Les suites. Suite définie par une fonction (= Suites définies en fonction du rang n (du type ;

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Les suites. Suite définie par une fonction (= Suites définies en fonction du rang n (du type ;"

Transcription

1 Les sites Rappel : désige l esemble des etiers atrels, ;;;; UNE SUITE DE NOMBRES REELS EST UNE LISTE ORDONNEE DE NOMBRES REELS, FINIE OU INFINIE I ) Gééralités Notio de site Défiitio : Ue site est e foctio de ers, i à ombre associe so image, appelé terme gééral de la site, état l idice de la site La otatio o désige la site e tat objet mathématie, et désige l image de l etier est assi appelé le terme d idice de la site Il existe doc dex otatios por les sites : et Exemple : Soit la site défiie par = + ; ; = ; s appelle le premier terme de la site o le terme iitial, = + s appelle le terme gééral de la site Exemple : Soit la site défiie par ; ; = ; = = Site défiie par e foctio (= Sites défiies e foctio d rag (d type Soit f la foctio défiie par f x x O cosidère la site défiie par f Compléter : ; ; = ; f ) ) = Site défiie par e relatio de récrrece (= défiie e foctio d (o des) terme(s) précédet(s)) A reteir : Lorse l o doe le terme iitial d e site aisi e l expressio d terme e foctio d précédet, o dit e l o défiit cette site «par récrrece» Exemple : O cosidère la site défiie par : por tot etier atrel + Compléter : 7 ; 7 ; = Exemple : O cosidère la site défiie par : ; 6 ; por tot etier atrel =

2 II ) Représetatio graphie d e site Défiitio : La représetatio graphie d e site das repère, est l esemble des poits isolés de coordoées ; ; ; ; ; ; ; ; ; 6 Soit la site U défiie par Représeter la site à l aide de ses premiers termes 6 6 A ; 6 6, A ;, A ; A ; A ; III ) Ses de ariatio d e site Défiitio : ) O dit e la site est strictemet croissate si chae terme de la site est strictemet iférier a terme i le sit : por tot etier : ) O dit e la site est strictemet décroissate si si chae terme de la site est strictemet spérier a terme i le sit : por tot etier : Graphiemet, o costate e la site défiie das l exemple précédet est : Commet étdier les ariatios d e site Méthodes : O étdie le sige de : Si por tote aler de, alors la site est Si por tote aler de, alors la site est Por e site défiie à l aide d e foctio, d type f de la foctio f sr ; : Si f est croissate sr ;, alors la site, o étdie le ses de ariatio est Si f est décroissate sr ;, alors la site est

3 Por e site à termes strictemet positifs, o compare à : Si, alors la site est Si, alors la site est Exemples : Soit la site défiie par : et la site défiie par por tot etier Etdier le ses de ariatio de ces sites Première méthode : si or doc si : est croissate à partir d rag Dexième méthode : Soit la foctio f x x x défiie sr Sa dériée est : : cette dériée est positie si f ' x x x x, soit si x Si x, la dériée est positie, doc por x la foctio f est croissate Comme la site est défiie par : f, alors la site est croissate à partir d rag Troisième méthode : : ce est pas très élégat : Aisi :, (doc por tot etier ) doc la site est décroissate IV) Sites arithméties Défiitio : O appelle site arithmétie tote site mérie dot chae terme s obtiet e ajotat ombre costat r appelé raiso de la site Elle est doc défiie par récrrece par : +r 7 + ; ; ; 9 ; La site de ombres ;8;;; pet être décrite par e site arithmétie U : aec premier terme et de raiso r =

4 Gééralemet por e site arithmétie de premier terme r r r r r r et de raiso r : O pet se représeter la sitatio a moye d schéma comme celi-ci : r r r r r r Propriété : «Calcl des termes d e site arithmétie» Soit ( ) e site arithmétie de terme iitial et de raiso r ) r por tot etier ) m p m pr por tos etiers m et p e site arithmétie est etièremet défiie par so premier terme et sa raiso Soit la site arithmétie de raiso r = et telle e r r doc r 8 = Calclez et Propriété : «Somme des premiers etiers atrels o l» La somme (où est etier atrel o l) est : S = Démostratio : C est e astce d écritre : S S S soit : S et S = 7 Propriété : «Somme de termes coséctifs d e site arithmétie» Soit S la somme de + premiers termes d e site arithmétie, alors : S Démostratio : S r r r Soit : or : S r r r r

5 doc : S r r r S r r soit : Soit e site arithmétie de raiso et de terme iitial = 7 Calcler S La site ( ) s écrit : r 7, doc : O pet calcler la somme des premiers termes de la site ( ) : Or : Doc : S V ) Représetatios graphies d e site arithmétie Soit ( ) la site arithmétie de terme iitial = et de raiso r = Calclez,,,, r r r ; A ; A ; Exprimez e foctio de Représetez les poits de coordoées ;, por, das le repère ci-cotre Qe remarez-os? Propriété: Les termes d e site arithmétie se représetet graphiemet par des poits aligés Propriété : Si le terme gééral,, d e site s écrit : a b, alors est e site arithmétie de terme iitial b et de raiso a

6 VI ) Sites géométries Soit la site des pissaces de d exposat etier atrel Aisi : est la site géométrie de terme iitial et de raiso = Défiitio : O appelle site géométrie tote site mérie dot chae terme s obtiet e mltipliat par ombre costat appelé raiso de la site Elle est doc défiie par récrrece par : Gééralemet por e site géométrie de premier terme et de raiso : O pet se représeter la sitatio a moye d schéma comme celi-ci : Propriété : «Calcl des termes d e site géométrie» Soit e site géométrie de terme iitial et de raiso ) por tot etier m p ) m p por tos etiers m et p est e site géométrie de terme iitial = et de raiso = Calclez et doc 8 o bie Propriété : «Somme des + premières pissaces d ombre» Soit ombre différet de, alors : = + Démostratio : C est e astce d écritre : S S S S car

7 S d où : S soit : Propriété : «Somme de termes coséctifs d e site géométrie» Soit S la somme de + termes coséctifs d e site géométrie de raiso, si premier terme de cette somme, alors : S (car il y a + termes) Démostratio : S Soit : S Soit la site géométrie de raiso = et de terme iitial = Calclez S 6 7 La site s écrit :, doc : O pet calcler la somme des premiers termes de la site : Or : Doc : S VII) Représetatio graphie d e site géométrie Soit la site géométrie de terme iitial = et de raiso = Calclez,,, Représetez graphiemet les poits de coordoées ; por premiers termes de cette site Exprimez e foctio de est le Propriété : Si le terme gééral,, d e site s écrit : a b alors est e site géométrie de terme iitial a et de raiso b

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

Suites géométriques suite géométrique suite géométrique de raison q

Suites géométriques suite géométrique suite géométrique de raison q Sites géométriqes Itrodctio : M. Fiace dispose d e somme de 5 FF et désire faire frctifier so pactole ; por cela il va voir so baqier qi li propose de optios : e agmetatios forfaitaire, aelle, de 5 F =

Plus en détail

Les suites (1) Vocabulaire usuel des suites Rappels de 1 ère et compléments

Les suites (1) Vocabulaire usuel des suites Rappels de 1 ère et compléments TS Les sites () Vocablaire sel des sites Rappels de ère et complémets 4 3 Revoir le cors de ère formle explicite I Gééralités ) Défiitio Ue site mérie est e foctio : terme d idice relatio de récrrece sites

Plus en détail

Suites arithmétiques et suites géométriques Bilan et croissances

Suites arithmétiques et suites géométriques Bilan et croissances Sites arithmétiqes et sites géométriqes Bila et croissaces I Bila sr les sites arithmétiqes et géométriqes ) Tablea de formles Défiitio Relatio etre dex termes coséctifs Calcl d terme 4 ) Ue qestio de

Plus en détail

Les suites (1) Vocabulaire usuel des suites Rappels de 1 ère et compléments

Les suites (1) Vocabulaire usuel des suites Rappels de 1 ère et compléments TS Revoir le cors de ère I Gééralités ) Défiitio Les sites () Vocablaire sel des sites Rappels de ère et complémets 3 e faço : par compréhesio Exemple : 3,4596 4 3 ième décimale de Ue site mérie est e

Plus en détail

c) représentation graphique T est la tangente à C exp au point A d abscisse 0. Une équation de T est de la forme : y = x + 1.

c) représentation graphique T est la tangente à C exp au point A d abscisse 0. Une équation de T est de la forme : y = x + 1. Chapitre VI : Foctio expoetielle I. La foctio expoetielle a) Défiitio La foctio expoetielle, otée exp, est la foctio défiie sur! par exp(x) = e x, e x état l uique ombre réel strictemet positif dot le

Plus en détail

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41...

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41... Sites arithmétiqes et Géométriqes Nos allos cosidérer des sites de ombres réels Exemple La site des ombres,, 5, 7,, o la site des ombres,,,, 464 Défiitio/Notatio : La site est e gééral oté ( ) (o ( v )

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 6

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 6 Termiale S Exercices sur le chapitre 5 «Suites umériques» Page sur 6 Gééralités sur les suites ------------------------------------------------------------------------------------------------------ Exercice

Plus en détail

Séquence 8. Suites arithmétiques et géométriques. Sommaire

Séquence 8. Suites arithmétiques et géométriques. Sommaire Séquece 8 Suites arithmétiques et géométriques Sommaire Pré-requis Suites arithmétiques Suites géométriques Sythèse du cours Exercices d approfodissemet Séquece 8 MA Ced - Académie e lige Pré-requis A

Plus en détail

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 5

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 5 Termiale S Exercices sur le chapitre 5 «Suites umériques» Page sur 5 Gééralités sur les suites ------------------------------------------------------------------------------------------------------ Exercice

Plus en détail

Suites numériques : définition générale.

Suites numériques : définition générale. 1 Suites arithmétiques Suites umériques : défiitio géérale.... Le pricipe de récurrece... 3 Suites arithmétiques... 4 Formule 1 des suites arithmétiques... 5 Appreos à compter... 6 Formule des suites arithmétiques...

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres.

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres. Eo7 Foctios circulaires et hyperboliques iverses Correctios de Léa Blac-Ceti. Foctios circulaires iverses Eercice Vérifier arcsi + arccos π et arcta + arcta sgπ. Idicatio Correctio Vidéo [00075] Eercice

Plus en détail

Chapitre 2 : Etudes de fonctions.

Chapitre 2 : Etudes de fonctions. PCSI Préparatio des Khôlles 0-04 Chapitre : Etudes de foctios. Eercice type Motrer que pour [0,], o a( ) 4. Edéduire que ( ) 4. Solutio : Si R, 4 ( ) 4 0. Preos alors ]0,[, alors {0,,}, (( )) ( ) 4, e

Plus en détail

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h ECOLE DE HUTES ETUDES COMMERCILES DU NORD Cocors d'admissio sr classes préparatoires MTHEMTIQUES Optio scietifiqe Mardi 9 mai 6 de 8h à h La présetatio, la lisibilité, l'orthographe, la qalité de la rédactio,

Plus en détail

SUITES ARITHMETIQUES ET GEOMETRIQUES SUITES GEOMETRIQUES

SUITES ARITHMETIQUES ET GEOMETRIQUES SUITES GEOMETRIQUES ITE ARITHMETIQE ET GEOMETRIQE EXERCICE : Voc e sére de formle mse e place das le cors : ITE ARITHMETIQE r r p q (p q r 5 ( (...... ( ITE GEOMETRIQE q 6 q q... q q q 7 q 8... q q r s r s q Voc este e sére

Plus en détail

Soit f une fonction dérivable sur R dont le tableau de variations est donné ci-dessous où a et b désignent deux réels.

Soit f une fonction dérivable sur R dont le tableau de variations est donné ci-dessous où a et b désignent deux réels. Métropole septembre 0 EXECICE 5 poits Comm à tos les cadidats Soit f e foctio dérivable sr dot le tablea de variatios est doé ci-dessos où a et b désiget de réels a + b f () Détermier le sige de f () selo

Plus en détail

LIMITES DE SUITES EXERCICES CORRIGES

LIMITES DE SUITES EXERCICES CORRIGES Exercice Détermier la limite (évetelle) des sites LIMITES DE SUITES EXERCICES CORRIGES ci-dessos : ) ) 5) 5 4 6) 8 ) 7) 5 7 4 8) 4) ( ) ) ² Exercice Motrez qe la site satisfait la relatio (R), is vos e

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

CHAPITRE 7 : DERIVATION DES FONCTIONS COMPOSEES - DERIVEE N-IEMES

CHAPITRE 7 : DERIVATION DES FONCTIONS COMPOSEES - DERIVEE N-IEMES Dérivatio des octios composées Cours CHAPITRE 7 : DERIVATION DES FONCTIONS COMPOSEES - DERIVEE N-IEMES. DERIVATION d ue FONCTION COMPOSEE.. Dérivée d ue octio composée Théorème Soit ue octio dérivable

Plus en détail

Quelques inégalités classiques

Quelques inégalités classiques Quelques iégalités classiques O se propose de motrer, sous forme d exercices, quelques iégalités classiques. Les preuves de ces iégalités e écessitet que quelques coaissaces élémetaires.. Exercices classiques

Plus en détail

TD n 3 : quelques exercices sur la récurrence

TD n 3 : quelques exercices sur la récurrence Éocé TD 3 : quelques exercices sur la récurrece Exercice 1 Soit (a ) 0 ue suite de ombres réels ou complexes. O pose b 0 = 1 et b = (1 a k ) pour 1. Motrer que b +1 = 1 Exercice O défiit ue suite (u )

Plus en détail

arxiv:1402.5510v1 [math.co] 22 Feb 2014

arxiv:1402.5510v1 [math.co] 22 Feb 2014 SUR UNE PROPRIÉTÉ DES POLYNÔMES DE STIRLING par arxiv:1402.5510v1 [math.co] 22 Feb 2014 Farid BENCHERIF & Tarek GARICI Résumé. Das cet article, ous répodos positivemet à ue questio posée e 1960 par D.S.

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

CORRIGÉ DE LA FEUILLE 2

CORRIGÉ DE LA FEUILLE 2 CORRIGÉ DE LA FEUILLE. Exercice Soiet u et v deux séries à termes positifs.. Si ue des séries est divergete, alors la série de terme gééral u + v est divergete C est vrai. E effet, supposos que la série

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

1 ère S Suites géométriques (2)

1 ère S Suites géométriques (2) ère S Sites géométries () E ret =, o retrove l formle (exressio d terme géérl d e site géométrie de remier terme I. Reltio etre dex termes elcoes ) Formle est e site géométrie de remier terme et de riso.

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Juin 2014 MATHEMATIQUES

Juin 2014 MATHEMATIQUES Jui 014 1 ères S MATHEMATIQUES Voici ue série d exercices sur différets thèmes abordés e classe de première S. Ils vous permettrot de repredre cotact avec les mathématiques avat d aborder la classe de

Plus en détail

Université Paris-Dauphine Année 2008-2009 U.F.R. Mathématiques de la décision L3 - Statistique Mathématique. Examen

Université Paris-Dauphine Année 2008-2009 U.F.R. Mathématiques de la décision L3 - Statistique Mathématique. Examen Uiversité Paris-Dauphie Aée 28-29 U.F.R. Mathématiques de la décisio L3 - Statistique Mathématique Exame Durée 2h. Le barême est doé à titre idicatif. Exercice : 5 poits) Soit X,...,X ) u échatillo de

Plus en détail

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications.

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications. LEÇON N 20 : Racies -ièmes d u ombre complexe. Iterprétatio géométrique. Applicatios. Pré-requis : Représetatio d u ombre complexe das le pla R 2 mui d u repère orthoormé direct ; Formes trigoométrique

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

1 + ln x + 1 2. MA + MB + MC + MD. AMERIQUE DU SUD Novembre 2000

1 + ln x + 1 2. MA + MB + MC + MD. AMERIQUE DU SUD Novembre 2000 MERIQUE DU SUD Novembre 000 EXERIE U sac cotiet trois boules umérotées respectivemet 0, et, idiscerables au toucher. O tire ue boule du sac, o ote so uméro et o la remet das le sac ; puis o tire ue secode

Plus en détail

SUITES (Partie 1) Dans l'exemple, si on suppose qu'un domino (k) tombe alors le domino suivant (k+1) tombe également.

SUITES (Partie 1) Dans l'exemple, si on suppose qu'un domino (k) tombe alors le domino suivant (k+1) tombe également. SUITES (Partie ) I. Raisoemet par récurrece ) Le pricipe C'est au mathématicie italie Giuseppe Peao (858 ; 93), ci-cotre, que l'o attribue le pricipe du raisoemet par récurrece. Le om a probablemet été

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

( ) soit vraie, et on démontre ( ) elle est vraie. ( ) est vraie pour tout entier naturel n n 0

( ) soit vraie, et on démontre ( ) elle est vraie. ( ) est vraie pour tout entier naturel n n 0 Chapitre 1 : Les suites umériques I. Le raisoemet par récurrece 1. Présetatio Soit P( ) la propriété : «7 + 2 est divisible par 3». O veut vérifier que cette propriété est vraie pour tout etier aturel.

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

INF582 : Cryptologie Attaque de clés RSA par la méthode de Wiener

INF582 : Cryptologie Attaque de clés RSA par la méthode de Wiener INF58 : Cryptologie Attaque de clés RSA par la méthode de Wieer Nicolas DOUZIECH - Thomas JANNAUD - X005 9 mars 008 Table des matières Quelques rappels sur le cryptosystème RSA Pricipe de l attaque de

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de "Processus Stochastiques"

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de Processus Stochastiques Master ère aée spécialité IMIS et Mathématiques Cotrôle cotiu de "Processus Stochastiques" 8 octobre 00 - Durée h Calculatrices et documets autorisés Exercice Jacques va tous les jours à so travail e emprutat

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Introduction aux tests statistiques

Introduction aux tests statistiques Itroductio aux tests statistiques Philippe Boeau 27 septembre 2006 Chapitre 1 Élémets de probabilités Exercice 1 O ote E l esemble des etiers aturels iférieurs ou égaux à 12 et A (respectivemet B et C)

Plus en détail

Chapitre 3 RÉGRESSION CORRÉLATION

Chapitre 3 RÉGRESSION CORRÉLATION Chapitre 3 RÉGRESSION CORRÉLATION Les doées se présetet sous la forme d ue suite de couples de valeurs umériques(x i, y i ), umérotés de à i =. O ote m x, s x ², m y, s y ² les moyees et les variaces des

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES GRAPHES - EXERCICES CORRIGES Compilatio réalisée à partir d exercices de BAC TES Exercice. U groupe d amis orgaise ue radoée das les Alpes. O a représeté par le graphe ci-dessous les sommets B, C, D, F,

Plus en détail

Exercices sur le raisonnement par récurrence

Exercices sur le raisonnement par récurrence TS Exercices sr le raisoemet par récrrece Das tos les exercices, o veillera à respecter scrplesemet le protocole des récrreces 6 O cosidère la site déiie sr par so premier terme = et la relatio de récrrece

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Notion d équation différentielle : Équations du 1 er ordre

Notion d équation différentielle : Équations du 1 er ordre IUT Orsa Mesures Phsiques Notio d équatio différetielle : Équatios du er ordre Cours du er semestre A. De quoi s agit-il? A-I. Eemples tirés de la géométrie a. Avec tagete et abscisse O suppose que f est

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables Chapitre III Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables

Plus en détail

Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P.

Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P. Uiversité Mohammed V - Agdal Faculté des Scieces Départemet de Mathématiques et Iformatique Aveue Ib Batouta, B.P. 04 Rabat, Maroc Filière DEUG : Scieces Mathématiques et Iformatique (SMI) et Scieces Mathématiques

Plus en détail

Devoir de révision vacances de printemps. Durée : 2 heures nom et prénom : Exercice 2 :

Devoir de révision vacances de printemps. Durée : 2 heures nom et prénom : Exercice 2 : Termiale sts Devoir de révisio vacaces de pritemps Durée : heures om et préom : Exercice 1 : U laboratoire pharmaceutique fabrique u médicamet. Le test de cotrôle de qualité de ce médicamet porte sur deux

Plus en détail

Correction des exercices sur la nature ondulatoire de la lumière

Correction des exercices sur la nature ondulatoire de la lumière CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Une définition de la fonction exponentielle dans l esprit des nouveaux programmes

Une définition de la fonction exponentielle dans l esprit des nouveaux programmes 1 Ue défiitio de la foctio expoetielle das l esprit des ouveaux programmes 0. Itroductio. Les ouveaux programmes de mathématiques de termiale S qui sot etrés e vigueur à la retrée 2002 icitet fortemet

Plus en détail

Reconnaissance des formes: Fenêtre de Parzen

Reconnaissance des formes: Fenêtre de Parzen Préom Nom Recoaissace des formes: Feêtre de Parze Pricipes de l'appretissage o paramétrique Estimatio o paramétrique de la desité Feêtres de Parze vs. k plus proches voisis Feêtres de Parze Réseau de euroes

Plus en détail

Dérivée de fonctions algébriques et de fonctions implicites

Dérivée de fonctions algébriques et de fonctions implicites Dérivée e foctios algébriques et e foctios implicites Das ce chapitre, ous allos utiliser la éfiitio e foctio érivée pour e éuire es règles e érivatio qui abrègerot les calculs et les rerot mois laborieu.

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Le raisonnement par récurrence, un outil puissant de démonstration

Le raisonnement par récurrence, un outil puissant de démonstration TS Le raisoemet par récurrece, u outil puissat de démostratio I. Itérêt ) Exemple 0 0 u est la suite défiie par u u 2u (suite récurrete ; suite «arithmético-géométrique» ; o e coaît pas l expressio du

Plus en détail

Concours Communs Polytechniques - Session 2011 Corrigé de l épreuve d analyse- Filière MP

Concours Communs Polytechniques - Session 2011 Corrigé de l épreuve d analyse- Filière MP Cocours Commus Polytechiques - Sessio 11 Corrigé de l épreuve d aalyse- Filière MP Séries etières, équatios différetielles et trasformée de Laplace Corrigé par M.TRQI http://alkedy.1.m Eercice 1 1. La

Plus en détail

Informatique quantique IFT6155. Algorithmes simples

Informatique quantique IFT6155. Algorithmes simples Iformatique quatique IFT6155 Algorithmes simples 1 Calcul de foctios À chaque foctio f : X Y o peut associer ue opératio uitaire F x y := x y f(x) clairemet F = F, F F = I et F x 0 := x f(x) Si f est ue

Plus en détail

Moment d'une force Théorème du moment cinétique. Johann Collot collot@in2p3.fr http://lpsc.in2p3.fr/atlas_new/teachingitem.htm Mécanique L1 et IUT1

Moment d'une force Théorème du moment cinétique. Johann Collot collot@in2p3.fr http://lpsc.in2p3.fr/atlas_new/teachingitem.htm Mécanique L1 et IUT1 Momet d'ue force Théorème du momet ciétique Théorème du momet ciétique référetiel iertiel repère fixe /réf. o poit o fixe / repère m M V dt = d P OM dt = OM d P d OM P = d OM P OM d P = V dt m V OM d P

Plus en détail

Terminales S BAC BLANC Mathématiques Sujet

Terminales S BAC BLANC Mathématiques Sujet Sujet Durée 4 heures. La calculatrice graphique est autorisée. Le barème est fouri à titre idicatif. Eercice 1 (commu) [5 poits] 3 Soit la foctio f défiie sur + par f ( ) =. O appelle C, la courbe représetative

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau.

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau. AVANT PROPOS Cet ouvrage propose aux élèves de classes termiales (fraçais) S (spécialité math) des rappels et des complémets de cours assez complet, aisi que des problèmes et des exercices corrigés. Les

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 5 mai 2016 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 5 mai 2016 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 5 mai 06 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer qu

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario Mathématiques Termiale S Corrigés des eercices Rédactio : Lauret Beroul Isabelle Teaud Sébastie Cario Coordiatio : Sébastie Cario Ce cours est la propriété du Ced Les images et tetes itégrés à ce cours

Plus en détail

MATHEMATIQUES Terminale Scientifique

MATHEMATIQUES Terminale Scientifique MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi e-mail : lescoursi@cours-icom site : htt://wwwcours-icom siège

Plus en détail

Suites T.S. I.Suites : Le Best of du programme de 1S...1. II.Le raisonnement par récurrence...8. III.Limite d'une suite...10

Suites T.S. I.Suites : Le Best of du programme de 1S...1. II.Le raisonnement par récurrence...8. III.Limite d'une suite...10 Table des matières Suites T.S. I.Suites : Le Best of du programme de 1S...1 A.Pourquoi les suites? qu'est-ce que c'est?...1 B.Défiitio et otatios...1 C.Deux faços de défiir ue suite :...2 D.Représetatio

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE Nombre de pages de l épreuve Durée de l épreuve 0 pages 3h00 Compte teu du fait qu il s agissait d u cocours d etraiemet, cette épreuve à été prise sur le

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

2009/2010. Elaboré par : ALI AKIR

2009/2010. Elaboré par : ALI AKIR BAC MATHS 9/ Cors et 8 eercices Elboré pr : ALI AKIR Doe des cors prticliers e mthémtiqes por tos les ive Pls d iformtios : Cotcter à GSM : 4 96 4 Emil : kircm@gmilcom Site Web : http://mths-kirmidiblogscom/

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

I) A quoi sert la géométrie vectorielle?

I) A quoi sert la géométrie vectorielle? FIHE METHOE sr la GEOMETRIE VETORIELLE I) qoi sert la géométrie ectorielle? Exemples : 1La itesse d corant est représentée par le ecter V,celle d nager par rapport à l ea V. R 2 V V R 1 En qel point de

Plus en détail

GEOMETRIE DANS L ESPACE. I) Vecteurs de l espace

GEOMETRIE DANS L ESPACE. I) Vecteurs de l espace GEOETRIE DNS L ESPCE ant tot, rappelons ne propriété fondamentale : Tot théorème de Géométrie plane s appliqe dans n importe qel plan de l espace. Les exemples de ce chapitre se réfèrent a dessin ci-contre

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

Signaux électriques périodiques

Signaux électriques périodiques igaux électriques périodiques «U sigal, c est de l éergie. Pour peu, o pourrait dire que cela pèse.» M. Devos, u cours d électroique e 986 Résumé Ue fois que l o dispose de la descriptio d u réseau électrique

Plus en détail