Combiner des apprenants: le boosting

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Combiner des apprenants: le boosting"

Transcription

1 Types d expers Combner des apprenans: le boosng A. Cornuéjols IAA (basé sur Rob Schapre s IJCAI 99 alk)! Un seul exper sur l ensemble de X! Un exper par sous-régons de X (e.g. arbres de décsons)! Pluseurs expers, ous sur l ensemble de X! Pluseurs expers spécalsés sur des sousrégons de X Boosng 2 Types d expers Types d apprenssage Domane(s) Exper(s) Sur X Sous-régons de X! Chaque exper apprend sur l ensemble d apprenssage S m! Ulsaon de dfférens arbus (e.g. arbres de décsons, co-learnng) Un exper Ensemble d expers Classque Boosng Arbres de décsons! Ulsaon de dfférens ensembles d apprenssage pour chaque exper (e.g. boosng)! Combnason de ou cela Boosng 3 Boosng 4

2 Prédcon de courses hppques Commen gagner aux courses?! On nerroge des pareurs professonnels! Supposons: Que les professonnels ne pussen pas fournr une règle de par smple e performane Mas que face à des cas de courses, ls pussen oujours produre des règles un peu melleures que le hasard! Pouvons-nous devenr rche? Boosng 5 Boosng 6 Idée Quesons! Demander à l exper des heursques! Recuellr un ensemble de cas pour lesquels ces heursques échouen (cas dffcles)! Ré-nerroger l exper pour qu l fournsse des heursques pour les cas dffcles! E ans de sue! Combner oues ces heursques! Commen chosr les courses à chaque éape?! Se concenrer sur les courses les plus dffcles (celles sur lesquelles les heursques précédenes son les mons performanes)! Commen combner les heursques (règles de prédcon) en une seule règle de prédcon?! Prendre une voe (pondéré) majorare de ces règles! Un exper peu auss ben êre un algorhme d apprenssage peu performan (weak learner) Boosng 7 Boosng 8

3 Boosng Illusraon! boosng = méhode générale pour converr des règles de prédcon peu performanes en une règle de prédcon (rès) performane! Plus précsémen : Éan donné un algorhme d apprenssage fable qu peu oujours reourner une hypohèse de aux d erreur!1/2-" Un algorhme de boosng peu consrure (de manère prouvée) une règle de décson (hypohèse) de aux d erreur! #! So X un espace d enrée à 10 dmensons! Les arbus son ndépendans e de dsrbuon gaussenne! L équee es défne par : avec : u =! 2000 exemples d apprenssages (1000+;1000-)! exemples de es 2 $ 1 s " j=1,10 x % j & #1 snon! 2 10 (0,5) = 9,34! Apprenssage d arbres de décson >! 2 10 (0,5) Boosng 9 Boosng 10 Illusraon (con.) Plan 0,5 0,4 0,3 0,2 0,1 0,0 Arbre à un noeud Arbre à 400 noeuds Arbres à un nœud avec boosng! Inroducon au boosng (AdaBoos)! Expérences! Concluson! Analyse de l erreur en apprenssage! Analyse de l erreur en généralsaon basée sur la héore des marges! Exensons! Bblographe Boosng 11 Boosng 12

4 Boosng : vue formelle Le prncpe général! Éan donné l échanllon d apprenssage S!= {(x 1,y 1 ),,(x m,y m )}! y ${%1,+1} équee de l exemple x $ S D T X h T! Pour = 1,,T: Consrure la dsrbuon D sur {1,,m} Trouver l hypohèse fable ( heursque ) h : S & {%1,+1} avec erreur pee # sur D : " = PrD [ h ( x )! y ] D 2 D 1 X h 2 X h 1 H fnale (x) = sgn # $ % T " = 0 &!. h (x) '(! Reourner l hypohèse fnale h fnal D 0 X h 0! Commen passer de D à D +1? Boosng 13! Commen calculer la pondéraon '? Boosng 14 AdaBoos [Freund&Schapre 97]! consrure D : Éan donnée D e h : D + 1 D ( ) 1 = &' D # e f y = h ( x ) = % " ' Z! e f y $ h ( x ) D =! exp( "#! y! h ( x )) Z 1 m où: Z = consane de normalsaon 1 & 1' ( # ) ln > 0 2 $! = % ( "! Hypohèse fnale : & # H fnal ( x) = sgn$ '( h ( x)! % " AdaBoos en plus gros ) D = & 1' ( # ln > 0 2 $! % ( " = D Z # e %"! e &' ' f f y = h ( x ) y $ h ( x ) & # H fnal ( x) = sgn$ '( h ( x)! % " Boosng 15 Boosng 16

5 Exemple joue Éape 1 Boosng 17 Boosng 18 Éape 2 Éape 3 Boosng 19 Boosng 20

6 Hypohèse fnale Une Apple Boosng hp:// Boosng 21 Boosng 22 Analyse héorque! Vor [R. Mer & G. Räsch. «An nroducon o boosng and leveragng» In S. Mendelson and A. Smola (eds.) Advanced lecures on Machne Learnng, LNCS, pp , Sprnger 2003]! Lens avec les méhodes par maxmsaon de la marge! Encore en dscusson Boosng e maxmsaon de la marge! Adaboos e SVM effecuen des recherches de classfeurs dans des espaces de grande dmenson, mas : Les normes ulsées son dfférenes, donc les espaces explorés son dfférens Opmsaon sous conranes : quadraque pour SVM Lnéare pour boosng Recherches dfférenes : Globale par la méhode des noyaux : SVM Glouonne (1 coordonnée à la fos) pour les boosng Boosng 23 Boosng 24

7 Avanages praques de AdaBoos Aspecs praques! (rès) rapde! smple + facle à programmer! Une seul paramère à régler : le nombre d éapes de boosng (T)! Applcable à de nombreux domanes par un bon chox de classfeur fable (neuro ne, C4.5, )! Pas de sur-spécalsaon par la maxmsaon des marges! Peu êre adapé au cas où h : X & R ; la classe es défne par le sgne de h (x) ; la confance es donnée par h (x)! Peu êre adapé aux problèmes mul-classes où y $ {1,..,c} e aux problèmes mul-équees! Perme de rouver les exemples aberrans (oulers) Avanages Un mea-algorhme d apprenssage : ulser n mpore quel algorhme d apprenssage fable En prncpe, un seul paramère à régler (le nombre T d éraons) Facle e asé à programmer Performances héorques garanes Dffculés Dffcle d ncorporer des connassances a pror Dffcle de savor commen régularser Le melleur chox d un appren fable n es pas évden Les fronères de décson en ulsan des méhodes parallèles aux axes es souven rès rrégulère (non nerpréable) Boosng 25 Boosng 26 Applcaons Boosng : résumé! La prédcon fnale es ssue d une combnason (voe pondéré) de pluseurs prédcons! Méhode : Iérave Chaque classfeur dépend des précédens (les classfeurs ne son donc pas ndépendans comme dans d aures méhodes de voe) Les exemples son pondérés dfféremmen Le pods des exemples reflèe la dffculé des classfeurs précédens à les apprendre Boosng 27 Boosng 28

8 Baggng [Breman,96] Baggng (sue)! Généraon de k échanllons «ndépendans» par rage avec remse dans l échanllon S m! Pour chaque échanllon, apprenssage d un classfeur en ulsan le même algorhme d apprenssage! La prédcon fnale pour un nouvel exemple es obenue par voe (smple) des classfeurs! Il es souven d que : Le baggng fonconne en rédusan la varance en lassan le bas nchangé Seulemen pour la foncon de coû quadraque Pas vra pour la foncon de pere 0-1! Mas, encore ncomplèemen comprs Vor [Yves Grandvale : «Baggng equalzes nfluence», Machne Learnng, 55(3), pages , 2004.] Boosng 29 Boosng 30 Ea de l ar (hsorque)! [Valan 84] nroduced heorecal PAC model for sudyng machne learnng! [Kearns & Valan 88] open problem of fndng a boosng algorhm! [Schapre 89], [Freund 90] frs polynomal-me boosng algorhms! [Drucker, Schapre & Smard 92] frs expermens usng boosng Ea de l ar (sue)! [Freund & Schapre 95] nroduced AdaBoos algorhm srong praccal advanages over prevous boosng algorhms! expermens usng AdaBoos: [Drucker & Cores 95] [Schapre & Snger 98] [Jackson & Cravon 96] [Macln & Opz 97] [Freund & Schapre 96] [Bauer & Kohav 97] [Qunlan 96] [Schwenk & Bengo 98] [Breman 96] [ Deerch 98]! connung developmen of heory & algorhms: [Schapre,Freund,Barle & Lee 97] [Schapre & Snger 98] [Breman 97] [Mason, Barle & Baxer 98] [Grve and Schuurmans 98][Fredman, Hase & Tbshran 98] Boosng 31 Boosng 32

9 Bblographe! Hase, T., Tbshran, R. and Fredman, J. (2001) The elemens of sascal learnng. Daa mnng, nference and predcon. Sprnger Verlag, Boosng 33

Gestion de production court terme en contexte incertain. Gestion de production à court terme. EDF R&D École Centrale Paris

Gestion de production court terme en contexte incertain. Gestion de production à court terme. EDF R&D École Centrale Paris Geson de producon cour erme en conee nceran EDF R&D École enrale Pars Geson de producon à cour erme Encadrans ndusrels : Gérald Vgnal - Jérôme Quenu Encadran académque : Yves Dallery-Mchel Mnou Snda Ben

Plus en détail

La régression logistique PLS : Application à la détection de défaillance d entreprises

La régression logistique PLS : Application à la détection de défaillance d entreprises Busness Scool W O R K I N G P A P E R S E R I E S Workng Paper 04-38 La régresson logsque PLS : Applcaon à la déecon de défallance d enreprses BEN JABEUR Sam p://.pag.fr/fr/accuel/la-recerce/publcaons-wp.ml

Plus en détail

Plan. Définition, Historique, Régression Linéaire Multiple. Interprétation géométrique de la solution, Lien avec l analyse de Corrélation Canonique,

Plan. Définition, Historique, Régression Linéaire Multiple. Interprétation géométrique de la solution, Lien avec l analyse de Corrélation Canonique, Plan Défnon, Régresson Lnéare Mulple Massh-Réza Amn Technques d Analyse de Données e Théore de l Informaon Maser M IAD Parcours Recherche amn@polea.lp6.fr Hsorque, Inerpréaon géomérque de la soluon, Len

Plus en détail

Modèles d analyse des biographies en temps discret Exemple d utilisation

Modèles d analyse des biographies en temps discret Exemple d utilisation Modèles d analyse des bographes en emps dscre Exemple d ulsaon Jean-Mare Le Goff Cenre Lnes Pôle Naonal de recherche Lves Unversé de Lausanne Plan Deux ypes de données dscrèes Modèles à emps dscre Modèle

Plus en détail

Philippe BIENAIME Actuaire I.S.F.A., GPA Laboratoire de Sciences Actuarielle et Financière, I.S.F.A., Université Claude Bernard Lyon 1

Philippe BIENAIME Actuaire I.S.F.A., GPA Laboratoire de Sciences Actuarielle et Financière, I.S.F.A., Université Claude Bernard Lyon 1 SYSTEMES BOUS-MALUS Phlppe BIEAIME Acuare I.S.F.A., GPA Laboraore de Scences Acuarelle e Fnancère, I.S.F.A., Unversé Claude Bernard Lyon ahale RICHARD GPA Laboraore de Scences Acuarelle e Fnancère, I.S.F.A.,

Plus en détail

Commande sans modèle (?)

Commande sans modèle (?) Commande sans modèle? Jacques Lon Unversé de Savoe jacques.lon@unv-savoe.fr Cours Ecole de Bucares 2012 1 Plan Présenaon du conexe Inroducon à la commande avec/sans modèle Approches classques Commande

Plus en détail

Modélisation et simulation de l hydroformage de liners métalliques pour le stockage d hydrogène sous haute pression

Modélisation et simulation de l hydroformage de liners métalliques pour le stockage d hydrogène sous haute pression Modélsaon e smulaon de l hydroformage de lners méallques pour le sockage d hydrogène sous haue presson J.C. Geln, C. Labergère,. Boudeau, S. Thbaud Insu FEMTO-ST, Déparemen Laboraore de Mécanque Applquée

Plus en détail

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs Combnason de dres d'experts en élctaton de los a pror. Applcaton à un modèle doseréponse pour Lstera chez la sours. Exposé ApplBugs ISABELLE ALBERT 8 / / 03 INTRODUCTION Cet exposé présente une parte du

Plus en détail

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain.

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain. Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amens.fr/pedagoge/maths/new/ue2007/synthese_ateler_annette_alan.pdf 1 La règle du jeu Un drecteur de casno se propose d nstaller le

Plus en détail

Proposition d'une solution au problème d initialisation cas du K-means

Proposition d'une solution au problème d initialisation cas du K-means Proposton d'une soluton au problème d ntalsaton cas du K-means Z.Guelll et L.Zaou, Unversté des scences et de la technologe d Oran MB, Unversté Mohamed Boudaf USTO -BP 505 El Mnaouer -ORAN - Algére g.zouaou@gmal.com,

Plus en détail

INF135 Travail Pratique #1 Remise le 16 octobre 2012

INF135 Travail Pratique #1 Remise le 16 octobre 2012 École de Technologe Supéeue Pa : Fancs Boudeau, ÉcThé Révson : Aïda Ouangaoua INF35 Taval Paque # Remse le 6 ocobe 0 Inaon à la pogammaon en géne mécanque Taval ndvduel. Objecfs - Mee en applcaon des noons

Plus en détail

Décomposition d une fraction rationnelle en éléments simples

Décomposition d une fraction rationnelle en éléments simples Décomposon d une fracon raonnelle en élémens smples I Premère éape Dvson eucldenne de polynômes On rappelle que procéder à la dvson eucldenne d un polynôme A par un polynôme B non nul, c es écrre A BQ

Plus en détail

Ecole des JDMACS, Angers, 19-21 Mars 2009 Commande prédictive : interaction optimisation commande

Ecole des JDMACS, Angers, 19-21 Mars 2009 Commande prédictive : interaction optimisation commande Par : Inrodcon à la ommand Prédcv Ecol ds JDMAS, Angrs, 9- Mars 009 ommand prédcv : nracon opmsaon command Plan d la présnaon. Inrodcon. Qls rpèrs. Phlosoph. s concps d la ommand Prédcv. Prncps d bas.

Plus en détail

COMPRENDRE LA METHODE X11

COMPRENDRE LA METHODE X11 COMPRENDRE LA METHODE X Domnque LADIRAY, Benoî QUENNEVILLE Julle 999 Domnque Ladray es Admnsraeur de l Insu Naonal de la Sasque e des Éudes Économques, 8 Boulevard Adolphe Pnard, 754 Pars, France. Ce raval

Plus en détail

Condensateur. Relation entre la charge et la tension aux bornes d un condensateur :

Condensateur. Relation entre la charge et la tension aux bornes d un condensateur : Formulare d élecrcé Pons de cours Condensaeur Explcaons ou ulsaons Un condensaeur es composé de deux armaures méallques séparé par un solan appelé délecrque. S une armaure se charge posvemen, l aure es

Plus en détail

Circuits linéaires en régime transitoire

Circuits linéaires en régime transitoire MPSI - Élecrocnée I - rcs lnéares en régme ransore page 1/8 rcs lnéares en régme ransore 1 ondons nales e conné On va éder ce se passe enre enre dex régmes conns = régme ransore. es granders élecres ne

Plus en détail

LIMITES DU MARCHÉ : MONOPOLE NATUREL

LIMITES DU MARCHÉ : MONOPOLE NATUREL LIMITES DU MARCHÉ : MONOPOLE NATUREL Le monopole naurel CM décroî avec l échelle de producon = Cm rès fable / CF L Éa do réglemener Soluon 1 : arfcaon au coû margnal Effcace au sens de Pareo mas peres

Plus en détail

Titre : Développement d outils statistiques pour la mise en place de boucles de régulation en microélectronique

Titre : Développement d outils statistiques pour la mise en place de boucles de régulation en microélectronique THESE En vue de l obenon du DOCTORAT DE L'UNIVERSITE DE TOULOUSE III Délvré par l unversé Toulouse III - Paul Sabaer Dscplne : Mahémaques Applquées Opon : Sasque Présenée e souenue par : Carolne PACCARD

Plus en détail

N o 12-001-XIF au catalogue. Techniques d'enquête

N o 12-001-XIF au catalogue. Techniques d'enquête N o -00-XIF au caalogue echnques d'enquêe 005 Commen obenr d aures rensegnemens oue demande de rensegnemens au suje du présen produ ou au suje de sasques ou de serces connexes do êre adressée à : Dson

Plus en détail

Classification des images des dattes par SVM : contribution à l amélioration du processus de tri

Classification des images des dattes par SVM : contribution à l amélioration du processus de tri Classfcaton des mages des dattes par SVM : contrbuton à l améloraton du processus de tr Djeffal Abdelhamd 1, Regueb Salah 1, Babahenn Mohamed Chaouk 1,Taleb Ahmed Abdelmalk 2, 1 Département d Informatque,

Plus en détail

Régime transitoire. 4.2 Aspect énergétique Décharge d un condensateur - Régime libre Régime libre d un circuit R,C...

Régime transitoire. 4.2 Aspect énergétique Décharge d un condensateur - Régime libre Régime libre d un circuit R,C... égme ransore Table des maères 1 Crc C sére soms à n échelon de enson 2 1.1 chelon de enson............................. 2 1.2 Charge d n condensaer......................... 2 1.2.1 Condons nales.........................

Plus en détail

Principe de la recherche d information Application à l indexation et la recherche d images par le contenu

Principe de la recherche d information Application à l indexation et la recherche d images par le contenu Principe de la recherche d information Application à l indexation et la recherche d images par le contenu Apprentissage par combinaison de classifieurs : le boosting Alexis LECHERVY 4 février 2011 Contenu

Plus en détail

TH R. 220V 50Hz. i a. chronogrammes : V GK. φ+2π

TH R. 220V 50Hz. i a. chronogrammes : V GK. φ+2π edressemen monophasé commandé C.P.G.E-SI-SAFI edressemen monophasé commandé Inroducon : Un monage redresseur commandé perme d obenr une enson connue réglable à parr d une enson alernave snusoïdale. L ulsaon

Plus en détail

PREVISION DES VENTES ET EFFICACITE DES CHAINES LOGISTIQUES - ESSAI DE MODELISATION -

PREVISION DES VENTES ET EFFICACITE DES CHAINES LOGISTIQUES - ESSAI DE MODELISATION - Les Cahers du CREAD n 9 /00 5 PREVISION DES VENTES ET EFFICACITE DES CHAINES LOGISTIQUES - ESSAI DE MODELISATION - Mosefa BELMOKADDEM * Omar BENATEK ** RESUME Le bu de ce raval es un essa d analyse du

Plus en détail

Détection et suivi de visages par Support Vector Machine robustes aux changements d échelle

Détection et suivi de visages par Support Vector Machine robustes aux changements d échelle Détecton et suv de vsages par Support Vector Machne robustes au changements d échelle Lonel CARMINATI Drectrce de Thèse : Jenny Benos-Pneau Projet Analyse et Indeaton Vdéo lcarmna@labr.fr http://www.labr.fr/recherche/imageson/aiv/

Plus en détail

Résumé. n Nous avons vu dans le cours précédent l estimation paramétrique pour la classification et régression pour des variables à une dimension.

Résumé. n Nous avons vu dans le cours précédent l estimation paramétrique pour la classification et régression pour des variables à une dimension. Résué Données ulvarables CHAPIRE 5: Méhoes ulvarables n ous avons vu ans le cours précéen l esaon paraérque pour la classfcaon e régresson pour es varables à une enson. n Dans ce cours nous allons vor

Plus en détail

Cryptographie évolutionniste

Cryptographie évolutionniste Cryptographe évolutonnste Applcaton des algorthmes évolutonnstes à la cryptographe Fouza Omary* Abderrahm Tragha** Aboubakr Lbekkour* *Département de mathématques et nformatque faculté des scences-rabat

Plus en détail

Cours Thème VIII.3 CONVERSION STATIQUE D'ÉNERGIE

Cours Thème VIII.3 CONVERSION STATIQUE D'ÉNERGIE ours hème VIII.3 ONVSION SAIQU D'ÉNGI 3- Famlles de conversseurs saques Suvan le ype de machne à commander e suvan la naure de la source de pussance, on dsngue pluseurs famlles de conversseurs saques (schéma

Plus en détail

Méthodes à vecteurs de support et Indexation sonore

Méthodes à vecteurs de support et Indexation sonore FORMATION DOCTORALE EN INFORMATIQUE UNIVERSITE PAUL SABATIER DEA INFORMATIQUE de L IMAGE et du LANGAGE (IIL) Méthodes à vecteurs de support et Indexaton sonore par José Anbal ARIAS AGUILAR Drecteur de

Plus en détail

Reconnaissance du Geste Humain par Vision Artificielle: Application à la Langue des Signes

Reconnaissance du Geste Humain par Vision Artificielle: Application à la Langue des Signes Reconnassance du Gese Human par Vson Arfcelle: Applcaon à la Langue des Sgnes Présené par: Arnaud Deslandes Arnaud.Deslandes@n-evry.fr Rappor de sage dans le cadre du : Inellgence Arfcelle Reconnassance

Plus en détail

2. Loi de propagation des erreurs (cas simples)

2. Loi de propagation des erreurs (cas simples) Lycée Blase-Cendrars/Physque/Labos/DC///04 Labos de physque : Mesures - Propagaton d erreurs - Mesures répéttves - Statstques. Prncpe de la mesure en physque Une mesure est toujours mprécse. La précson

Plus en détail

THÈSE. Présentée par. Bassem JIDA. Pour obtenir le grade de DOCTEUR DE L UNIVERSITÉ DU LITTORAL CÔTE D OPALE

THÈSE. Présentée par. Bassem JIDA. Pour obtenir le grade de DOCTEUR DE L UNIVERSITÉ DU LITTORAL CÔTE D OPALE N d ordre : ULCO 008.35 Annee 008 THÈSE Présenée par Bassem JIDA Pour obenr le grade de DOCTEUR DE L UNIVERSITÉ DU LITTORAL CÔTE D OPALE Spécalé : Géne Informaque, Auomaque e Traemen du Sgnal e des Images

Plus en détail

Modélisation, Simulation et Commande des systèmes électriques

Modélisation, Simulation et Commande des systèmes électriques Modélsaon, Smulaon e Commande des sysèmes élecrques runo FRANCOIS runo.francos@ec-llle.fr Plan Cours: Généralé sur les sysèmes physques Cours: Le Graphe Informaonnel de Causalé Cours: Modélsaon de la machne

Plus en détail

ÉCOLE DES HAUTES ÉTUDES COMMERCIALES AFFILIÉE À L'UNIVERSITÉ DE MONTRÉAL

ÉCOLE DES HAUTES ÉTUDES COMMERCIALES AFFILIÉE À L'UNIVERSITÉ DE MONTRÉAL ÉCOLE DES HAUTES ÉTUDES COMMERCIALES AFFILIÉE À L'UNIVERSITÉ DE MONTRÉAL Un algorhme de mnmax dynamque sochasque our la soluon d un roblème d omsaon de orefeulle ar Érc Srnguel Scences de la geson Mémore

Plus en détail

UNE POLITIQUE DE MAINTENANCE PREVENTIVE ASSOCIEE A UNE DEGRADATION ACCUMULATIVE BIVARIEE OBSERVEE CONTINUMENT

UNE POLITIQUE DE MAINTENANCE PREVENTIVE ASSOCIEE A UNE DEGRADATION ACCUMULATIVE BIVARIEE OBSERVEE CONTINUMENT UNE POITIQUE DE AINTENANE PREVENTIVE ASSOIEE A UNE DEGRADATION AUUATIVE BIVARIEE OBSERVEE ONTINUENT A PREVENTIVE AINTENANE POIY ASSOIATED WITH A ONTINUOUSY OBSERVED UUATIVE BIVARIATE DETERIORATION Ha Ha

Plus en détail

EVALUATION DE L IMPACT DU CREDIT D IMPÔT RECHERCHE

EVALUATION DE L IMPACT DU CREDIT D IMPÔT RECHERCHE EVALUATION DE L IMPACT DU CREDIT D IMPÔT RECHERCHE Benoî Mulkay e Jacques Maresse 2 Rappor pour le Mnsère l Ensegnemen supéreur e de la Recherche Novembre 20 Unversé de Monpeller Faculé d'econome beno.mulkay@unv-monp.fr

Plus en détail

Le raisonnement incertain

Le raisonnement incertain 1 Plan général 2 Le rasonnement ncertan dans les systèmes experts I- Introducton aux systèmes experts II- Fondements : organsaton et fonctonnement des SE III- Le rasonnement ncertan Introducton Antone

Plus en détail

Support Vector Machines (SVM)

Support Vector Machines (SVM) Ecoe Centrae de Lyon Cours: SVM Support Vector Machne Séparateurs à Vastes Marges Par : Lmng Chen Lmng.chen@ec-yon.fr 9/03/007 Ecoe Centrae de Lyon Support Vector Machnes SVM Une méthodooge d nférence

Plus en détail

Prévision des ventes des articles textiles confectionnés. B. Zitouni*, S. Msahli* * Unité de Recherches Textiles, Ksar-Hellal, Tunisie.

Prévision des ventes des articles textiles confectionnés. B. Zitouni*, S. Msahli* * Unité de Recherches Textiles, Ksar-Hellal, Tunisie. Prévson des ventes des artcles textles confectonnés B Ztoun*, S Msahl* * Unté de Recherches Textles, Ksar-Hellal, Tunse Résumé Dans cette étude, on se propose de détermner s le recours à des réseaux de

Plus en détail

PLAN D EVALUATION MAURDOR SECONDE CAMPAGNE

PLAN D EVALUATION MAURDOR SECONDE CAMPAGNE PLAN D EVALUATION MAURDOR ECONDE CAMPAGNE 1 INTRODUCTION Coordonnée par le Laboraore Naonal de mérologe e d Essas (LNE) e CAIDIAN, fnancée par la DGA, la présene campagne d évaluaon propose un cadre commun

Plus en détail

0707 70 70 Lot-sizing Résumé :

0707 70 70 Lot-sizing Résumé : 77 7 7 2 Lo-szng Résumé : L améloraon de la qualé des servces logsques es la garane essenelle pour la réalsaon de l avanage de ces servces, l augmenaon du nveau de sasfacon des clens e l améloraon de la

Plus en détail

Energie et puissance électrique

Energie et puissance électrique - 1 - Energe e pussance élecrque 1 Tes de saor : Valeur effcace a) So un sgnal () pérodque de pérode T. Défnr sa aleur effcace en radusan «R.M.S». Pus défnr sa aleur effcace sous forme d une négrale. b)

Plus en détail

La méthodologie d étude d évenement : Une méthode et des outils à s approprier en finance

La méthodologie d étude d évenement : Une méthode et des outils à s approprier en finance evue des Scences Humanes Unversé Mohamed Khder Bskra No :9 La méhodologe d éude d évenemen : Une méhode e des ouls à s approprer en fnance Unversé de Skkda ésumé: Les éudes d événemens son largemen applquées,

Plus en détail

DEA de physique subatomique Corrigé de l examen d analyse statistique des données et de modélisation session de février - année 2002-2003

DEA de physique subatomique Corrigé de l examen d analyse statistique des données et de modélisation session de février - année 2002-2003 DEA d physqu subatomqu Corrgé d l xamn d analys statstqu ds donnés t d modélsaton ssson d févrr - anné 22-23 Jérôm Baudot sur 45 ponts I- Errur sur la msur d un asymétr avant-arrèr ponts I-a La formul

Plus en détail

Enseignement secondaire. PHYSI Physique Programme

Enseignement secondaire. PHYSI Physique Programme Ensegnement secondare Dvson supéreure PHYSI Physque Programme 3CB_3CC_3CF_3MB_3MC_3MF Langue véhculare : franças Nombre mnmal de devors par trmestre : 1 PHYSI_3CB_3CC_3CF_3MB_3MC_3MF_PROG_10-11 Page 1

Plus en détail

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin.

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin. Formaion ESSEC Gesion de parimoine Séminaire i «Savoir vendre les nouvelles classes d acifs financiers» Produis à capial garani : méhode du coussin (CCPI) Origine de la méhode Descripion de la méhode Plan

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

BILAN EN ELECTRICITE : RC, RL ET RLC

BILAN EN ELECTRICITE : RC, RL ET RLC IN N TIIT :, T I. INTNSIT : = dq d en couran varable I = Q en couran connu Méhode générale d éablssemen des équaons dfférenelles : lo d addvé des ensons pus relaons dq caracérsques :, lo d Ohm u = aux

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

3- Réseau Neurologique (NN) 3-1- Réseau classique

3- Réseau Neurologique (NN) 3-1- Réseau classique OUTILS DE PREVISION DE LA VITESSE DE VENT : APPLICATION A LA CARACTERISATION ET A L OPTIMISATION DES CENTRALES EOLIENNES POUR L'INTEGRATION DANS LES RESEAUX ELECTRIQUES A MADAGASCAR. Andramahtasoa Bernard

Plus en détail

But... 2. I. Généralités sur la quantification des risques dans le SST... 2. I.1 Modèle analytique... 3. I.1.1 Version intégrale...

But... 2. I. Généralités sur la quantification des risques dans le SST... 2. I.1 Modèle analytique... 3. I.1.1 Version intégrale... GUIDE PRATIQUE sur le modèle sandard SST pour les rsques de marché Edon du 23 décembre 204 Table des maères Bu... 2 I. Généralés sur la quanfcaon des rsques dans le SST... 2 I. Modèle analyque... 3 I..

Plus en détail

Modèle dynamique de transport basé sur les activités

Modèle dynamique de transport basé sur les activités Moèle ynamque e ranspor basé sur les acvés Ta-Yu Ma To ce hs verson: Ta-Yu Ma. Moèle ynamque e ranspor basé sur les acvés. Humanes an Socal Scences. Ecole es Pons ParsTech, 27. French. HAL

Plus en détail

gaussien pour l analyse de sensibilité d une sortie spatiale d un code de calcul

gaussien pour l analyse de sensibilité d une sortie spatiale d un code de calcul Utlsaton du métamodèle processus gaussen pour l analyse de sensblté d une sorte spatale d un code de calcul Applcaton à un code de transport hydrogéologque ologque Amandne Marrel Thèse effectuée au LMTE

Plus en détail

Représentation de l'information

Représentation de l'information 1. L nformaton 1-1 Dualté état et temps Représentaton de l'nformaton La noton d'nformaton correspond à la connassance d'un état donné parm pluseurs possbles à un nstant donné. La Fgure 1 llustre cette

Plus en détail

Intégrateur. v e. 20log T 0

Intégrateur. v e. 20log T 0 G. Pnson - Physque Applquée Foncons négraon e dérvaon - A22 / A22 - Foncons négraon e dérvaon τ = = τ ( )d éponse à un échelon (réponse ndcelle) Inégraeur : = E < : = = E τ E -a. éponse en fréquence =

Plus en détail

Chapitre 5: La programmation dynamique

Chapitre 5: La programmation dynamique Chaptre 5: La programmaton dynamque. Introducton La programmaton dynamque est un paradgme de concepton qu l est possble de vor comme une améloraton ou une adaptaton de la méthode dvser et régner. Ce concept

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

Allocation stratégique d actifs et ALM pour les régimes de retraite

Allocation stratégique d actifs et ALM pour les régimes de retraite N d ordre : 00-0 Année 0 THÈSE présenée devan l UNIVERSITÉ CLAUDE BERNARD - LYON ISFA pour l obenon du DIPLÔME DE DOCTORAT Spécalé scences acuarelle e fnancère présenée e souenue publquemen le 00/00/0

Plus en détail

L'INFLUENCE DU COUT D USAGE DU CAPITAL SUR LA DECISION D INVESTIR ET SUR L INVESTISSEMENT CORPOREL DES ENTREPRISES DE SERVICES FRANCAISES

L'INFLUENCE DU COUT D USAGE DU CAPITAL SUR LA DECISION D INVESTIR ET SUR L INVESTISSEMENT CORPOREL DES ENTREPRISES DE SERVICES FRANCAISES Cenre de Recherche pour l Eude e l Observaon des Condons de Ve L'NFLUENCE DU COUT D USAGE DU CAPTAL SUR LA DECSON D NVESTR ET SUR L NVESTSSEMENT CORPOREL DES ENTREPRSES DE SERVCES FRANCASES LE RECOURS

Plus en détail

PRODUCTIVITE MULTIFACTORIELLE

PRODUCTIVITE MULTIFACTORIELLE Déparemen fédéral de l néreur DFI Offce fédéral de la Sasque OFS Économe, Éa e socéé Documen de raval Neuchâel, ocobre 2006 PRODUCTIVITE MULTIFACTORIELLE RAPPORT METHODOLOGIQUE Gregory Ras, OFS, secon

Plus en détail

Découvrez la gamme complète des certificats électroniques professionnels ChamberSign France

Découvrez la gamme complète des certificats électroniques professionnels ChamberSign France Découvrez la gamme complète des certfcats électronques professonnels ChamberSgn France www.chambersgn.fr Sgnatures électronques Espace sécuré certfé Contrôle de légalté Marchés publcs Appels d offres PESV2

Plus en détail

Systèmes électromécaniques

Systèmes électromécaniques Hae Ecole d ngénere e de Geson D Canon d Vad Sysèes élecroécanqes Chapre 6 OEURS SYNCRHONES A AANS PERANENS Coplage e odélsaon por les oers rphasés CD\SE\Cors\Chap6. Correvon A B E D E S A E R E S PAGE

Plus en détail

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe Algorthme approché d optmsaton d un modèle de Processus Décsonnel de Markov sur Graphe Nathale Peyrard Régs Sabbadn INRA-MIA Avgnon et Toulouse E-Mal: {peyrard,sabbadn}@toulouse.nra.fr Réseau MSTGA, Avgnon,

Plus en détail

Pilotage d'actionneurs Incrémentaux Couplés par Auto-Apprentissage

Pilotage d'actionneurs Incrémentaux Couplés par Auto-Apprentissage SETIT 2009 5 th Internatonal Conference: Scences of Electronc, Technologes of Informaton and Telecommuncatons March 22-26, 2009 TUNISIA Plotage d'actonneurs Incrémentaux Couplés par Auto-Apprentssage Hatem

Plus en détail

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. avec Eviews. Semestre d été Rosario Monter Internef - bureau 613

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. avec Eviews. Semestre d été Rosario Monter Internef - bureau 613 Ecole des HEC Unversé de Lausanne FINANCE EMPIIQUE avec Evews Semesre d éé 6 osaro Moner Inernef - bureau 613 osaro.moner@unl.ch MODELE DE MACHE E EGESSION LINEAIE Basé sur les noes FESlde_LM.pdf 1, 8

Plus en détail

CIFA 2004 Synthèse mixte H 2 /H par retour d état statique

CIFA 2004 Synthèse mixte H 2 /H par retour d état statique 4 Snhèse mxe H /H par reor d éa saqe SLH SLH, ENS RZELER Laboraore d nalse e commandes des ssèmes, LS-EN amps nversare, P 37 Le belvédère ns - nse Laboraore d nalse e rchecre des Ssèmes, LS-NRS 7 vene

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

La statistique et les statistiques

La statistique et les statistiques Psy004 Secto : La statstque et les statstques Pla du cours: 0.0: Beveue 0.: Les catégores du savor 0.: Survol de la psychologe 0.3: Le pla de cours 0.4: Les assstats.0: La physque: scece exacte?.: Scece

Plus en détail

MANAGER => CHEF DE PROJET DE L ÉCHEC AU SUCCÈS. Michèle VAYN pour le PMI de Vélizy 12 février 2014

MANAGER => CHEF DE PROJET DE L ÉCHEC AU SUCCÈS. Michèle VAYN pour le PMI de Vélizy 12 février 2014 MANAGER => CHEF DE PROJET DE L ÉCHEC AU SUCCÈS Mchèle VAYN pour le PMI de Vlzy 12 fvrer 2014 I - Cas concre II - Aous e rsques III - Smludes / dfferences : fausse queson IV Posonnemen : cl du succès I

Plus en détail

Optimisation du plan de gestion du stock d une entreprise de distribution des produits pharmaceutiques

Optimisation du plan de gestion du stock d une entreprise de distribution des produits pharmaceutiques Revue es Scences e e la Technologe - RST- Volume 3 1 / janver 2012 Opmsaon u plan e geson u sock une enreprse e srbuon es prous pharmaceuques D. Bellala, M.S. oune, A. Abessme Laboraore 'Auomaque e e Proucque

Plus en détail

PONDÉRATIONS LONGITUDINALES

PONDÉRATIONS LONGITUDINALES PONDÉRATIONS ONGITUDINAES DANS ENQUÊTE EMPOI DE INSEE Pascal Ardlly Insee, Déparemen des méhodes sasques, 165 Bd Garbald 69003 yon, France pascal.ardlly@nsee.fr Résumé. enquêe rmesrelle sur l Emplo perme

Plus en détail

UNE ÉVALUATION EMPIRIQUE DE LA NOUVELLE TARIFICATION DE L'ASSURANCE AUTOMOBILE (1992) AU QUÉBEC * par. Georges Dionne 1,2 Charles Vanasse 2

UNE ÉVALUATION EMPIRIQUE DE LA NOUVELLE TARIFICATION DE L'ASSURANCE AUTOMOBILE (1992) AU QUÉBEC * par. Georges Dionne 1,2 Charles Vanasse 2 UNE ÉVALUATION EMPIRIQUE DE LA NOUVELLE TARIFICATION DE L'ASSURANCE AUTOMOBILE (992) AU QUÉBEC * par Georges Donne,2 Charles Vanasse 2 * Cee recherche a éé rendu possble grâce en pare au Fonds pour la

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Chapitre 3: Stockage et distribution

Chapitre 3: Stockage et distribution I- Défntons Chaptre 3: Stockage et dstrbuton Réseau de desserte = Ensemble des équpements (canalsatons et ouvrages annexes) achemnant de manère gravtare ou sous presson l eau potable ssue des untés de

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Règlement d exploitation du Stade de glace Patinage public

Règlement d exploitation du Stade de glace Patinage public Règlemen d exploaon du Sade de glace Panage publc 1. Bu Le Sade de glace de Benne es un leu de renconre régonal. Son bu es de répondre aux besons du spor (spor de compéon e de losr), du délassemen acf

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

Vertige pour tous (malades et médecins)

Vertige pour tous (malades et médecins) Verge pour ous (malades e médecns) Jean-Phlppe Guyo AU PROGRAMME Pourquo vous n y comprenez ren (e mo non plus) Dfférencer pérphérque-cenral Reconnaîre un VPPB Prse en charge (même s on a pas comprs!)

Plus en détail

Amplification Linéaire à Transistor Bipolaire

Amplification Linéaire à Transistor Bipolaire UFM Préparaon APT Géne lerque Amplfaon néare à Transsor polare Sruure énérale d un ru d amplfaon : Snal à amplfer (as neau) X X Amplfaeur are (Hau neau) Soure de pussane (Fourne par ) X amplfaon ne onerne

Plus en détail

NOTES TECHNIQUES SUR LA CONSTRUCTION DU PROFIL DE PAUVRETE 2001 ET L ANALYSE DE LA DYNAMIQUE DE LA PAUVRETE ENTRE 1999 2001

NOTES TECHNIQUES SUR LA CONSTRUCTION DU PROFIL DE PAUVRETE 2001 ET L ANALYSE DE LA DYNAMIQUE DE LA PAUVRETE ENTRE 1999 2001 REPOBLIKAN I MADAKASIKARA anndrazana Fahafahana- Fandrosoana MINISERE DE L ECONOMIE E DE LA PLANIFICAION SECREARIA GENERAL INSIU World Bank CORNELL NAIONAL DE LA U N I V E R S I Y SAISIQUE Drecon Des Sasques

Plus en détail

ÉCHANTILLON REPRÉSENTATIF (D UNE POPULATION FINIE) : DÉFINITION STATISTIQUE

ÉCHANTILLON REPRÉSENTATIF (D UNE POPULATION FINIE) : DÉFINITION STATISTIQUE ÉCHANTILLON REPRÉSENTATIF (D UNE POPULATION FINIE) : DÉFINITION STATISTIQUE ET PROPRIÉTÉS Léo Gervlle-Réache, Vncent Coualler To cte ths verson: Léo Gervlle-Réache, Vncent Coualler. ÉCHANTILLON REPRÉSENTATIF

Plus en détail

Electronique TD1 Corrigé

Electronique TD1 Corrigé nersté du Mane - Faculté des Scences! etour D électronque lectronque D1 Corrgé Pour un sgnal (t) quelconque : 1 $ (t) # MOY! (t) dt 1 FF! (t) dt (t) MX MOY mpltude crête à - crête mpltude Mn Pérode t emarque

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

) = n. ) = 2n. D - Inférence Statistique - Estimation et Tests d hypothèses 5. Tests du Khi-deux (non paramétrique) Loi du Chi-deux (χ 2 n

) = n. ) = 2n. D - Inférence Statistique - Estimation et Tests d hypothèses 5. Tests du Khi-deux (non paramétrique) Loi du Chi-deux (χ 2 n 5. Tests du Kh-deux (non paramétrque) Lo du Ch-deux (χ n ) à n degrés de lberté (ddl) S X 1, X,..., X n, sont n varables ndépendantes, suvant toutes une lo normale N (0,1), la varable χ n = X 1 + X + +

Plus en détail

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle Mrors spérques Doptres spérques Nous allons mantenant aborder des systèmes optques un peu plus complexes, couramment utlsés pour produre des mages. Nous allons commencer par étuder un mror spérque de façon

Plus en détail

Bureaux d études en traitement des images

Bureaux d études en traitement des images Bureau d éudes en raemen des mages ESERB Fère Téécommuncaons 3 ème année Opon SC ESERB Fère Eecronque 3 ème année Opon TS AEE 4-5 M. DOAS Bureau d éudes en raemen des mages PARTE REDRESSEMET Dans cee pare

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Globalisation de l Algorithme de Nelder-Mead : Application aux Composites

Globalisation de l Algorithme de Nelder-Mead : Application aux Composites INSA de Rouen LMR - Laboratore de Mécanque UMR 638 Rapport Technque : Globalsaton de l Algorthme de Nelder-Mead : Applcaton aux Compostes Marco Antôno Luersen, Doctorant au LMR Rodolphe Le Rche, Chargé

Plus en détail

ANNEXE I TRANSFORMEE DE LAPLACE

ANNEXE I TRANSFORMEE DE LAPLACE ANNEE I TRANSFORMEE DE LAPLACE Perre-Smon Lalace, mahémacen franças 749-87. Lalace enra à l unversé de Caen a 6 ans. Très ve l s néressa aux mahémaques e fu remarqué ar d Alember. En analyse, l nrodus

Plus en détail

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire Rev. Energ. Ren. : Journées de hermue (200) 25-30 Eude e Concepon sssée pr Ordneur d un Sysème de Réfrgéron pr Voe Solre M. Belrb, F. Benyrou e B. Benyoucef Lborore des Méru e Energes Renouvelbles, Fculé

Plus en détail

VALORISATION D OPTIONS DIGITALES EN SITUATION DE MARCHE INCOMPLET

VALORISATION D OPTIONS DIGITALES EN SITUATION DE MARCHE INCOMPLET VALORIAION D OPION DIGIALE EN IUAION DE MARCHE INCOMPLE Parck NAVAE Chrsophe VILLA CREREG, Insu de Geson de Rennes REUME L objecf prncpal poursuv dans ce arcle, es d éuder quelques applcaons e exensons

Plus en détail

Cours Corporate finance

Cours Corporate finance Cours Corporate fnance Eléments de théore du portefeulle Le edaf Franços Longn www.longn.fr lan Notons de rentablté Défnton odélsaton Eléments de théore du portefeulle ortefeulle Dversfcaton Le edaf Le

Plus en détail

e s ABONNEZ-VOUS! #famillest 2015-2016

e s ABONNEZ-VOUS! #famillest 2015-2016 e d a : f C n d e n g ABONNEZVOUS! 20152016 #famllest La aon 20142015 a éé rche en rebondemen, en upen e en émoon Nou ouhaon vou remercer d avor oujour éé à no côé e de nou avor poué juqu en demfnale.ce

Plus en détail

Application de la méthode hybride RT/RS au problème d engagement des turbines "Unit Commitment"

Application de la méthode hybride RT/RS au problème d engagement des turbines Unit Commitment Applcaton de la méthode hybrde RT/RS au problème d engagement des turbnes "nt Commtment" R. D. OHAEDI S. ARIF A. HELLAL Laboratore d Analyse et de Commande des Systèmes d Énerge et Réseaux Électrques,

Plus en détail

Présentation de la plateforme

Présentation de la plateforme e o N n o a n n e o s é r a s P l u d e c Présenaon de la plaeforme Mad Doc es un espace vruel de consulaon e de mse à dsposon de suppors e nformaons produs / servces ITGA. L objecf es de connuer à s nscrre

Plus en détail

Partie I: Différences finies avec centrage partiel

Partie I: Différences finies avec centrage partiel U. PARIS VI et ÉCOLE POLYTECHNIQUE 7 anver 04 Spécalté Probablté et Fnance du Master de Scences et Technologe EXAMEN DU COURS ANALYSE NUMÉRIQUE DES ÉQUATIONS AUX DÉRIVÉES PARTIELLES EN FINANCE verson 03/0/04

Plus en détail

UNIVERSITE DE PARIS X Année universitaire

UNIVERSITE DE PARIS X Année universitaire UNIVERSITE DE PARIS X Année unversare 008-009 UFR SEGMI L Econome & Geson Travau drgés Sasques Economques Fasccule 3 N. CHEZE e D. ABECASSIS Eercces reprs ou adapés de G. NEUBERG RÉGRESSION Eercce Graphque

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE SEANCE 3 PLANS DE TRESORERIE Obje de la séance 3 : dans la séance 2, nous avons monré commen le besoin de financemen éai couver par des

Plus en détail

Modélisations du risque en assurance automobile. Michel Grun-Rehomme Université Paris 2 et Ensae Email: grun@ensae.fr

Modélisations du risque en assurance automobile. Michel Grun-Rehomme Université Paris 2 et Ensae Email: grun@ensae.fr Modélsatons du rsque en assurance automoble Mchel Grun-Rehomme Unversté Pars 2 et Ensae Emal: grun@ensae.fr 1 Modélsatons du rsque en assurance automoble La snstralté est mesurée en terme de fréquence

Plus en détail

Facteur d accélération associé à une loi normale ou lognormale

Facteur d accélération associé à une loi normale ou lognormale TP N 39 Faceur d accéléraion associé à une loi normale ou lognormale Uilisés pour diminuer la durée e le coû des essais, les faceurs d accéléraion (Arrhenius, Peck, Basquin, Norris-Landzberg ) son ous

Plus en détail