle un nucléide l'ensemble des atomes dont les noyaux ont même valeur de nombre de charge Z et de nombre de masse A.

2- Le nucléide On appelle un nucléide l'ensemble des atomes dont les noyaux ont même valeur de nombre de charge Z et de nombre de masse A. PHYSIQUE / Unité :2 TRNSFORMTIONS NUCLEIRES I- L noyau atomiqu - L noyau Un noyau st composé d nucléons, qui rassmblnt ls protons t ls nutrons. La rprésntation symboliqu du noyau d un atom st la suivant

Plus en détail

IMPÉDANCES D ENTRÉE ET DE SORTIE

IMPÉDANCES D ENTRÉE ET DE SORTIE MPÉDNCE D ENTÉE ET DE OTE. DÉFNTON On s plac n régim sinusoïdal forcé. oit Q un quadripôl. Nous allons modélisr c quadripôl n utilisant ls impédancs d ntré t d sorti. quadripôl Q V V. Point d vu du génératur

Plus en détail

, x étant strictement positif. 5ln( x ) + 1

, x étant strictement positif. 5ln( x ) + 1 Lycé Dnis-d-Rougmont Eamn d Maturité Nuchâtl t Flurir Sssion 008 Mathématiqus nivau Problèm (poids 3) 5 a) Résoudr l équation différntill y' + y =, étant strictmnt positif 5ln( ) + On considèr la fonction

Plus en détail

air p (t) T ext = 2 C V = m 3 h = 10 m l = 30 m

air p (t) T ext = 2 C V = m 3 h = 10 m l = 30 m Problèm : Stockag intr saisonnir d chalur. (Thèm : équation différntill du 1 r ordr, résolution xact t avc GoGbra) L résau d chalur d la vill d Marstal au Danmark utilis 33 000 m² d capturs solairs thrmiqus

Plus en détail

BAC S Liban 2014 EXERCICE II : LES DÉBUTS DE L ELECTRON EN PHYSIQUE (9 points)

BAC S Liban 2014 EXERCICE II : LES DÉBUTS DE L ELECTRON EN PHYSIQUE (9 points) BAC S Liban 014 EXERCICE II : LES DÉBUTS DE L ELECTRON EN PHYSIQUE (9 points) L problèm posé par la natur ds «rayons cathodiqus» à la fin du XIX èm siècl fut résolu n 1897 par l'anglais JJ Thomson : il

Plus en détail

Correction du baccalauréat S (obligatoire) Polynésie 10 juin 2011

Correction du baccalauréat S (obligatoire) Polynésie 10 juin 2011 Corrction du baccalauréat S (obligatoir Polynési 0 juin 0 Exrcic Commun à tous ls candidats points Méthod : L dssin suggèr d considérr la rotation d cntr A t d angl π Son écritur complx st : z z A = i

Plus en détail

MTS1 A 2017 Etude de fonctions Aleth Chevalley

MTS1 A 2017 Etude de fonctions Aleth Chevalley MTS A 7 Etud d fonctions Alth Chvally. appls.. Plan d étud d un fonction f : E E f ( ) = y... Ensmbl d définition L nsmbl d définition ou domain d définition d un fonction corrspond à l nsmbl ds valurs

Plus en détail

2.4 Logarithme Népérien et fonction exponentielle

2.4 Logarithme Népérien et fonction exponentielle 6 2.4 Logarithm Népérin t fonction ponntill Définition 20 (Logarithm Népérin). On appll Logarithm Népérin, noté ln, l uniqu fonction défini sur R + = ]0, + [ qui vaut 0 n = t dont la dérivé sur ]0, + [

Plus en détail

Bac session de contrôle

Bac session de contrôle Corrigé d l'épruv d mathématiqus - sction Scincs tchniqus Bac - 06 sssion d contrôl Ercic Qustion ) ) 3) 4) Répons c a a b ) AB AE i 4k 8 i k 8 j ) La droit (BD) st parallèl à la droit (FH) du plan (FHC),

Plus en détail

Fonction exponentielle

Fonction exponentielle Chapitr 7 Fonction ponntill Sommair 7. Activités......................................................... 04 7.. Eponntill................................................... 04 7.. Qulqus propriétés d

Plus en détail

Polynésie 2012 BAC S Correction

Polynésie 2012 BAC S Correction Polynési 1 BAC S Corrction 1 / 6 Exrcic 1 1. a. L point B appartint à la courb Γ donc f() c'st-à-dir a + b Par conséqunt a + b 1 t donc a + b L point C appartint à la courb Γ donc f(5) 5 c st-à-dir 5 +

Plus en détail

Terminale ES Problèmes d'études de fonctions avec des logarithmes - Corrigés

Terminale ES Problèmes d'études de fonctions avec des logarithmes - Corrigés Trminal ES Problèms d'étuds d onctions avc ds logarithms - Corrigés Problèm : st déini sur [;9] par ()= 4 ln. V st la courb rprésntativ d. ) D'après l'allur du graphiqu, il smbl qu soit conv sur [;9].

Plus en détail

CINÉTIQUE FORMELLE DES RÉACTIONS COMPOSÉES

CINÉTIQUE FORMELLE DES RÉACTIONS COMPOSÉES CINÉTIQUE FORMELLE DES RÉACTIONS COMPOSÉES I OBTENTION GÉNÉRALE DE L ÉQUATION DIFFÉRENTIELLE Dans un réactur, ont liu plusiurs réactions mttant n ju plusiurs spècs Soit A un spèc On va voir sur da un xmpl

Plus en détail

Physique Générale IV, solution série 3

Physique Générale IV, solution série 3 Phsiqu Général IV, solution séri 3 Ercic Du virations d mêm fréqunc, slon du as t prpndiculairs, avc un différnc d phas / : (t) = a sin (ωt) M(t) (t) = sin (ωt + /) = cos (ωt) où a t sont ls amplituds

Plus en détail

et les drôles de machines

et les drôles de machines Au Nigria, il y a la E M N T E N O M A G Vroum vroum, bip bip bip! Trouv ls spt différncs! Fich scolair A Cap sur l Nigria Pux-tu aidr oumaya à fabriqur son vélo? li ls points ntr ux! E V A N A T souvins-tu

Plus en détail

TS Exercices sur la fonction exponentielle (2)

TS Exercices sur la fonction exponentielle (2) TS Ercics sur la onction ponntill () Dans ls rcics à, on dmand d détrminr ls nsmbls d déinition d t d dérivabilité d puis d calculr la dérivé d. Lundi 8--06 Délia El Chatr (TS) Ercic sur ls ponntills ()

Plus en détail

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e Ercic EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. Démontrr qu : lim + ln + =. En déduir la limit suivant : lim + + [On pourra, par mpl, posr X = ] Ercic On considèr du fonctions, notés ch t sh,

Plus en détail

Terminale ES DS n 4 Vendredi 14 décembre 2012

Terminale ES DS n 4 Vendredi 14 décembre 2012 Trminal ES DS n Vndrdi décmbr Ercic. Sur points Ls qustions sont indépndants.. Résoudr ls équation t inéquation suivants. a) b). Etudir l sign d a) b). Pour chacun ds fonctions suivants, calculr sa fonction

Plus en détail

France métropolitaine Enseignement spécifique

France métropolitaine Enseignement spécifique Franc métropolitain 03. Ensignmnt spécifiqu EXERCICE 7 points) commun à tous ls candidats) Sur l graphiqu ci-dssous, on a tracé, dans l plan muni d un rpèrorthonormé rprésntativ C d un fonction f défini

Plus en détail

Baccalauréat S (obligatoire) Antilles-Guyane septembre 2010

Baccalauréat S (obligatoire) Antilles-Guyane septembre 2010 Baccalauréat S obligatoir) Antills-Guyan sptmbr 00 EXERCICE Commun à tous ls candidats 7 points PARIE A - Rstitution organisé ds connaissancs Soit > 0. Considérons la fonction [ p) ] =. En dérivant cs

Plus en détail

LES ERREURS DE MESURE

LES ERREURS DE MESURE Chapitr 2 LES ERREURS DE MESURE OBJECTIFS Général Fair acquérir à l apprnant ls notions d rrur t d incrtitud. Spécifiqus Connaîtr ls différnts typs d rrurs t d incrtituds, ainsi qu lurs méthods d calcul.

Plus en détail

40 % des boîtes sont vertes dont 20 % du type T1 ; 30 % des boîtes sont bleues dont 20 % de type T2 ;

40 % des boîtes sont vertes dont 20 % du type T1 ; 30 % des boîtes sont bleues dont 20 % de type T2 ; ÉPREUVE N 6 (Nouvll Calédoni 005) ÉPREUVE DE MATHÉMATIQUES ET TRAITEMENT DE DONNÉES (Duré : Hurs Cofficint : ) L'utilisation d'un calculatric t du formulair st autorisé Rappl : au cours d l'épruv, la calculatric

Plus en détail

Fonctions Numériques, fonctions usuelles.

Fonctions Numériques, fonctions usuelles. Fonctions Numériqus, fonctions usulls.. Fonction constant : Soit b un rél fié. Définition : La fonction constant st la fonction qui à tout rél associ l rél b. la fonction constant st donc la fonction f

Plus en détail

11. Automates finis. Langages réguliers. Automates finis. Automate fini. Un automate fini A est la donnée d un quintuplet (S, Q, d, q 0, F) tel que :

11. Automates finis. Langages réguliers. Automates finis. Automate fini. Un automate fini A est la donnée d un quintuplet (S, Q, d, q 0, F) tel que : Langags régulirs Ls langags régulirs sont ls langags ls plus simpls. Ils sont néanmoins très utilisés n informatiqu.. utomats finis Ils sont obtnus à partir ds langags finis n ffctuant la frmtur par ls

Plus en détail

Feuille d exercices n 6 : Loi binomiale - Lois normales

Feuille d exercices n 6 : Loi binomiale - Lois normales Mathématiques Année 2016 2017 Terminale S Feuille d exercices n 6 : Loi binomiale - Lois normales Exercice 1 : Un candidat doit répondre à un QCM (questionnaire à choix multiples) comportant 10 questions

Plus en détail

3. a. Soit G le point d affixe 3. Montrer qu il existe deux rotations de centre G, dont on déterminera les angles, telles que les

3. a. Soit G le point d affixe 3. Montrer qu il existe deux rotations de centre G, dont on déterminera les angles, telles que les Amériqu du Sud novmbr 008 EERCICE 5 points Commun à tous ls candidats Dans l plan compl rapporté à un rpèr orthonormé (O ; u, v), on considèr ls points A, B, C d affis rspctivs : a = + i, b = + 3 i, c

Plus en détail

Exercice 4 Amérique du Sud. Novembre Le point B est un point d'intersection de la courbe de f et de l'axe des abscisses donc f x B

Exercice 4 Amérique du Sud. Novembre Le point B est un point d'intersection de la courbe de f et de l'axe des abscisses donc f x B Ercic 4 Amériqu du Sud. Novmbr 007 La fonction f st défini sur ]0 ; [ par f = ln ln. La figur ci-dssous donn la courb rprésntativ d f. _ Absciss d B. L point B st un point d'intrsction d la courb d f t

Plus en détail

FONCTIONS EXPONENTIELLES EXERCICES CORRIGES

FONCTIONS EXPONENTIELLES EXERCICES CORRIGES Cours t rcics d mathématiqus FONCTIONS EPONENTIELLES EERCICES CORRIGES Ercic n Résoudr dans ls équations suivants + 7 9 4 4 6 + 6 + 7 ln( ln 8 9 ln Ercic n Détrminr ls racins du polynôm + P + 4 En déduir

Plus en détail

7.B ANNEXE: RÉGULATEURS ANALOGIQUES

7.B ANNEXE: RÉGULATEURS ANALOGIQUES 7.B ANNEXE: ÉGULATEUS ANALOGIQUES 7.B. Généralités Pour réalisr un régulatur analogiqu, on adoptra un montag à amplificatur qui prmt d réalisr la fonction d transfrt souhaité dans un larg gamm d'utilisation.

Plus en détail

associe le point M' d'affixe z'=.

associe le point M' d'affixe z'=. L.S.El Riadh Nombrs Complxs Mr Zribi 4 èm Maths Exrcics Exrcic 1: L plan complx st muni d'un rpèr orthonormé dirct (O,OA,OB ) t I l miliu d [AB]. On considèr l'application f d P\{I} dans P qui à tout point

Plus en détail

Transferts thermiques

Transferts thermiques IUT d St Dnis Départmnt Géni Industril t Maintnanc Modul THERMb (S2) Transfrts thrmiqus corrction ds xrcics Exrcic 1 01 01 01 01 01 01 01 01 01 01 01 isolant Flux thrmiqu00 11 Flux thrmiqu Rsistanc lctriqu

Plus en détail

TD d électrocinétique n o 4 Circuits linéaires en régime sinusoïdal forcé

TD d électrocinétique n o 4 Circuits linéaires en régime sinusoïdal forcé ycé François Arago Prpignan M.P.S.I. 2012-2013 TD d élctrocinétiqu n o 4 ircuits linéairs n régim sinusoïdal forcé Exrcic 1 - Détrmination ds modèls d Thévnin t d Norton. A Détrminr l modèl d Thévnin t

Plus en détail

Atomic Absorption. Spectroscopy

Atomic Absorption. Spectroscopy Chimi Analytiqu Atomic Absorption Spctroscopy Crost Elliott - Frnandz Samul - Tissot Guillaum (Group 2) Univrsité d Gnèv, Scincs II 17 Janvir 29 Résumé L but du laboratoir consist dans un prmir tmps à

Plus en détail

Terminale ES Exercices sur les fonctions exponentielles Fiche 1 - Corrigés

Terminale ES Exercices sur les fonctions exponentielles Fiche 1 - Corrigés Trminal ES Exrcics sur ls fonctions xponntills Fich - Corrigés Exrcic : x+ x+ x = x+ ( x+)+ x = x+ x +x = x+ Exrcic : ) Résolvons l'inéuation x+ < x+. On sait u >, donc la fonction xponntill d bas st strictmnt

Plus en détail

EXPONENTIELLE : ETUDES DE FONCTIONS. e 1

EXPONENTIELLE : ETUDES DE FONCTIONS. e 1 EXPONENTIELLE : ETUDES DE FONTIONS Pour chacun ds fonctions ci-dssous, détrminr : - l nsmbl d définition I d la fonction ; - ls limits d la fonction au borns d I ; - la dérivé t l sign d la dérivé ; -

Plus en détail

CONCEPTION ET CALCUL DES COUVRES- JOINTS DE CONTINUITE Continuité : cette solution rationalise souvent les sections.

CONCEPTION ET CALCUL DES COUVRES- JOINTS DE CONTINUITE Continuité : cette solution rationalise souvent les sections. CONCEPION E CALCUL DES COUVRES- JOINS DE CONINUIE Continuité : ctt solution rationalis souvnt ls sctions. Pour ls panns on put avoir dux solutions : Continuité réalisé par la pann ll mêm. Par xmpl pann

Plus en détail

Collège Saint-Lambert (Herstal) Décembre BILAN DE MATHEMATIQUE (math 4h/sem)

Collège Saint-Lambert (Herstal) Décembre BILAN DE MATHEMATIQUE (math 4h/sem) Collèg Saint-Lambrt (Hrstal) Décmbr 206 Profssur : H.-M. Ngun NOM : Prénom : Classs : 6 GTA BILAN DE MATHEMATIQUE (math 4h/sm) èr PARTIE (duré : h0) CALCULATRICE NON-AUTORISEE! EXPLICITER LES SAVOIRS ET

Plus en détail

( ) Correction TS Contrôle 9

( ) Correction TS Contrôle 9 Corrction TS Contrôl 9. ( oints. Pour réalisr un lotri, un organisatur disos d un sac contnant actmnt un jton blanc t 9 jtons noirs indiscrnabls au touchr t d autr art d un dé cubiqu équilibré dont ls

Plus en détail

Traitement du Signal - Travaux Dirigés - Sujet n 3 : "Echantillonnage, Transformée de Fourier d un signal échantillonné"

Traitement du Signal - Travaux Dirigés - Sujet n 3 : Echantillonnage, Transformée de Fourier d un signal échantillonné raitmnt du Signal - ravaux Dirigés - Sujt n 3 : "Echantillonnag, ransormé d Fourir d un signal échantillonné" Exrcic : Sur-échantillonnag L objcti d ct xrcic st d mttr n évidnc l intérêt qu il put y avoir

Plus en détail

XVIII. Un devoir par chapitre

XVIII. Un devoir par chapitre XVIII. Un dvoir par chapitr. Enoncés. Etuds d fonctions : rappls t prolongmnts.. En utilisant la méthod la plus fficac, donnr touts ls caractéristiqus ds fonctions suivants t tracr l graphiqu d cs fonctions

Plus en détail

TS Fonction exponentielle (2)

TS Fonction exponentielle (2) TS Fonction ponntill () I. Limits d la fonction ponntill n + t n ) Comparaison d t On considèr la fonction f : défini sur. f st dérivabl sur comm différnc d fonctions dérivabls sur. f ' Sign d + Variation

Plus en détail

Boubacar MANÉ. Série d exercices de Mathématiques : L Oasis Des Mathématiques. Étude de fonctions à variable réelle dansr : Énoncé des exercices

Boubacar MANÉ. Série d exercices de Mathématiques : L Oasis Des Mathématiques. Étude de fonctions à variable réelle dansr : Énoncé des exercices Séri d rcics d Mathématiqus : Étud d fonctions à variabl réll dansr : Énoncé ds rcics Ercic Soit la fonction numériqu f défini par : f )= 3+ 5 +. a) Détrminr l nsmbl d définition D f t ls its au borns.

Plus en détail

Dans le fer à souder se trouve un...qui compare à chaque instant t f et t c

Dans le fer à souder se trouve un...qui compare à chaque instant t f et t c UTOMTIQUE Lçon : 4 Objctifs : Décrir un systèm assrvi n fonctionnmnt. Modélisr un systèm assrvi par un schéma fonctionnl. Détrminr la fonction d transfrt d un systèm assrvi Mttr n œuvr un systèm assrvi

Plus en détail

Fiche 3 : Exponentielles, logarithmes, puissances

Fiche 3 : Exponentielles, logarithmes, puissances Tous droits résrvés Studyrama 00 En partnariat avc : Fich téléchargé sur wwwstudyramacom Séri S Nº : 00 Fich Corrigés Fich : Eponntills, logarithms, puissancs Opérations élémntairs t fonction ponntill

Plus en détail

Correction du devoir sur les situations de conjectures

Correction du devoir sur les situations de conjectures Corrction du dvoir sur ls situations d conjcturs no 1. n étant un nombr ntir... a. n + 1 b. n - 1 c. n d. n + 1. (n + 1) f. 5n + (5n + 5) g. 4 possibilités : i. n + 1 t n + 11 ii. n - 1 t n + 9 iii. n

Plus en détail

Exponentielles. Mr Zribi. Page 1. L.S.El Riadh. 4 ére Maths Solutions. Exercice 1 : Partie I

Exponentielles. Mr Zribi.  Page 1. L.S.El Riadh. 4 ére Maths Solutions. Exercice 1 : Partie I Eponntills 4 ér Maths Solutions Ercic : Parti I. g st défini pour tout [ ; [ par g. a Pour tout, g t g > équivaut à > > >. car la fonction p st strictmnt croissant sur R. g ' > pour tout > t g'. Il s'nsuit

Plus en détail

SUJET DE BACCALAURÉAT (MAROC, Juin 2004) EPREUVE DE MATHEMATIQUES, FILIERE SCIENCES MATH

SUJET DE BACCALAURÉAT (MAROC, Juin 2004) EPREUVE DE MATHEMATIQUES, FILIERE SCIENCES MATH SUJET DE BACCALAURÉAT (MAROC, Juin 004) EPREUVE DE MATHEMATIQUES, FILIERE SCIENCES MATH Solution proposé par El Khalil AIMAD-EDDINE, Hicham BASSOU (Evarist) & Saïd BENLAADAM http://wwwmathslandcom Ercic

Plus en détail

Physique - électricité : TC1

Physique - électricité : TC1 Ministèr d l Ensignmnt Supériur, d la chrch Scintifiqu t d la Tchnologi Univrsité Virtull d Tunis Physiqu - élctricité : T Ls condnsaturs oncptur du cours: Jilani Lamloumi t Monjia Bn Braik Attntion! produit

Plus en détail

Exercices sur les lois normales

Exercices sur les lois normales TS Exercices sur les lois normales 1 Une variable aléatoire X suit la loi normale centrée réduite À l aide de la calculatrice, donner la valeur arrondie au millième de : a) 0 X 1,3 ; b),1 X 1,3 ; c) X

Plus en détail

Exercices sur les lois normales

Exercices sur les lois normales TS Exercices sur les lois normales 1 Une variable aléatoire X suit la loi normale centrée réduite À l aide de la calculatrice, donner la valeur arrondie au millième de : a) 0 X 1,3 ; b),1 X 1,3 ; c) X

Plus en détail

Université Paris Sorbonne (Paris IV) Master Histoire, parcours «Recherche et Agrégation d Histoire»

Université Paris Sorbonne (Paris IV) Master Histoire, parcours «Recherche et Agrégation d Histoire» Univrsité Paris orbonn (Paris IV) Mastr Histoir, cours «Rchrch t Agrégation d Histoir» 1 Intitulé d l UE Hurs Cof / Cof / 2 Intitulé d l UE Hurs UE1 Fondamntaux variabl 2/10 UE1 Fondamntaux variabl 1/5

Plus en détail

Chapitre 5. La fonction exponentielle

Chapitre 5. La fonction exponentielle Ensignmnt spécifiqu Chapitr 5 La fonction ponntill I Eistnc t unicité Théorèm : Il ist un uniqu fonction f dérivabl sur tll qu : f = f t f(0) = Ctt fonction st applé fonction ponntill t noté p : Ainsi

Plus en détail

Corrigé de CCP PC 2008 Mathématiques 2

Corrigé de CCP PC 2008 Mathématiques 2 Corrigé d CCP PC 8 Mathématiqus PARTIE I (E s ) st un équation di érntill linéair d ordr dux, à co cints continus sur l intrvall ] [ l co cint d y" n ayant. qas d racin. D arès l théorèm d Cauchy Lischitz,

Plus en détail

Numérisation. Capteurs avec conditionnement. Actionneurs avec conditionnement. Fig : Principe d un système numérique de contrôle-commande.

Numérisation. Capteurs avec conditionnement. Actionneurs avec conditionnement. Fig : Principe d un système numérique de contrôle-commande. Numérisation A. Définition La figur suivant illustr l princip d un systèm numériu d contrôl-command. Cluici, à gauch, st chargé d contrôlr crtains comportmnts, par xmpl la tmpératur, d un systèm physiu.

Plus en détail

EXERCICE II : LES DÉBUTS DE L ELECTRON EN PHYSIQUE (9 points)

EXERCICE II : LES DÉBUTS DE L ELECTRON EN PHYSIQUE (9 points) BAC S Liban 014 http://labolyc.org EXERCICE II : LES DÉBUTS DE L ELECTRON EN PHYSIQUE (9 points) L problèm posé par la natur ds «rayons cathodiqus» à la fin du XIX èm siècl fut résolu n 1897 par l'anglais

Plus en détail

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI Ministèr d l Ensignmnt Supériur, d la Rchrch Scintifiqu Univrsité Virtull d Tunis Ls systèms assrvis linéairs échantillonnés Echantillonnag instantané d un signal Mohamd AKKARI Attntion! C produit pédagogiqu

Plus en détail

TS Exercices sur la fonction exponentielle (2)

TS Exercices sur la fonction exponentielle (2) TS Ercics sur la onction ponntill () ans ls rcics à, on dmand d détrminr ls nsmbls d déinition d t d dérivabilité d puis d calculr la dérivé d : : : ans ls rcics à 9, on dmand d détrminr la it d n + ans

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PSI MATHEMATIQUES 1. n N, α n N.

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PSI MATHEMATIQUES 1. n N, α n N. SESSION 7 CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PSI MATHEMATIQUES I Ls suits α t β I. Etud d la suit α I.. α =, α = α =, α = α + =, α 3 = 3α = t α 4 = 4α 3 + = 9. α =, α =, α = α 3 =

Plus en détail

VII. La méthode ESPRIT

VII. La méthode ESPRIT Patrick VAUDON Introduction à la détction ds angls d arrivés d un ond élctromagnétiqu. Mastr Rchrch Tchniqus hyprfréquncs élctroniqus t optiqus 4 VII La méthod ESPRIT ESPRIT st un acronym formé à partir

Plus en détail

Compte rendu du groupe de discussion auprès des adolescentes de 4 secondaire Polyvalente Marcel-Landry, 19 novembre 2009

Compte rendu du groupe de discussion auprès des adolescentes de 4 secondaire Polyvalente Marcel-Landry, 19 novembre 2009 Nombr d participants : 6 étudiants d 4 scondair ayant rçu l offr d vaccination contr l VPH à l automn 2008 (4 vaccinés, 2 non vaccinés) 1. Si j vous dis «VPH», à quoi ça vous fait pnsr? Qulls imags vous

Plus en détail

Correction feuille TD 3 : probabilités conditionnelles, indépendance

Correction feuille TD 3 : probabilités conditionnelles, indépendance Univrsité d Nic-Sophia Antipolis -L2 MASS - Probabilités Corrction fuill TD 3 : probabilités conditionnlls, indépndanc Exrcic Dans ct xrcic, nous supposons pour simplir qu ls yux d'un êtr humain sont soit

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES EPREUVE DE MATHEMATIQUES DUREE : 1h30mn Cofficint 5 CONSIGNES SPECIFIQUES Lisz soignusmnt ls consigns ci-dssous afin d réussir au miu ctt épruv : - Ctt épruv comport volontairmnt plus d'rcics qu vous n

Plus en détail

f n (x) = x n e x. T k

f n (x) = x n e x. T k EXERCICE 3 (7 points) Commun à tous ls candidats Pour tout ntir naturl n supériur ou égal à, on désign par f n la fonction défini sur R par : f n (x) = x n x. On not C n sa courb rprésntativ dans un rpèr

Plus en détail

MÉTHODES DE RÉSOLUTION DES RÉSEAUX LINÉAIRES EN COURANT CONTINU

MÉTHODES DE RÉSOLUTION DES RÉSEAUX LINÉAIRES EN COURANT CONTINU MÉTHODES DE ÉSOLUTION DES ÉSEUX LINÉIES EN OUNT ONTINU I. DEUX FÇONS DE POSE LE POLÈME On considèr l circuit suivant. Nous chrchons à connaîtr l état élctriqu du circuit, c st à dir connaîtr ls potntils

Plus en détail

Préposée ou préposé aux renseignements

Préposée ou préposé aux renseignements Pag 1 sur 5 Préposé ou préposé aux rnsignmnts Numéro 24910RS93470001 Ministèr ou organism Fonction publiqu du Québc Région Touts ls régions Corps-class d'mplois 249.10 - Préposé aux rnsignmnts Catégori

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTROTECHNIQUE SESSION 2011 ÉPREUVE E4.1. Étude d un système technique industriel. Pré-étude et modélisation

BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTROTECHNIQUE SESSION 2011 ÉPREUVE E4.1. Étude d un système technique industriel. Pré-étude et modélisation BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTROTECHNIQUE SESSION 20 ÉPREUVE E4. Étud d un systèm tchniqu industril Duré : 4 Hurs Cofficint : 3 CORRIGÉ ET BARÈME Calculatric à fonctionnmnt autonom autorisé conformémnt

Plus en détail

Psy1004 Section 9: Plans à plusieurs facteurs. Varia. Rappel: le TP3 est arrivé

Psy1004 Section 9: Plans à plusieurs facteurs. Varia. Rappel: le TP3 est arrivé Psy1004 Sction 9: Plans à plusiurs facturs Plan du cours: Varia 9.0: Idé général ds plans factorils 9.1: Nomnclatur ds plans factoril 9.2: Typ d résultats possibls 9.3: Répartition d la SC t ds DL 9.4:

Plus en détail

MODÉLISATION TEMPORELLE DES SYSTÈMES LINÉAIRES

MODÉLISATION TEMPORELLE DES SYSTÈMES LINÉAIRES MODÉLISATION TEMPORELLE DES SYSTÈMES LINÉAIRES Mis n équation ds systèms linéairs. systèms du prmir ordr équation d la maill: u (t) = u R (t) + u C (t) mpl élctriqu: R i(t) = C du C u R (t) = RC du C u

Plus en détail

Correction DST optique ondulatoire

Correction DST optique ondulatoire PT Champagn 04 Corrction DST optiqu ondulatoir Sptmbr 04 Corrction DST optiqu ondulatoir Parti I. I..a L phénomèn obsrvé st la diffraction. I..b La formul avc d au dénominatur n st pas homogèn à un longuur.

Plus en détail