Suites numériques. Quelques rappels

Save this PDF as:
Dimension: px
Commencer à balayer dès la page:

Download "Suites numériques. Quelques rappels"

Transcription

1 Suites numériques 1 Quelques rappels Trouver pour chacune des suites suivantes les termes manquants. Lesquelles sont des suites arithmétiques? (Préciser le premier terme et la raison) Lesquelles sont des suites géométriques? (Préciser le premier et la raison) 1 er 2 ème 3 ème 4 ème 5 ème 6 ème Nature Suite n 1: Suite n 2: Suite n 3: Suite n 4: Suite n 5: Suite n 6: Suite n 7: Suite n 8: Suite n 9: Suite n 10: Suite n 11: Suite n 12: Suite n 13: Suite n 14: Suite n 15: Suite n 16: Suite n 17: Suite n 18: Suite n 19: Suite n 20: Suite n 21: NU XUED SIORT... QNIC Suite n 22: Suite n 23: Suite n 24: Suite n 25: Suite n 26: Suite n 27:

2 Suites arithmétiques : Géothermie 2 Afin d utiliser les énergies renouvelables, une société de forage propose d utiliser la géothermie. Le principe de la géothermie est d utiliser la chaleur du sol de la Terre pour chauffer les habitations l hiver et de les refroidir l été par simple inversion du système. Pour cela, il faut réaliser un forage à proximité des habitations. Une entreprise de forage propose le tarif suivant : 850 de forfait de déplacement auquel s ajoute 130 par mètre de forage. Monsieur Géfroid veut chauffer sa maison à l aide la géothermie. Pour que son installation soit fiable il lui faut un forage de 15 m. Il dispose d un budget de Pourra-t-il réaliser les travaux? 1. Montrer que les prix forment une suite dont on déterminera le premier terme u 1 et la raison. 2. Écrire la relation qui existe entre u 2, le deuxième terme de la suite, et u 1 le premier terme. Écrire la relation qui existe entre u 3, le troisième terme de la suite, et u 1 le premier terme. Écrire la relation qui existe entre u 15 et u 1 puis la calculer. 4. Répondre à la question posée. A retenir : Expression du terme de rang n d une suite arithmétique: La formule suivante permet de déterminer n importe quel terme u n d une suite arithmétique connaissant le 1 er terme et sa raison. u n = u 1 + (n 1)r

3 Une autre entreprise de forage propose le tarif suivant : le premier mètre le deuxième mètre le troisième mètre. 3 M. Géfroid pourra t-il ses travaux pour moins de 2 600? 1. Montrer que les prix forment une suite dont on déterminera le premier terme u 1 et la raison. 2. Calculer les valeurs des 15 premiers termes dans la première ligne du tableau. Les ranger par ordre décroissant dans la deuxième ligne du tableau. (de u 15 à u 1 ) Dans la troisième, additionner les deux valeurs du dessus. Que remarque-t-on? En déduire une façon de calculer la somme des 15 premiers termes : 4. Répondre à la question posée A connaître : La somme S n des n premiers terme d une suite arithmétique de premier terme u 1 et de raison r est donnée par la formule : u 1 +u n S n = n 2

4 Suites géométriques : Payer moins 4 Dans le calcul d une prime d assurance voiture, on prend en compte un coefficient appelé Bonus/Malus. Le coefficient 1 est attribué à tout nouveau conducteur. Ensuite, s il n a pas d accident, le coefficient est diminué de 5 % par an. Le coefficient de bonus ne peut pas être inférieur à 0,5. Au bout de combien d années sans accident, le montant de sa prime d assurance voiture sera-t-elle diminuée de moitié? 1. Établir un tableau donnant les valeurs du coefficient selon le nombre d année sans accident (tronquer les résultats à 10-2 près). Montrer que les coefficients forment une suite dont on déterminera le premier terme u 1 et la raison. 2. Écrire la relation qui existe entre u 2, le deuxième terme de la suite, et u 1 le premier terme. Écrire la relation qui existe entre u 3, le troisième terme de la suite, et u 1 le premier terme. 3. Donner une expression de u n, le coefficient de la n ième année, en fonction de n et u Répondre à la question posée. (On pourra faire un graphique ou un tableau à l aide de la calulatrice) A retenir : Expression du terme de rang n d une suite géométrique : La formule suivante permet de déterminer n importe quel terme u n d une suite arithmétique connaissant le 1 er terme et sa raison. un = u1 q n 1

5 Un jeune ouvrier est embauché dans une entreprise de construction. Son contrat indique que son salaire sera augmenté de 2 % au début de chaque année. La première année, son salaire mensuel est Cet ouvrier est chanceux et gagne à l euro million le jour de son embauche! Combien d années aurait-il dû travailler pour obtenir une telle somme? 1) Calculer son salaire annuel de la première année qui sera noté u 1 puis calculer u 2 et u 3 salaires annuels de la deuxième et troisième année. 2) Donner la nature et la raison de cette suite. 3) On peut calculer directement la somme des salaires des n premières années en utilisant la formule suivante : S n = u1 1 qn 1 q Écrire la formule correspondant aux données du problème. 4) Calculer la somme des salaires touchés, à l euro près, au bout de 40 années passées dans cette entreprise en utilisant la fonction tableur de votre calculatrice. 5) Répondre à la question posée. A connaître: La somme S n des n premiers termes d une suite géométrique de premier terme u 1 et de raison q est donnée par la formule : Sn = u1 1 q n 1 q

6 6 ACTIVITE 1 : Intérêts composés Qu est-ce que c est? Un capital est placé à intérêts composés lorsque les intérêts de chaque période sont incorporés au capital pour l'augmenter progressivement et porter intérêts à leur tour. La capitalisation (calcul de la nouvelle valeur acquise) se fait à l issue de chaque période qui peut être en jour, ou quinzaine, ou mois, ou par an On considère un capital C 0 de 5000 placé à intérêts composés au taux annuel de 2,5%. Quel sera la valeur acquise par le capital au bout de 10 ans? Aide: Dans ce genre de problème, il peut être utile de : - calculer les valeurs acquises des premières années - Regarder si les nombres obtenus constituent une suite numérique (arithmétique et géométrique) - Si c est le cas, déterminer le premier terme et la raison - Utiliser les formules connues pour répondre à la question

7 7 ACTIVITE 2: Capitalisation A la naissance de leur petit fils Jason, les grands parents décident de lui constituer un capital qu il pourra utiliser à sa majorité. Ils placent chaque année 150 sur un livret qui rapporte 2,5% d intérêts pas an. De quelle somme disposera Jason à son 18 ème anniversaire? Aide: Au total les grands parents auront fait 18 dépôts Les 150 déposés à sa naissance ont rapporté des intérêts pendant 18 ans Les 150 déposés à ses 1 ans ont rapporté des intérêts pendant 17 ans et ainsi de suite Les 150 déposés à ses 2 ans ont rapporté des intérêts pendant 16 ans et ainsi de suite Calculer les valeurs acquises par les premiers dépôts au bout des 18 ans. Les valeurs acquises forment-elles une suite numérique connue? Si oui déterminer le premier terme et la raison. Quelle formule peut-on utiliser pour calculer la somme totale que Jason aura sur son livret à sa majorité? Effectuer le calcul Dans les formulaires on trouve une formule qui correspond à la capitalisation : Valeur acquise par une suite d'annuités constantes : V n : valeur acquise au moment du dernier versement a : versement constant t : taux par période n : nombre de versements n ( 1 + t) 1 V n = a t Pourquoi cela revient-il au même d utiliser cette formule?

8 8 ACTIVITE 3: Remboursement d emprunt Tableau d amortissement Pour financer les travaux de sa maison, M. Nidouillet négocie un emprunt auprès de sa banque dans les conditions sont les suivantes: Montant de l emprunt: Durée de remboursement: 5 ans (soit 60 mensualités) Taux d intérêt mensuel: 0,4% Annuités: 751,19 La banque lui fournit le tableau suivant: Période Capital restant dû Intérêt I Amortissement M Annuité a ,00 160,00 591,19 751, ,81 157,64 593,55 751, ,26 155,26 595,93 751, ,33 152,88 598,31 751, ,01 150,48 600,71 751, ,31 148,08 603,11 751, ,39 5,97 745,22 751, ,18 2,99 748,20 751, , ,00 A quoi correspondent les différentes colonnes? Comment les calculer?

9 9

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

EMPRUNT INDIVIS. alors : a = III. Comment établir un tableau de remboursement d emprunt à amortissements constants?

EMPRUNT INDIVIS. alors : a = III. Comment établir un tableau de remboursement d emprunt à amortissements constants? EMPRUNT INDIVIS Objectifs : - Savoir calculer une annuité de remboursement constante ; - Dresser un tableau d amortissement d emprunt par annuités constantes ou par amortissements constants ; - Calculer

Plus en détail

Emprunts indivis (amortissement)

Emprunts indivis (amortissement) 1. Amortissement constant : a) Activité : Une entreprise souhaite renouveler son parc informatique. Elle estime qu elle doit dépenser 5 000 ; elle emprunte cette somme au taux de 5 % annuel le 1 er janvier

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 17 octobre 2005 1 Suites On appelle suite numérique toute application de N ou une partie de N vers R. On notera par u n le terme général d une suite.

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés.

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés. Suites numériques 1ère STG Introduction : Intérêts simpleset composés. On dispose d un capital de 1 000 euros que l on peut placer de deux façons différentes : à intérêts simples au taux annuel de 10%.

Plus en détail

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes ANNUITES I Notions d annuités a.définition Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. Le processus de versements dépend du montant de l annuité,

Plus en détail

T.D. 1. Licence 2, 2014 15 - Université Paris 8

T.D. 1. Licence 2, 2014 15 - Université Paris 8 Mathématiques Financières Licence 2, 2014 15 - Université Paris 8 C. FISCHLER & S. GOUTTE T.D. 1 Exercice 1. Pour chacune des suites ci-dessous, répondre aux questions suivantes : Est-ce une suite monotone?

Plus en détail

15/02/2009. Le calcul des intérêts. Le calcul des intérêts. Le calcul des intérêts Les intérêts simples. Le calcul des intérêts Les intérêts simples

15/02/2009. Le calcul des intérêts. Le calcul des intérêts. Le calcul des intérêts Les intérêts simples. Le calcul des intérêts Les intérêts simples Le taux d intérêt Comparer ce qui est comparable 2 Chapitre 1 La valeur du temps Aide-mémoire - 2009 1 Deux sommes de même montant ne sont équivalentes que si elles sont considérées à une même date. Un

Plus en détail

Intérêts composés - Amortissements

Intérêts composés - Amortissements Intérêts composés - Amortissements Objectif : - Etudier et calculer les éléments d un placement à intérêts composés. - Effectuer un tableau d amortissement. I - Approche : Examinons la publicité suivante

Plus en détail

S5 Info-MIAGE 2010-2011 Mathématiques Financières Intérêts composés. Université de Picardie Jules Verne Année 2010-2011 UFR des Sciences

S5 Info-MIAGE 2010-2011 Mathématiques Financières Intérêts composés. Université de Picardie Jules Verne Année 2010-2011 UFR des Sciences Université de Picardie Jules Verne Année 2010-2011 UFR des Sciences Licence mention Informatique parcours MIAGE - Semestre 5 Mathématiques Financières I - Généralités LES INTERETS COMPOSES 1) Définitions

Plus en détail

MATHÉMATIQUES FINANCIÈRES

MATHÉMATIQUES FINANCIÈRES MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................

Plus en détail

CH X Intérêts composés - Amortissements

CH X Intérêts composés - Amortissements CH X Intérêts composés - Amortissements I) Les intérêts composés : 1) Situation : Un capital de 20 000,00 est placé à un taux d intérêts de 4 % l an pendant 5 ans. Chaque année les intérêts produits viennent

Plus en détail

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES Suites géométriques, fonction exponentielle Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence L objectif de cet exercice

Plus en détail

SENS DE VARIATION D UNE SUITE

SENS DE VARIATION D UNE SUITE 1 Les suites SENS DE VARIATION D UNE SUITE La suite (u n ) est croissante lorsque pour tout entier n, u n + 1 u n. La suite (u n ) est décroissante lorsque pour tout entier n, u n + 1 u n. La suite (u

Plus en détail

Amortissement annuité 1 180 000 14 400 12 425,31 26 825,31 2. 2) Indiquer ce que sera la deuxième ligne du tableau en justifiant chacun des résultats.

Amortissement annuité 1 180 000 14 400 12 425,31 26 825,31 2. 2) Indiquer ce que sera la deuxième ligne du tableau en justifiant chacun des résultats. EXERCICES SUR LES EMPRUNTS INDIVIS Exercice 1 Pour financer l extension de son magasin, un responsable a contracté un emprunt remboursable, intérêts compris, sur 10 ans par annuités constantes. Voici le

Plus en détail

Chapitre 5. Calculs financiers. 5.1 Introduction - notations

Chapitre 5. Calculs financiers. 5.1 Introduction - notations Chapitre 5 Calculs financiers 5.1 Introduction - notations Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une somme d argent) en contrepartie de quoi ils perçoivent ou respectivement

Plus en détail

Mathématiques Financières Exercices

Mathématiques Financières Exercices Mathématiques Financières Exercices Licence 2, 2015-16 - Université Paris 8 J.CORIS & C.FISCHLER & S.GOUTTE 1 TD 1 : Suites numériques et somme de suites Exercice 1. Pour chacune des suites ci-dessous,

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Intérêts. Administration Économique et Sociale. Mathématiques XA100M

Intérêts. Administration Économique et Sociale. Mathématiques XA100M Intérêts Administration Économique et Sociale Mathématiques XA100M 1. LA NOTION D INTÉRÊT 1.1. Définition. Définition 1. L intérêt est la rémunération d un prêt d argent effectué par un agent économique

Plus en détail

(D après sujet de CAP secteur 7 groupement académique Sud Session 2000)

(D après sujet de CAP secteur 7 groupement académique Sud Session 2000) EXERCICES SUR L INTÉRÊT SIMPLE Exercice 1 On place 150 à un taux annuel de 3,6 % pendant 7 mois. 1) Calculer l intérêt produit à la fin des 7 mois. 2) Calculer la somme obtenue à la fin du placement. Exercice

Plus en détail

Chapitre 4 : cas Transversaux. Cas d Emprunts

Chapitre 4 : cas Transversaux. Cas d Emprunts Chapitre 4 : cas Transversaux Cas d Emprunts Échéanciers, capital restant dû, renégociation d un emprunt - Cas E1 Afin de financer l achat de son appartement, un particulier souscrit un prêt auprès de

Plus en détail

Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M

Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M Les emprunts indivis Administration Économique et Sociale Mathématiques XA100M Les emprunts indivis sont les emprunts faits auprès d un seul prêteur. On va étudier le cas où le prêteur met à disposition

Plus en détail

Chapitre II : Les emprunts indivis

Chapitre II : Les emprunts indivis Chapitre II : Les emprunts indivis I. Caractéristiques générales On appelle emprunt indivis, un contrat entre un et un seul prêteur et un et un seul emprunteur. Un tel emprunt fait l objet d un remboursement

Plus en détail

ALGEBRE FINANCIERE. Calculez la valeur acquise (capital + intérêts) qu Anatole pourra retirer au bout des six mois. Durée Intérêt Valeur acquise

ALGEBRE FINANCIERE. Calculez la valeur acquise (capital + intérêts) qu Anatole pourra retirer au bout des six mois. Durée Intérêt Valeur acquise ALGEBRE FINANCIERE 1. Opérations financières à intérêts simples. a Introduction Placement à court terme Un organisme financier propose aux jeunes de moins de 25 ans les conditions de placement suivantes

Plus en détail

CH VI) Pourcentages et coefficients multiplicateurs :

CH VI) Pourcentages et coefficients multiplicateurs : CH VI) Pourcentages et coefficients multiplicateurs : Activité : Un commerçant fait une remise de 20,00 sur le prix d un article coûtant 250,00. Quel serait le montant de la remise si l article coûtait,00?

Plus en détail

Apllication au calcul financier

Apllication au calcul financier Apllication au calcul financier Hervé Hocquard Université de Bordeaux, France 1 er novembre 2011 Intérêts Généralités L intérêt est la rémunération du placement d argent. Il dépend : du taux d intérêts

Plus en détail

) est une suite croissante si et seulement si, pour tout entier n, u n + 1

) est une suite croissante si et seulement si, pour tout entier n, u n + 1 1> Généralités sur les suites numériques Définition Une suite numérique est une fonction définie sur 0 ou sur une partie de 0 Sens de variation d une suite La suite ( est une suite croissante si et seulement

Plus en détail

L ACCUEIL REGULIER EN ANNEE COMPLETE : DE L EMBAUCHE A LA RUPTURE DU CONTRAT

L ACCUEIL REGULIER EN ANNEE COMPLETE : DE L EMBAUCHE A LA RUPTURE DU CONTRAT L ACCUEIL REGULIER EN ANNEE COMPLETE : DE L EMBAUCHE A LA RUPTURE DU CONTRAT Qu est-ce que l accueil en année complète? C est lorsque l assistant maternel accueille un enfant pendant 47 semaines. L enfant

Plus en détail

Baccalauréat Mathématiques-informatique Polynésie juin 2007

Baccalauréat Mathématiques-informatique Polynésie juin 2007 Durée : 1 h 30 La calculatrice est autorisée. Le candidat doit traiter les DEUX exercices L annexe 1 est rendre avec la copie Baccalauréat Mathématiques-informatique Polynésie juin 2007 EXERCICE 1 10 points

Plus en détail

BONUS MALUS. Voici, la façon de calculer la prime : Le montant de la prime à acquitter est égale à : P = PB. C où : P

BONUS MALUS. Voici, la façon de calculer la prime : Le montant de la prime à acquitter est égale à : P = PB. C où : P BONUS MALUS Le propriétaire d un véhicule automobile est tenu d assurer sa voiture auprès d une compagnie d assurances. Pour un véhicule donné, le propriétaire versera annuellement une «prime» à sa compagnie.

Plus en détail

nous pouvons calculer l intérêt obtenu par ce capital au bout d un an (n =1). 1an

nous pouvons calculer l intérêt obtenu par ce capital au bout d un an (n =1). 1an Chapitre IV : Les intérêts composés I. Généralités et définition Avec les intérêts composés, nous abordons les mathématiques financières de moyen et long terme. Pour gérer les comptes de moyen et long

Plus en détail

Mathématiques. Ch. 1 Suites : Exercices

Mathématiques. Ch. 1 Suites : Exercices 1 BTS CGO - LYCÉE LOUIS PAYEN - Mathématiques Ch. 1 Suites : Exercices Cours J-L NEULAT 1 Suites et tableurs EXERCICE 1 Un grand magasin estime que chaque année sa clientèle de l année précédente satisfaite

Plus en détail

TD 3 : suites réelles : application économique et nancière

TD 3 : suites réelles : application économique et nancière Mathématiques Appliquées Cours-TD : K. Abdi, M. Huaulmé, B. de Loynes et S. Pommier Université de Rennes 1 - L1 AES - 009-010 TD 3 : suites réelles : application économique et nancière Exercice 1 Calculer

Plus en détail

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite I Exercices 1 Définition de suites Pour toutes les suites (u n ) définies ci-dessous, on demande de calculer u 1, u, u 3 et u 6 1 u n = 7n n + { u0 = u n+1 = u n + 3 3 u n est le n ième nombre premier

Plus en détail

Chapitre 1. La valeur et le temps. 1 Exercice 01-16. 2 Corrigé rigé de l exercice 01-16

Chapitre 1. La valeur et le temps. 1 Exercice 01-16. 2 Corrigé rigé de l exercice 01-16 Chapitre 1 La valeur et le temps 1 Exercice 01-16 16 Échéance commune de plusieurs effets Définition. L échéance commune de plusieurs effets est l échéance d un effet unique qui, le jour de l équivalence,

Plus en détail

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30 Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE 2ème trimestre 2010 Durée de l épreuve : 1 h 30 Le candidat doit traiter les 3 exercices La qualité de la rédaction, la clarté et la précision des

Plus en détail

LES INFORMATIONS GÉNÉRALES

LES INFORMATIONS GÉNÉRALES GUIDE D UTILISATION Calculatrice Texas Instrument BA II Plus Avril 2007 LES INFORMATIONS GÉNÉRALES La calculatrice financière Texas Instrument BA II Plus a été conçue pour satisfaire aux diverses applications

Plus en détail

Nombres et calcul numérique

Nombres et calcul numérique Accompagnement personnalisé PFEG - Math A quoi sert une banque? Nombres et calcul numérique Organisation et gestion de données Fonctions Grandeurs et mesures Calcul littéral Remerciements à Mesdames Hélène

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

Devoir a la Maison n 7

Devoir a la Maison n 7 Nom :.....Prénom : LFKL 1ere L Note :.. / 20 Appréciation : Signature d'un parent : Temps de préparation 3 10 mai 2006 semaines Code des couleurs de font : Devoir a la Maison n 7 En noir : questions En

Plus en détail

Le capital placé reste invariable et produit des intérêts égaux pour chaque période de placement.

Le capital placé reste invariable et produit des intérêts égaux pour chaque période de placement. 3. Les intérêts composés 3. Les intérêts composés 3.1. Introduction ➊ Placement à intérêts simples Le capital placé reste invariable et produit des intérêts égaux pour chaque période de placement. ➋ Placement

Plus en détail

Chapitre 1 - Suites. Suites géométriques. I.1 Définition et propriétés

Chapitre 1 - Suites. Suites géométriques. I.1 Définition et propriétés Chapitre 1 - Suites I Suites géométriques I.1 Définition et propriétés TD 1 : Évolutions de populations Le premier janvier 2011, une ville A compte 350 000 habitants. A la même date, une ville B compte

Plus en détail

Investissements. Plan

Investissements. Plan Investissements Plan Relation entre placement, revenus et taux d intérêt Relation entre emprunt, sommes remboursées et taux d intérêt Bilan: relation entre flux monétaires résultant d un échange intertemporel

Plus en détail

- Mathématiques - Niveau 3 ème. Fonctions

- Mathématiques - Niveau 3 ème. Fonctions - Mathématiques - Niveau 3 ème Fonctions Remerciements à Mesdames Hélène Clapier et Dominique Halperin, professeures de mathématiques de collège et Monsieur Gilles Damamme, maître de conférences à l université

Plus en détail

Utilisation des fonctions financières d Excel

Utilisation des fonctions financières d Excel Utilisation des fonctions financières d Excel TABLE DES MATIÈRES Page 1. Calcul de la valeur acquise par la formule des intérêts simples... 4 2. Calcul de la valeur actuelle par la formule des intérêts

Plus en détail

Oui. Dans ce cas, cependant, nous tiendrons compte du salaire admissible annuel que vous auriez reçu si vous aviez travaillé à temps plein.

Oui. Dans ce cas, cependant, nous tiendrons compte du salaire admissible annuel que vous auriez reçu si vous aviez travaillé à temps plein. LE CALCUL DE LA RENTE DU RREGOP Le 5 novembre 2015 Comment le montant de ma rente de retraite sera-t-il calculé? Pour déterminer le montant de votre rente de base, la formule suivante sera utilisée : années

Plus en détail

Assurances placements

Assurances placements Fiche de connaissance Assurances placements Les assurances placement sont des contrats que vous souscrivez avec une compagnie d assurances, et non avec une banque. Elles sont toutefois commercialisées

Plus en détail

Baccalauréat général Antilles-Guyane

Baccalauréat général Antilles-Guyane Baccalauréat général Antilles-Guyane Mathématiques-informatique - série L - juin 2004 La calculatrice est autorisée. Le candidat doit traiter les DEUX exercices Les annexes 1 et 2 sont à rendre avec la

Plus en détail

RAPPEL MATHÉMATIQUE Méthodes quantitatives (30 610 94 + 30 620 92)

RAPPEL MATHÉMATIQUE Méthodes quantitatives (30 610 94 + 30 620 92) RAPPEL MATHÉMATIQUE Méthodes quantitatives (30 610 94 + 30 620 92) 1. Suites géométriques Définition Suite Une suite,,,, est un ensemble de nombres. L indice de chaque terme de la suite indique la ou l

Plus en détail

2 - Durée de placement exprimée en mois : I = * Exemple : Quel intérêt un capital de 6 420 placé à 10% l an pendant 8 mois produit -il?

2 - Durée de placement exprimée en mois : I = * Exemple : Quel intérêt un capital de 6 420 placé à 10% l an pendant 8 mois produit -il? LES INTERETS SIMPLES I- Définition de l intérêt L intérêt est le revenu d une somme d argent prêtée ( ou placée ). Le montant de l intérêt est fonction du capital, du taux de placement et de la durée du

Plus en détail

Argent présent et pris en compte!

Argent présent et pris en compte! Argent présent et pris en compte! Niveau 8 Au cours de la présente leçon, les élèves compareront les taux d intérêt appliqués à divers comptes bancaires et calculeront le potentiel de rendement au fil

Plus en détail

MATHÉMATIQUES FINANCIÈRES I

MATHÉMATIQUES FINANCIÈRES I MATHÉMATIQUES FINANCIÈRES I Quinzième cours Détermination des valeurs actuelle et accumulée d une annuité de début de période pour laquelle la période de paiement est plus courte que la période de capitalisation

Plus en détail

GEOSI. Les intérêts et les Emprunts

GEOSI. Les intérêts et les Emprunts GEOSI Les intérêts et les Emprunts 1.Définition Lorsque qu une personne (prêteur) prête une somme à une autre personne (emprunteur) il est généralement convenu de rembourser, à l échéance, cet emprunt

Plus en détail

Cet ouvrage couvre totalement le programme de l UE 6 Finance

Cet ouvrage couvre totalement le programme de l UE 6 Finance Cet ouvrage couvre totalement le programme de l UE 6 Finance d entreprise du Diplôme de Comptabilité et de Gestion (DCG) des études de l expertise comptable. Il s inscrit également dans le cadre des programmes

Plus en détail

«BONUS MALUS» (exercice exploitant les changements de registre) (D après Académie de Strasbourg)

«BONUS MALUS» (exercice exploitant les changements de registre) (D après Académie de Strasbourg) «BONUS MALUS» (exercice exploitant les changements de registre) (D après Académie de Strasbourg) Le propriétaire d un véhicule automobile est tenu d assurer sa voiture auprès d une compagnie d assurances.

Plus en détail

Devoir commun de Mathématiques

Devoir commun de Mathématiques Exercice 1 3,5 points Le tableau suivant donne la répartition des internautes par continent pour les années 2001, 2002, 2003 et 2004 en millions d individus. Il est incomplet. Pour le remplir il faut utiliser

Plus en détail

Service du personnel et d organisation (SPO) INFORMATION AU PERSONNEL CONCERNANT LE NOUVEAU SYSTEME SALARIAL

Service du personnel et d organisation (SPO) INFORMATION AU PERSONNEL CONCERNANT LE NOUVEAU SYSTEME SALARIAL Service du personnel et d organisation (SPO) INFORMATION AU PERSONNEL CONCERNANT LE NOUVEAU SYSTEME SALARIAL Service du personnel et d organisation (SPO) 2 Chère collaboratrice, Cher collaborateur, Le

Plus en détail

Suites numériques 2. n=0

Suites numériques 2. n=0 Suites numériques 1 Somme des termes d une suite Dans les applications, il est souvent nécessaire de calculer la somme de quelques premiers termes d une suite (ou même de tous les termes, mais on étudiera

Plus en détail

Une société propose une formule d abonnement de 28 mensuel pour un forfait de 2 heures de communication et 0,50 par minute de dépassement.

Une société propose une formule d abonnement de 28 mensuel pour un forfait de 2 heures de communication et 0,50 par minute de dépassement. Fonction affine I) Définition et exemples 1) Définition Soit a et b deux nombres connus et fixés. Une fonction affine est une fonction numérique de la forme : ou 2) Exemples: Exemple 1 : Une société propose

Plus en détail

Un peu de calculs financiers

Un peu de calculs financiers Un peu de calculs financiers 1. Les intérêts simples Intérêt : somme rapportée par le prêt d un capital. Il est proportionnel au montant de la somme prêtée et à la durée du prêt Période : le temps est

Plus en détail

Pourcentage d évolution

Pourcentage d évolution Pourcentage d évolution I) Proportion et pourcentage. 1) Proportion Soit E un ensemble fini et A une partie de l ensemble E. est le nombre d éléments de E et le nombre d éléments de A. La proportion ou

Plus en détail

3 Financement et emprunts

3 Financement et emprunts C. Terrier 1 / 6 12/12/2013 Cours Mathématiques financières Auteur : C. Terrier ; mailto:webmaster@cterrier.com ; http://www.cterrier.com Utilisation : Reproduction libre pour des formateurs dans un cadre

Plus en détail

I Suites géométriques, maths fi (1 + α + α 2 + + α n )

I Suites géométriques, maths fi (1 + α + α 2 + + α n ) UPV MathsL1S1 1 Suites. Maths fi I Suites géométriques, maths fi (1 + α + α 2 + + α n ) I Deux résultats fondamentaux 1) 1 + 2 + + n = n (n + 1) / 2 On peut connaître ce résultat par coeur. (D ailleurs

Plus en détail

Annuités. Administration Économique et Sociale. Mathématiques XA100M

Annuités. Administration Économique et Sociale. Mathématiques XA100M Annuités Administration Économique et Sociale Mathématiques XA100M En général, un prêt n est pas remboursé en une seule fois. Les remboursements sont étalés sur plusieurs périodes. De même, un capital

Plus en détail

Ma banque, mes emprunts et mes intérêts

Ma banque, mes emprunts et mes intérêts Ma banque, mes emprunts et mes intérêts Alexandre Vial 0 janvier 2009 Les intérêts cumulés Je place 00 e à 4% par an pendant un an. Donc au bout d un an, j ai 00 + 00. 4 = 00 00( + 4 ) =04 e. 00 Cependant,

Plus en détail

EMPRUNTS OBLIGATAIRES EMIS PAR LES SOCIETES. Conséquences du financement par emprunt obligataire dans le tableau de financement de l'entreprise.

EMPRUNTS OBLIGATAIRES EMIS PAR LES SOCIETES. Conséquences du financement par emprunt obligataire dans le tableau de financement de l'entreprise. EMPRUNTS OBLIGATAIRES EMIS PAR LES SOCIETES Objectif(s) : o Pré-requis : Conséquences du financement par emprunt obligataire dans le tableau de financement de l'entreprise. o Outils de mathématiques financières

Plus en détail

A propos du calcul des rentabilités des actions et des rentabilités moyennes

A propos du calcul des rentabilités des actions et des rentabilités moyennes A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Documents de TD Vous devez préparer l ensemble de ces exercices pour la séance de correspondante. 1 ère année Semestre 1 TD n 1 Intérêt simple Calculer l intérêt que fournit un

Plus en détail

Opérations financières à court terme

Opérations financières à court terme Opérations financières à court terme I Les intérêts simples : 1 - Définition de l intérêt : L intérêt est le revenu d une somme d argent prêtée ( ou placée ). Le montant de l intérêt est fonction du capital,

Plus en détail

U102 Devoir sur les suites (TST2S)

U102 Devoir sur les suites (TST2S) LES SUITES - DEVOIR 1 EXERCICE 1 L'objectif de cet exercice est de comparer l'évolution des économies de deux personnes au cours d'une année. Pierre possède 500 euros d'économies le 1 er janvier. Il décide

Plus en détail

II. Les intérêts composés

II. Les intérêts composés P6C03 Les calculs financiers Les intérêts représentent le loyer de l argent et correspondent à la rémunération du prêteur. I. Les intérêts simples Les intérêts simples sont utilisés pour des opérations

Plus en détail

Mathématiques financières

Mathématiques financières Mathématique financière à court terme I) Les Intérêts : Intérêts simples Mathématiques financières - Intérêts terme échu et terme à échoir - Taux terme échu i u équivalent à un taux terme à échoir i r

Plus en détail

Fiche mathématiques financières

Fiche mathématiques financières Fiche mathématiques financières Thème 1 : Les taux d'intérêts simples et composés Taux d'intérêts simples : Les taux d'intérêts simples sont appliqués dans le cas d'emprunts dont la durée est inférieure

Plus en détail

L ESSENTIEL RETRAITE RÉSERVÉ AUX EntREpRiSES AdhÉREntES du GRoUpE AGRiCA

L ESSENTIEL RETRAITE RÉSERVÉ AUX EntREpRiSES AdhÉREntES du GRoUpE AGRiCA L ESSENTIEL RETRAITE RÉSERVÉ AUX entreprises adhérentes du Groupe AGRICA SoMMAiRE AGRICA ET VOTRE ENVIRONNEMENT RETRAITE 1 LA RETRAITE DE BASE 2 LA RETRAITE COMPLÉMENTAIRE 3 L ÉPARGNE RETRAITE ENTREPRISE

Plus en détail

Tableau d amortissement et suite géométrique

Tableau d amortissement et suite géométrique Tableau d amortissement et suite géométrique ENONCE : Afin d être plus compétitive, une entreprise décide d emprunter 100 000 pour investir dans de nouvelles machines. Elle souhaite rembourser en 3 ans

Plus en détail

Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti»

Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti» Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti» Question 1 : représenter graphiquement le taux de rentabilité du produit à capital garanti

Plus en détail

Calculs financiers (1) : intérêts simples, composés.

Calculs financiers (1) : intérêts simples, composés. Calculs financiers (1) : intérêts simples, composés. 1. Intérêts simples Paul doit 10 000 à son fournisseur. Celui-ci lui accorde un crédit au taux annuel de 5% à intérêts simples (capitalisation annuelle).

Plus en détail

Nouvelle tarification des entreprises

Nouvelle tarification des entreprises Nouvelle tarification des entreprises 1- Qu est-ce que la «tarification»? En France, 2 millions d établissements des secteurs de l industrie, du service et du commerce cotisent en fonction de leur taille,

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique

Plus en détail

Annualisation de la réduction «Fillon»

Annualisation de la réduction «Fillon» Textes applicables - Article 12 de la LFSS pour 2011 - Décret n 2010-1779 du 31/12/2010 (JO 1 er janvier 2011) - Circulaire DSS/D5B/SG/SAFSL/SDTPS n 2011-34 du 27/01/2011 - Article 16 de la loi de financement

Plus en détail

Terminale STG Chapitre 6 : suites arithmétiques et géométriques. Page n 1 2007 2008

Terminale STG Chapitre 6 : suites arithmétiques et géométriques. Page n 1 2007 2008 Terminale STG Chapitre 6 : suites arithmétiques et géométriques. Page n 1 Dans la vitrine du magasin de monsieur suite, on peut voir écrit : " du premier au 4 décembre 006 votre prêt à,90 % pour faire

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

Série d exercices 4. /s k

Série d exercices 4. /s k ACT-10412 Mathématiques financières Série d exercices 4 1. Un prêt est remboursé à l aide de n paiements annuels égaux. Après n 1 années, le montant total de capital remboursé s élève à 3 955,20. La part

Plus en détail

CH VII Les intérêts simples

CH VII Les intérêts simples CH VII Les intérêts simples I) Capital, intérêts, valeur acquise : Un capital est une somme d argent qui rapporte un loyer que l on appelle intérêts. Un capital peut être placé ou emprunté. L intérêt est

Plus en détail

LES PROPORTIONS ET LES PARTAGES PROPORTIONNELS. Une proportion est une égalité de deux rapports (un rapport est une fraction, un quotient).

LES PROPORTIONS ET LES PARTAGES PROPORTIONNELS. Une proportion est une égalité de deux rapports (un rapport est une fraction, un quotient). CHAPITRE III LES PROPORTIONS ET LES PARTAGES PROPORTIONNELS I ] DEFINITION : Une proportion est une égalité de deux rapports (un rapport est une fraction, un quotient). Exemple : 3 = 3,6 est une proportion

Plus en détail

S5 Info-MIAGE 2013-2014 Mathématiques Financières Intérêts simples. Université de Picardie Jules Verne Année 2013-2014 UFR des Sciences

S5 Info-MIAGE 2013-2014 Mathématiques Financières Intérêts simples. Université de Picardie Jules Verne Année 2013-2014 UFR des Sciences Université de Picardie Jules Verne Année 2013-2014 UFR des Sciences I - Définitions Licence mention Informatique parcours MIAGE - Semestre 5 Mathématiques Financières LES INTERETS SIMPLES Capital ou principal

Plus en détail

Une nouvelle analyse sur la théorie d utilité marginale

Une nouvelle analyse sur la théorie d utilité marginale Une nouvelle analyse sur la théorie d utilité marginale Introduction : La plupart des théoriciens économiques défini L utilité marginale comme suit : L utilité marginale d un bien est : l augmentation

Plus en détail

Planification Version «réservation manuelle» version 3.0 - mai 2015 (Passage version Wegas)

Planification Version «réservation manuelle» version 3.0 - mai 2015 (Passage version Wegas) Manuel Utilisateur Planification Version «réservation manuelle» version 3.0 - mai 2015 (Passage version Wegas) Etablir votre diagramme de Gantt Estimer le coût des tâches www.albasim.ch 1 / 5 Affecter

Plus en détail

Chapitre 15 : Les techniques de financement

Chapitre 15 : Les techniques de financement Chapitre 15 : Les techniques de financement I. Les intérêts composés On utilise les intérêts composés au lieu des intérêts simples lorsque la durée d un placement ou d un emprunt dépasse un an. A. La valeur

Plus en détail

Statistiques. Objectifs du chapitre. Énigme du chapitre.

Statistiques. Objectifs du chapitre. Énigme du chapitre. Statistiques C H A P I T R E 2 Énigme du chapitre. Objectifs du chapitre. Proposer, si possible, une série de 9 valeurs telle que sa moyenne est égale à son premier quartile et son étendue soit égale à

Plus en détail

Dans les calculs on utilise toujours un taux t décimal et non en pourcentage. Exemple: t = 8,5% doit s'écrire dans les calculs t = 8,5

Dans les calculs on utilise toujours un taux t décimal et non en pourcentage. Exemple: t = 8,5% doit s'écrire dans les calculs t = 8,5 3 intérêts Dans ce chapitre, vous allez étudier les méthodes utilisées pour calculer le montant des intérêts et la valeur acquise par un capital, dans le cas des intérêts simples ( durée de placement inférieure

Plus en détail

Master en Droit et Economie / Automne 2015 / Prof. F. Alessandrini. Chapitre 1 : principes. 2 ème partie : la valeur temps de l argent 23.09.

Master en Droit et Economie / Automne 2015 / Prof. F. Alessandrini. Chapitre 1 : principes. 2 ème partie : la valeur temps de l argent 23.09. Chapitre 1 : principes 2 ème partie : la valeur temps de l argent 23.09.2015 Plan du cours Arbitrage et décisions financières valeur actuelle arbitrage loi du prix unique Valeur temps valeur actuelle et

Plus en détail

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes. Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée

Plus en détail

3 ème FONCTIONS. Pratiquer une démarche scientifique et technologique. Capacités

3 ème FONCTIONS. Pratiquer une démarche scientifique et technologique. Capacités 3 ème Les exercices de ce chapitre permettent de travailler des compétences scientifiques du socle commun. Pratiquer une démarche scientifique et technologique Capacités Rechercher, extraire et organiser

Plus en détail

NORME IAS 23 COÛTS DES EMPRUNTS

NORME IAS 23 COÛTS DES EMPRUNTS NORME IAS 23 COÛTS DES EMPRUNTS UNIVERSITE NANCY2 Marc GAIGA - 2009 Table des matières NORME IAS 23 : COÛTS DES EMPRUNTS...3 1.1. LA PRÉSENTATION SUCCINCTE DE LA NORME...3 1.1.1. L esprit de la norme...3

Plus en détail

Chapitre 02 Suites arithmétiques et géométriques

Chapitre 02 Suites arithmétiques et géométriques Chapitre 02 Suites arithmétiques et géométriques Classe de terminale STMG APPRENTISSAGES PARALLELES : ALGORITHMIQUE : VARIABLES ET AFFECTATIONS, INSTRUCTIONS SIMPLES, BOUCLE «POUR» RAPPELS DE PREMIERE

Plus en détail

Le revenu et le pouvoir d achat

Le revenu et le pouvoir d achat Le revenu et le pouvoir d achat Le revenu & le pouvoir d achat Le revenu d une personne est la somme d argent perçue en contrepartie du travail fourni, de ses placements, d un service rendu ou d une situation

Plus en détail

Poursuite d activité Trois mesures pour jouer les prolongations

Poursuite d activité Trois mesures pour jouer les prolongations Salariés AOÛT 2015 Poursuite d activité Trois mesures pour jouer les prolongations B Retraite progressive B Surcote B Cumul emploi-retraite Poursuite d activité Trois mesures pour jouer les prolongations

Plus en détail

REER LA GESTION DES CONTRIBUTIONS REER : L EMPLOYEUR EMPLOYEUR,, LE COMITÉ PARITAIRE ET SSQ GROUPE FINANCIER

REER LA GESTION DES CONTRIBUTIONS REER : L EMPLOYEUR EMPLOYEUR,, LE COMITÉ PARITAIRE ET SSQ GROUPE FINANCIER LA GESTION DES CONTRIBUTIONS REER : L EMPLOYEUR EMPLOYEUR,, LE COMITÉ PARITAIRE ET SSQ GROUPE FINANCIER 1 LE FORMULAIRE D ADHÉSION OBLIGATOIRE POUR LES SALARIÉS SECTION 1 : IDENTIFICATION DU RÉGIME SECTION

Plus en détail