Université Claude Bernard Lyon-1 Licence «Sciences et technologie» Unité d enseignement Math. I Algèbre CONTROLE FINAL 18 Janvier 2012-durée 2h 1 = 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Université Claude Bernard Lyon-1 Licence «Sciences et technologie» Unité d enseignement Math. I Algèbre CONTROLE FINAL 18 Janvier 2012-durée 2h 1 = 1"

Transcription

1 Universié Claude Bernard Lyon- Licence «Sciences e echnologie» Unié d enseignemen Mah. I Algèbre CONTROLE FINAL 8 Janvier 0-durée h L énoncé compore cinq exercices sur deux pages. Documens, calcularices e éléphones porables son inerdis. Quesion. Monrer que pour ou enier non nuls n, on a : Alle à : Correcion quesion n k = (k + )! (n + )! Quesion. Déerminer les soluions complexes de l équaion : ( + 4i) 3 + 3i = 0 En déduire les soluions complexes de l équaion 6 ( + 4i) i = 0 Alle à : Correcion quesion k= Quesion 3. On considère l applicaion f: C C,.. Monrer que f es une bijecion.. Soi D la droie formée des complexes don la parie réelle vau /. a) Pour complexe de parie réelle égale à, calculer f(). b) Que peu-on dire sur l image de D par f. 3. Soi S le cercle de cenre e de rayon, privé de l origine 0 (c es-à-dire l ensemble des complexes non nuls els que : =. a) Démonrer que pour ou réel, on a : cos() = cos ( ) e sin() = sin ( ) cos ( ) b) Soi réel, non muliple de π. Calculer la parie réelle de f( e i ), c) Monrer que l image de S par f es incluse dans D. 4. Déerminer f f. En déduire que l on a : f(d) = S e f(s) = D. Alle à : Correcion quesion3 Quesion 4. On rappore le plan à un repère orhonormé. Soi j le nombre complexe de module e d argumen π. Soi r la 3 ransformaion du plan, qui, à un poin M d affixe associe le poin M, d affixe = j + 3. Déerminer les poins invarians (fixes) de r, e la naure de la ransformaion r.. Soi M un poin d affixe. Calculer l affixe du poin r (M), où on noe r = r r, e déerminer la naure de la ransformaion r. 3. Soi M un poin d affixe. Calculer l affixe du poin r 3 (M), où l on noe r 3 = r r r. Que peu-on dire de la ransformaion r du plan? Alle à : Correcion quesion4

2 Quesion 5. On se place dans l espace muni d un repère orhonormé direc. Soi S la sphère d équaion x + y + 4x y + = 0, e soien D e D les droies définies par : x = y + D: { = y + 4 e D x y + + = 0 : { x y + 9 = 0. Déerminer le cenre Ω e le rayon de S.. Déerminer des veceurs direceurs de D e de D. 3. Déerminer un veceur orhogonal à ces deux veceurs direceurs. En déduire les coordonnées d un veceur n orhogonal à D e D, de norme. 4. Calculer les coordonnées des poins A e B els que ΩA = n e ΩB = n. 5. On appelle plan angen à S un plan qui passe par un poin C de S e orhogonal à la droie (ΩC). Déerminer les plans angens à S parallèles à D e D. Alle à : Correcion quesion5 CORRECTION Correcion quesion. Nous allons faire un raisonnemen par récurrence, pour n = k = (k + )! ( + )! = E ( + )! = = L égalié es vraie au rang. Monrons que l égalié au rang n enraine celle au rang n +. n+ k = k (k + )! (k + )! k= pour ou n Alle à : Quesion n k= = + k= + n + (n + )! = (n + )! + n + (n + )! = n + (n + )! + n + (n + )! n + n + (n + )! n k= = (n + )! k = (k + )! (n + )! Correcion quesion. Δ = ( + 4i) 4( 3 + 3i) = + 8i 6 + i = 3 4i = 4i 4 = ( i) les soluions de ( + 4i) 3 + 3i = 0 Son + 4i ( i) = = 3i e = Les soluions de 6 ( + 4i) i = 0 vérifien 3 = 3i ou 3 = + i + 4i + i = + i = e iπ 4

3 3 = = 3i { arg( 3 ) = π = 3 + kπ, k Z { 3 arg() = π + kπ, k Z Cela donne rois soluions = 3 3 { arg() = π 6 + kπ, k {0,,} 3 3 3e iπ 6; 3 3e i5π 6 e 3 3e i9π 6 = 3 3i 3 = e iπ 3 = 4 { arg( 3 ) = π 4 + kπ, k Z { 3 = 3 arg() = π + kπ, k Z 4 Cela donne rois soluions Alle à : Quesion = 6 { arg() = π + kπ, k {0,,} 3 6e i ; π 6e i9π = 6e i3π 4 e 6e i7π Correcion quesion3.. Pour ou C il exise un unique = C el que. f() = = a) Si la parie réelle de vau, il exise y R el que = + iy, donc pour ou y R : = f() = = ( = + iy) = iy = + iy + iy + iy 4 + y 4 + y = b) L image de D par f es incluse dans le cercle de cenre le complexe e de rayon. 3. a) Première méhode : cos ( ) = + e i (ei ) = ei + + e i 4 cos() = cos ( ) = cos() + 4 sin ( ) cos ( ) = e i (ei ) ( ei + e i ) = i 4i ((ei ) = cos() + (e i ) ) Deuxième méhode : = i (ei e i ) = sin() cos(a + b) = cos(a) cos(b) sin(a) sin(b) Pour a = b =

4 Pour a = b = cos() = cos ( ) sin ( ) = cos ( ) ( cos ( )) = cos ( ) sin(a + b) = sin(a) cos(b) + cos(a) sin(b) sin() = sin ( ) cos ( ) b) Un poin du cercle S vérifie = donc il exise R {(k + )π, k Z}, el que = e i, ce qui équivau à = + e i, car pour = (k + )π on a e i = e donc = 0 qui n es pas dans S. f( e i ) = e i = e i ( e i )( e i ) = cos() cos() + i sin() cos() = + i sin() cos() cos() + i sin() cos() + i sin() = e i e i + e i = e i cos() 4. l image de S es incluse dans la droie D. Re (f( e i )) = On a Cela enraine que C, f f() = f(f()) = f ( ) = f f = Id C f(d) S f(f(d)) f(s) Or f(f(d)) = D e f(s) D, cela donne D f(s) D Ce qui enraine que f(s) = D, on compose cela par f f(f(s)) = f(d) Comme f(f(s)) = S, par conséquen Alle à : Quesion 3 Correcion quesion4.. S = f(d) r(m) = M j + 3 = ( j) = 3 = 3 j = 3 j ( j)( j ) = 3 j j j + j 3 = 3 j + + = j = i. L affixe de M = r (M) es : = j + 3 Où = j + 3 = j(j + 3) + 3 = j + 3(j + ) = j 3j L affixe de r (M) es de la forme a + b avec a = j =, il s agi d une roaion. =

5 3. L affixe de M = r 3 (M) es avec = j + 3 = j(j 3j ) + 3 = j 3 3j = Ce qui monre que r 3 = id par conséquen r = r es une roaion. Alle à : Quesion 4 Correcion quesion5.. x + y + 4x y + = 0 (x ) 4 + (y ) + + = 0 (x ) + (y ) + = 4 S es la sphère de cenre Ω (,,0) e de rayon.. x = y + x = y + { = y + 4 { y = y = y + 4 D es la droie passan par (,0,4) de veceur direceur u = (,,). x y + + = 0 y + + = 0 x x = 0 = x + 8 { {x { { x y + 9 = 0 y = x + 9 y = x + 9 y = x + 9 x = x { y = x + 9 = x + 8 D es la droie passan par (0,9,8) de veceur direceur v = (,,) 3. Un veceur orhogonal à u e à v es u v ( ) ( ) = ( ) 3 (,,3) = ( ) + ( ) + 3 = n = (,,3) Remarque : n = (,,3) Es aussi une bonne réponse. 4. x A = ΩA = n y A = { A = 6 { A = 6 A (,, 6 ) ΩB = n B ( +, +, 6 ) x A = y A = { A = 6 { x A = y A = x A = + y A = + A = 6

6 5. Première soluion On cherche les poins N (x, y, ) els que ΩA e AN soien orhogonaux e les poins N (x, y, ) els que ΩB e BN soien orhogonaux. ΩA. AN = 0 ΩB. BN = 0 ( ) (x ( )) + ( ) (y ( )) + ( 6 6 0) ( ) = 0 (x + ) (y + ) + 6 ( 6 ) = 0 x y = 0 x y = 0 x y = 0 x y = 0 ( + ) (x ( + )) + ( ) (y ( + )) + ( 0) ( + ) = 0 (x ) + (y ) 6 ( + 6 ) = 0 x + y = 0 x + y = 0 x + y = 0 x + y 3 3 = 0 Deuxième soluion Les plans parallèles à P son de la forme x y d = 0, on cherche les poins N (x, y, ) qui son dans P e dans la sphère e els que ΩN soi orhogonal à u e v, ou ce qui revien au même que ΩN soi proporionnel à u v. Il exise λ R el que ΩN = λ(,,3) x = λ { y = λ = 3λ On remplace ces rois équaions dans celle de S (x ) + (y ) + = 4 λ + λ + 9λ = 4 λ = 4 λ = ± Il y a deux poins N qui vérifien ces condiions N (,, 6 ) e N ( +, +, 6 ) Pour rouver les plans, il suffi de remplacer les coordonnées de N (puis de N ) dans

7 Avec N Avec N Alle à : Quesion 5 x y d = 0 ( ) ( ) d = d = 0 d = + 3 x y = 0 ( + ) ( + ) d = d = 0 d = 4 3 x y = 0

Chapitre VIII : Trigonométrie

Chapitre VIII : Trigonométrie hapire V : Trigonomérie Exrai du programme : Dans ce chapire, on muni le plan du repère orhonormé (; ;. Repérage sur le cercle rigonomérique Définiion Le cercle rigonomérique es le cercle de cenre e de

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

TS Exercices sur la géométrie dans l espace (niveau 1)

TS Exercices sur la géométrie dans l espace (niveau 1) TS Exercices sur la géomérie dans l espace (niveau ) Dans ous les exercices, l espace E es muni d un repère orhonormé O, i, j, k. Aucune figure n es demandée dans ces exercices sauf pour l exercice 5.

Plus en détail

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes.

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes. Concours commun 7 des écoles des mines d Albi, Alès, Douai, Nanes. L emploi d une calcularice es inerdi Pour ou R + on défini : ( f () = exp 1 ) e g() = f () Problème 1 Parie 1 (Généraliés) 1 Prouver que

Plus en détail

Exercices sur les représentations paramétriques de droites et de plans

Exercices sur les représentations paramétriques de droites et de plans TS Exercices sur les représenaions paramériques de droies e de plans Le plan es muni d un repère O, i, j x 3 Déerminer un repère de la droie D admean pour sysème d équaions paramériques y e racer D Dans

Plus en détail

TS1 - Contrôle n 6 de mathématiques

TS1 - Contrôle n 6 de mathématiques TS1 - Conrôle n 6 de mahémaiques Eercice 1 Le plan es rapporé à un repère orhogonal (O ; i ; j ). 1) Eude d'une foncion f On considère la foncion f définie sur l'inervalle ]0 ; + [ par f() = ln ( ) i ;

Plus en détail

Exercices sur les représentations paramétriques de droites et de plans

Exercices sur les représentations paramétriques de droites et de plans TS Exercices sur les représenaions paramériques de droies e de plans Le plan es muni d un repère O, i, j x Déerminer un repère de la droie D admean pour sysème d équaions paramériques y e racer D ( ) 6

Plus en détail

COURBES PLANES PARAMETREES. f est aussi appelé paramétrage de C (ou paramétrisation) de C. , Exemples : et C la droite D( M, u)

COURBES PLANES PARAMETREES. f est aussi appelé paramétrage de C (ou paramétrisation) de C. , Exemples : et C la droite D( M, u) COURBES PLANES PARAMETREES A DEFINITIONS ET PREMIERES PROPRIETES: Arc paraméré, courbe paramérée, Dans ou ce chapire on noera R ( O i j, un repère orhonormé du plan P soi I f : une foncion vecorielle C

Plus en détail

Partie A x t dt. 0 0,5 1 1,5 2 2,5 3 3,5 4 x. D. PINEL, Site Mathemitec :

Partie A x t dt. 0 0,5 1 1,5 2 2,5 3 3,5 4 x. D. PINEL, Site Mathemitec : nilles - Guyane Eercice 6 poins Quesion de cours Prérequis : posiivié e linéarié de l inégrale Soien a e deu réels d un inervalle I de R els que a Démonrer que si f e g son deu foncions coninues sur I

Plus en détail

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 11 OFFICE DU BACCALAUREAT BP 55-DAKAR-Fann-Sénégal Serveur Vocal: 68 5 59 Téléfa (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 11 G 18bis A 1

Plus en détail

Université Claude Bernard Lyon 1. Corrigé du contrôle continu 2 du 25 octobre 2017

Université Claude Bernard Lyon 1. Corrigé du contrôle continu 2 du 25 octobre 2017 Universié Caude Bernard Lyon 1 M1 Géomérie Corrigé du conrôe coninu du 5 ocobre 017 Les documens son auorisés mais es cacuees e es ééphones porabes son inerdis. I sera enu compe de a quaié de a rédacion

Plus en détail

x k = x + x x n.

x k = x + x x n. PCSI DEVOIR de MATHÉMATIQUES n pour le 9/11/00 EXERCICE 1 : Pour ou n IN e x IR +, on pose f n (x) = n x k = x + x + + x n. 1. Monrer que l équaion f n (x) = 1 adme une unique soluion, noée u n, dans IR

Plus en détail

FORMATION INGENIEUR EN PARTENARIAT AVEC AFTP-PACA SPECIALITE TRAVAUX PUBLICS. Session 1 er avril 2017 MATHÉMATIQUES. Temps conseillé : 1 heure 30

FORMATION INGENIEUR EN PARTENARIAT AVEC AFTP-PACA SPECIALITE TRAVAUX PUBLICS. Session 1 er avril 2017 MATHÉMATIQUES. Temps conseillé : 1 heure 30 NO : Avril 07 Prénom : Recruemen TP FORATION INGENIEUR EN PARTENARIAT AVEC AFTP-PACA SPECIALITE TRAVAUX PUBLICS Session er avril 07 ATHÉATIQUES Temps conseillé : heure 30 Aucun documen auorisé, calcularices

Plus en détail

MATHÉMATIQUES II. d argument --. Si z IC, on note Mz () l image de z dans ε. Si K est un souscorps

MATHÉMATIQUES II. d argument --. Si z IC, on note Mz () l image de z dans ε. Si K est un souscorps MATHÉMATIQUES II Dans ou le problème, ε désigne le plan affine euclidien IR 2 rapporé à son repère orhonormé canonique ( OI ;, J) On noe i le complexe de module 1 e π d argumen -- Si z IC, on noe Mz ()

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 0 Monrer que si f es définie, dérivable

Plus en détail

DM de préparation au Partiel du 12 avril 2018

DM de préparation au Partiel du 12 avril 2018 Universié Paris Descares UFR Mah-Info Licence MAE 6-7 Analyse 4 - Séries de Fourier; Foncions de plusieurs variables; Inégrales à paramère DM de préparaion au Pariel du avril 8 Les calcularices e les éléphones

Plus en détail

Examen de janvier 2012

Examen de janvier 2012 Insiu Tunis-Dauphine Inégrale de Lebesgue e Probabiliés Examen de janvier 212 Deux heures. Sans documen, ni calcularice, ni éléphone, ec. Chaque quesion numéroée vau le même nombre de poins. Il es demandé

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Épreuve de Mahémaiques La claré des raisonnemens e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. L usage d un insrumen de calcul e du formulaire officiel de

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 02 Monrer que si f es définie, dérivable

Plus en détail

CONCOURS COMMUN 2002

CONCOURS COMMUN 2002 CONCOURS COMMUN DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) Problème d analyse.. f es coninue sur R en an que quoien de foncions coninues sur R don le dénominaeur

Plus en détail

LEÇON N 47 : Courbes définies par des équations paramétriques dans le plan. Vecteur dérivé et tangente ; interprétation cinématique.

LEÇON N 47 : Courbes définies par des équations paramétriques dans le plan. Vecteur dérivé et tangente ; interprétation cinématique. LEÇON N 47 : Courbes définies par des équaions paramériques dans le plan. Veceur dérivé e angene ; inerpréaion cinémaique. Pré-requis : Foncions R R : limies, coninuié, dérivabilié,... ; Norme d un veceur

Plus en détail

TD 02 : Applications linéaires

TD 02 : Applications linéaires Ex 1 Ex 2 TD 02 : Applicaions linéaires Les applicaions suivanes son-elles linéaires? x ( ) 1 f : y 2x + 4y z R4 R y 2, x 2 f : y 2x πy z R4 z + 3 R 3, x + y + z + Première approche x 3 f : y z R4 x +

Plus en détail

Nombres complexes. 1 Rappels de trigonométrie 1. Table des matières. 1.1 Le cercle trigonométrique, sinus et cosinus remarquables NOMBRES COMPLEXES

Nombres complexes. 1 Rappels de trigonométrie 1. Table des matières. 1.1 Le cercle trigonométrique, sinus et cosinus remarquables NOMBRES COMPLEXES Nombres complexes Table des matières 1 Rappels de trigonométrie 1.1 Le cercle trigonométrique, sinus et cosinus remarquables 1 Rappels de trigonométrie 1 1.1 Le cercle trigonométrique, sinus et cosinus

Plus en détail

Corrigé : EM Lyon 2016

Corrigé : EM Lyon 2016 Exercice : Parie I : Éude de la marice A A 2 = 2 ai +ba+ca 2 = Corrigé : EM Lyon 26 Opion économique 2 On cherche ous les réels a, b, c els que ai +ba+ca 2 = On a : a+c b c b a+2c b = c b a+c a+c = b =

Plus en détail

1 Problème d analyse : intégrale de Dirichlet

1 Problème d analyse : intégrale de Dirichlet Arnaud de Sain Julien - MPSI Lycée La Merci 16-17 1 Corrigé du Concours blanc DS 8 du mercredi 31 mai Durée : 4 heures de 8h à 1h. Les calcularices son inerdies. Les copies illisibles ou mal présenées

Plus en détail

Exercices d intégration et d analyse fonctionnelle

Exercices d intégration et d analyse fonctionnelle Exercices d inégraion e d analyse foncionnelle Agrégaion 29-2 Exercice : Monrez que si f : IR + IR es uniformémen coninue e que f() d converge alors f a pour limie en +. Donnez un exemple de foncion g

Plus en détail

CONCOURS TA A EPREUVES COMMUNES Mathématiques 1. PARTIE I : Formules de projection orthogonale

CONCOURS TA A EPREUVES COMMUNES Mathématiques 1. PARTIE I : Formules de projection orthogonale CONCOURS TA A EPREUVES COMMUNES - 996 Mahémaiques PARTIE I : Formules de projecion orhogonale ) Le poin couran M() de l hélice (H) vérifian OM() = R cos i + R sin j + h k, le projeé orhogonal p(m) de M

Plus en détail

MATHÉMATIQUES II. , on convient d appeler écriture de A par blocs l écriture. Partie I - Questions préliminaires

MATHÉMATIQUES II. , on convient d appeler écriture de A par blocs l écriture. Partie I - Questions préliminaires MATHÉMATIQUES II Dans ou le problème, Π es un plan euclidien oriené rapporé à un repère orhonormé direc ( O; i, j) On rappelle que les déplacemens de Π son les roaions e les ranslaions de ce plan On noera

Plus en détail

MATHÉMATIQUES II. On note A la matrice transposée d une matrice A. On note det( A) le déterminant d une matrice A appartenant à M n ( IR)

MATHÉMATIQUES II. On note A la matrice transposée d une matrice A. On note det( A) le déterminant d une matrice A appartenant à M n ( IR) Dans ou le problème, n es un enier naurel supérieur ou égal à 2 On noe l ensemble des marices carrées réelles de aille n e M n ( IC ) l ensemble des marices carrées complexes de aille n On noe A la marice

Plus en détail

Correction du concours blanc

Correction du concours blanc L.E.G.T.A. Le Chesnoy TB - D. Bloière Mahémaiques Correcion du concours blanc Problème Probabiliés Un mobile se déplace aléaoiremen le long d un ae horional d origine O, sur des poins de coordonnées enières,

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

EXERCICES SUR LES COURBES PARAMETREES

EXERCICES SUR LES COURBES PARAMETREES EXERCICES SUR LES COURBES PARAMETREES. Eudier les courbes représenaives des foncions f définies ci-dessous. a) f) = cos, sin ) b) f) = sin, ) sin + cos c) f) = sin, cos ) d) f) = 4cos sin, cos )cos ).

Plus en détail

1 Rémy Nicolai _fex_edpdf du 8 novembre 2017

1 Rémy Nicolai _fex_edpdf du 8 novembre 2017 Feuille Primiives e équaions diérenielles linéaires. ed Déerminer, pour les équaions diérenielles suivanes, les ensembles de soluions. y y = sin 3 y + y = e 3 y + y coan = sin 4 + y + y = + 5 y + y = sin

Plus en détail

Résolution de systèmes linéaires par la méthode du pivot de Gauss

Résolution de systèmes linéaires par la méthode du pivot de Gauss Lycée Pierre de Ferma 7/8 MPSI TD Résoluion de sysèmes linéaires par la méhode du pivo de Gauss Sysèmes linéaires. Conclure à parir d un sysème échelonné e riangularisé Exercice.. Sysèmes linéaires riangularisés

Plus en détail

Sujet 4 (Bac S) Le plan est rapporté à un repère orthonormal (O ; i r, r j ), l unité graphique étant 1 cm.

Sujet 4 (Bac S) Le plan est rapporté à un repère orthonormal (O ; i r, r j ), l unité graphique étant 1 cm. Suje 4 (Bac S) Exercice 1 (Courbes paramérées) Le plan es rapporé à un repère orhonormal (O ; i r, r j ), l unié graphique éan 1 cm. 1) Soi (C) la courbe don une représenaion paramérique es : = = 1 2 x

Plus en détail

TS - Maths - Révisions Nombres complexes

TS - Maths - Révisions Nombres complexes TS - Maths - Révisions Nombres complexes Exercice 1 LIBAN 01 On considère la suite de nombres complexes z n définie par z 0 = i et pour tout entier naturel n : z n+1 = 1 + iz n. Les parties A et B peuvent

Plus en détail

PRODUIT SCALAIRE - EXERCICES CORRIGES

PRODUIT SCALAIRE - EXERCICES CORRIGES PRODUIT SCLIRE - EXERCICES CORRIGES Ce documen oalemen graui (disponible parmi bien d'aures sur la page JGCUZ.FR rubrique mahémaiques) a éé conçu pour aider ous ceu qui désiren ravailler sur le produi

Plus en détail

Feuille d exercices n o 19

Feuille d exercices n o 19 Mahémaiques spéciales Feuille d eercices n o 9 Eercices basiques a. Convergence e calcul d inégrales Eercice 5. ln. sin e d 4. ( e ln e Eercice. e ( cos. e + Eercice ln. + e ln ln ( d Eercice 4. Pour α,

Plus en détail

MATHÉMATIQUES II. polynômes annulateurs de u dont le coefficient de plus haut degré est égal à 1. est appelé polynôme minimal de u.

MATHÉMATIQUES II. polynômes annulateurs de u dont le coefficient de plus haut degré est égal à 1. est appelé polynôme minimal de u. MATHÉMATIQUES II Dans ou le problème, n es un enier naurel supérieur ou égal à 1 On considère un espace euclidien E de dimension n On noe ( xy) le produi scalaire de deux veceurs x e y e xa x la norme

Plus en détail

Nombres Complexes Part Two

Nombres Complexes Part Two Nombres Complexes Part Two Catherine Decayeux Catherine Decayeux () Nombres Complexes Part Two 1 / 22 Prérequis : Forme algébrique d un nombre complexe. Lignes trigonométriques (cosinus et sinus) des angles

Plus en détail

Espaces préhilbertiens réels et espaces euclidiens

Espaces préhilbertiens réels et espaces euclidiens Espaces préhilberiens réels e espaces euclidiens 0 Rappels de première année 0. Produi scalaire réel, espace euclidien Définiion 0... Produi scalaire réel Ean donné un Respace vecoriel E, on appelle produi

Plus en détail

Fonctions vectorielles, courbes.

Fonctions vectorielles, courbes. Foncions vecorielles, courbes Chap 5 : noes de cours Dérivabilié des foncions de variable réelle à valeurs vecorielles Définiion, e héorème : dérivabilié en un poin d une foncion de variable réelle à valeurs

Plus en détail

Equations différentielles. Exercices

Equations différentielles. Exercices Equaions différenielles Eercices 14-15 Les indispensables Dans ous les eercices, même si la quesion n'es pas posée, on pourra se demander s'il es possible, a priori, de se faire une idée sur la srucure

Plus en détail

CCP, 2011, MP, Mathématiques I. Exercice 1

CCP, 2011, MP, Mathématiques I. Exercice 1 CCP, 211, MP, Mahémaiques I. (5 pages ) Exercice 1 1. Soi, pour n 2, = 2 n 2 1. On a n 2, > e règle de D Alember, R = 1. +1 = (n + 1)2 1 n 2 1 1 donc, selon la 2. Pour n 1, = 1 n 1 1 que les séries n 2

Plus en détail

TD1 Les vecteurs. 1. Trouver A+B, A-B, 3A, -2B dans chacun des cas suivants: 1. Déterminer les vecteurs liés PQ et AB équivalents et parallèles

TD1 Les vecteurs. 1. Trouver A+B, A-B, 3A, -2B dans chacun des cas suivants: 1. Déterminer les vecteurs liés PQ et AB équivalents et parallèles TD1 Les veceurs Par 1 1. Trouver A+B, A-B, 3A, -B dans chacun des cas suivans: A=(,-1), B=(-1,1) A+B = (1, 0) A=(-1,3), B=(0,4) A+B = (-1, 7) A= (,-1,5), B=(-1,1,1) A+B = (1, 0, 6) A=(π,3,-1),B=(π,-3,7)

Plus en détail

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit.

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit. A 4 MATH II PSI ÉCOLE DES PONTS PARISTECH. SUPAERO (ISAE), ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH MINES DE SAINT ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (Filière MP). ÉCOLE

Plus en détail

Devoir Surveillé d Analyse 4

Devoir Surveillé d Analyse 4 Devoir Surveillé d Analyse 4 Jeudi 5 novembre 29 durée : h3 (8h3 h) Année universiaire 29-2 2ème année STPI **** Tous documens e appareils élecroniques inerdis **** Exercice Éudier la convergence des inégrales

Plus en détail

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite.

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite. Universié Toulouse 3 Année -3 L Mahémaiques/Mécanique TC4 - Calcul inégral Examen Final - 6 mai 3 Durée : heures. L uilisaion de documens, de calcularice ou de ou aure appareil élecronique es inerdie.

Plus en détail

Hypokhâgne B/L - Concours Blanc. Épreuve de mathématiques

Hypokhâgne B/L - Concours Blanc. Épreuve de mathématiques Lycée du Parc 2-22 - Concours Blanc Épreuve de mahémaiques Samedi 5 Mai 22-8h-2h Si la vie es complee, c es parce qu elle a une parie réelle e une parie imaginaire. Marius Sophus Lie. Le devoir compore

Plus en détail

Nombres Complexes Exercice 1. [5 pts] Équations

Nombres Complexes Exercice 1. [5 pts] Équations Nombres Complexes Exercice 1. [5 pts] Équations On se propose d étudier les solutions de l équation (E) z + 1 = 0 1. Vérifier que pour tout nombre complexe z, on a : z + 1 = (z + 1)(z z + 1). En déduire

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Courbes paramérées Exercices de Jean-Louis Rouge. Rerouver aussi cee fiche sur www.mahs-france.fr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

CONCOURS D ADMISSION 2004

CONCOURS D ADMISSION 2004 A 4 Mah MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES. ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Feuilles de TD du cours d Analyse S4

Feuilles de TD du cours d Analyse S4 Universié Paris I, Panhéon - Sorbonne Licence M.A.S.S. 23-24 Feuilles de TD du cours d Analyse S4 Jean-Marc Barde (Universié Paris, SAMM) Email: barde@univ-paris.fr Page oueb: hp://samm.univ-paris.fr/-jean-marc-barde-

Plus en détail

Exercices de mathématiques

Exercices de mathématiques Universié Paris Didero Année 2007-2008 MI2 Semaine du 3 mars au 4 avril feuille n 6 Exercices de mahémaiques Exercice Déerminer lesquels des ensembles E, E 2, E 3 e E 4 son des sous-espaces vecoriels de

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats ayant suivi l enseignement de spécialité. Durée de l épreuve : 4 heures

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats ayant suivi l enseignement de spécialité. Durée de l épreuve : 4 heures Corrigé Exercice 1 BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES Série S Candidas ayan suivi l enseignemen de spécialié Durée de l épreuve : 4 heures Coefficien : 9 SPÉCIALITÉ Ce suje compore 6 pages

Plus en détail

Corrigé de l épreuve Math 1 de CCP, PSI 2012 Luc Verschueren, Lycée Daudet à Nîmes.

Corrigé de l épreuve Math 1 de CCP, PSI 2012 Luc Verschueren, Lycée Daudet à Nîmes. Corrigé de l épreuve Mah de CCP, PSI 22 Luc Verschueren, Lycée Daude à Nîmes. Parie I Cas d une marice à coefficiens consans. Quesion I.. La foncion X définie par X : e V es dérivable surre X e V (coefficien

Plus en détail

Chapitre XVI : Nombres Complexes II

Chapitre XVI : Nombres Complexes II Chapitre XVI : Nombres Complexes II Dans tout ce chapitre on se place dans le plan complexe dont on donne un repère (O, u, v). I : Forme trigonométrique I-1 : Module et argument Définition 1 : Pour tout

Plus en détail

Correction Exercices Chapitre 10 - Intégrales impropres

Correction Exercices Chapitre 10 - Intégrales impropres Correcion Eercices Chapire - Inégrales impropres. Déerminer si les inégrales suivanes son convergenes, e le cas échéan, calculer leur valeur :.. 3. 4. e d. d ( + ) d e d 5. 6. 7. 8. d 3 d e d d +. Convergence

Plus en détail

Juin 2007 (2 heures et 30 minutes)

Juin 2007 (2 heures et 30 minutes) Juin 7 ( heures e minues) 1. a) Définir : marice inversible. (.5 p.) b) Démonrer que la ransposée de l inverse d une marice inversible A es égale à l inverse de la ransposée de cee marice. (1.5 ps.) c)

Plus en détail

Pour passer d un nombre à son image, on multiplie par a, puis on ajoute b.

Pour passer d un nombre à son image, on multiplie par a, puis on ajoute b. CHAPITRE 8 : FONCTIONS AFFINES COURS 30 : Foncion affine Définiion Soien a e b deux nombres quelconques «fixes». Si, à chaque nombre x, on peu associer le nombre ax + b, alors on défini une foncion affine,

Plus en détail

LYON 2003 PREMIER PROBLÈME. ϕ est continue sur [0, + [. dt existe pour tout élément n de N. > 0. De plus ϕ(0) > 0. Ainsi :

LYON 2003 PREMIER PROBLÈME. ϕ est continue sur [0, + [. dt existe pour tout élément n de N. > 0. De plus ϕ(0) > 0. Ainsi : Jean-François COSSUTTA. Lycée Marcelin Berhelo Sain Maur 94. LYON 3 PREMIER PROBLÈME PARTIE I : Résulas généraux sur ϕ e J n. Les foncions e sin son coninues sur ], + [. Par produi ϕ es coninue sur ],

Plus en détail

Nombres complexes. 0 + i 1 + i i n. Ecrire sous forme algébrique les nombres complexes suivants:

Nombres complexes. 0 + i 1 + i i n. Ecrire sous forme algébrique les nombres complexes suivants: Nombres complexes Exercice 1 1 Ecrire sous forme algébrique et trigonométrique les nombres suivants : i 0, i 1, i, i et i a Pour tout n IN, on note S n i 0 + i 1 + i +... + i n. Calculer S n - i S n, puis

Plus en détail

CORRECTION DS = f 2 (a + b) f + ab id E. = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) f b id E = (a b) p.

CORRECTION DS = f 2 (a + b) f + ab id E. = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) f b id E = (a b) p. Lycée Thiers CORRECTION DS - Enoncé ) On développe en uilisan les hypohèses : ( f a ide ) ( f b ide ) = f 2 (a + b) f + ab id E = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) = 2) On reprend le

Plus en détail

Équations différentielles

Équations différentielles V. Équaions différenielles 1 Primiive d une foncion Définiion 1. On appelle primiive d une foncion f une soluion de l équaion différenielle y = f. Exercice 1. Déerminer une soluion de l équaion différenielle

Plus en détail

Solutions Feuille de Travaux Dirigés semaine 12

Solutions Feuille de Travaux Dirigés semaine 12 Universié de Tours Licence de Mahémaiques Soluions Feuille de Travau Dirigés semaine 2 L3, Algèbre Semesre 6 Eercice ) Déerminer oues les marices de R 3 ayan pour polynôme minimal X + Soluion: Soi A une

Plus en détail

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème Corrigé Mahs I, TSI Elhor Abdelali, CPGE Mohammedia Premier problème Première parie Eisence du poin fie.. La bonne définiion des ermes de la suie (u n ) n es assurée par la vérié de la propriéé " n N,

Plus en détail

Lycée du Parc PCSI Devoir surveillé 3 corrigé. + e it (t) = 2i e 2it + 6 4e 2it + e 4it) ( e 2it e 2it)

Lycée du Parc PCSI Devoir surveillé 3 corrigé. + e it (t) = 2i e 2it + 6 4e 2it + e 4it) ( e 2it e 2it) Lycée du Parc PCSI 84 15-16 Devoir surveillé corrigé Eercice 1 1 En uilisan les formules d Euler, on linéarise 4 (cos ( : ( e 4 (cos i e i 4 ( e i + e i ( = i = 1 ( e 4i 6 4e i + 6 4e i + e 4i ( e i +

Plus en détail

Exercices sur les intégrales généralisées

Exercices sur les intégrales généralisées hp://wwwmycppfr Eercices sur les séries numériques novembre Eercices sur les inégrales généralisées Inroducion Inégrales généralisées Convergence, définiion, crière de comparaison Eercice Convergence,

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018 Eercice : Dérivées Mahémaiques DM 3 À rendre le vendredi 7 décembre 08 Soi a R e n N Déerminer les domaines de définiions, les domaines de dérivaion e calculer les dérivées des foncions suivanes : f ()

Plus en détail

TS, devoir maison. Exercice 1, Antilles-Guyane, septembre Avril Soit f la fonction définie sur [0;1] par :

TS, devoir maison. Exercice 1, Antilles-Guyane, septembre Avril Soit f la fonction définie sur [0;1] par : TS, devoir maison Avril Eercice, Anilles-Guyane, sepembre Soi f la foncion définie sur ; par f () = f () = f () = (ln ) ln( ), pour ; où ln désigne la foncion logarihme népérien. On noe C sa courbe représenaive

Plus en détail

Montrer que la fonction

Montrer que la fonction Théorème de convergence dominée. Théorème d inégraion erme à erme. Théorème de coninuié des inégrales à paramère. Caracère k des foncions définies par une inégrale. Monrer que la foncion L : x cos() e

Plus en détail

Corrigé du TD n 4. x e x (x 3 3x 2 + 7x 7).

Corrigé du TD n 4. x e x (x 3 3x 2 + 7x 7). Corrigé du TD n 4 Eercice. Nous allons calculer à chaque fois une primiive. Connaissan une primiive, les primiives son les foncions égales à la primiive calculée à une consane près (la consigne éan de

Plus en détail

Série n 2 : Résolution numériques des EDO.

Série n 2 : Résolution numériques des EDO. Universié Claude Bernard, Lyon I Licence Sciences & Tecnologies 43, boulevard 11 novembre 1918 Spécialié Maémaiques 696 Villeurbanne cedex, France Opion: MAO 007-008 Série n : Résoluion numériques des

Plus en détail

Correction des travaux dirigés - Trigonométrie et Nombres Complexes

Correction des travaux dirigés - Trigonométrie et Nombres Complexes Correction des travaux dirigés - Trigonométrie et Nombres Complexes Julian Tugaut Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Concours de l Association Mathématique du Québec Niveau Collégial

Concours de l Association Mathématique du Québec Niveau Collégial Concours de l Associaion Mahémaique du Québec Niveau Collégial Le vendredi, 9 février 007, de 9h à 1h aux candidaes, aux candidas Ceci n es pas un examen, mais bien un concours ; il es donc ou naurel que

Plus en détail

Bac blanc STI GM 2006/2007

Bac blanc STI GM 2006/2007 Bac blanc STI GM 006/007 La calculatrice et le formulaire sont autorisés. Durée : 4 heures. EXERCICE 1 Lors de la «foire aux affaires», dans un magasin de bricolage, un client s intéresse à une meuleuse

Plus en détail

Feuille 2 Nombres complexes

Feuille 2 Nombres complexes Université Claude Bernard-Lyon 1 Semestre d automne 016-017 Fondamentaux des mathématiques 1 Feuille Nombres complexes Exercice 1. Calculer le module et un argument de z 1 Exercice. Soit u 1 et v 1 1.

Plus en détail

Nombres complexes. Chapitre Expressions d un nombre complexe Point de cours Exercices d application du cours

Nombres complexes. Chapitre Expressions d un nombre complexe Point de cours Exercices d application du cours Chapitre 1 Nombres complexes 11 Expressions d un nombre complexe 111 Point de cours Définitions et propriétés : il existe un ensemble noté C, appelé ensemble des nombres complexes, qui possède les propriétés

Plus en détail

Problème d'examen (Représentation triangulaire, ACP et élections)

Problème d'examen (Représentation triangulaire, ACP et élections) ISFA 2 année 2-21 Problème d'examen (Représenaion riangulaire, ACP e élecions) D. Chessel Les exercices (17-2) son indépendans du problème (1-16). 1. Quesions On considère la marice A à n = 14 lignes e

Plus en détail

Chapitre 14 - Fonctions de plusieurs variables - Corrigés

Chapitre 14 - Fonctions de plusieurs variables - Corrigés Chapire 4 Foncions de plusieurs variables Exercice : Si adme une limie, alors comme y) = x, 0) = cee limie es nécessairemen nulle De plus, si adme 0 pour limie en 0), alors la oncion, ) adme 0 pour limie

Plus en détail

CHAPITRE I : TRANSFORMÉES DE LAPLACE

CHAPITRE I : TRANSFORMÉES DE LAPLACE CHAPITRE I : TRANSFORMÉES DE LAPLACE A. FONCTIONS CAUSALES Définiion : Une foncion f, définie sur IR es causale si : Pour ou

Plus en détail

donc 1+ t 100 = CMg t 100 = 1,16 d où t 100

donc 1+ t 100 = CMg t 100 = 1,16 d où t 100 Exercice Dans chacune des siuaions suivanes, déerminer la valeur de.. Le chiffre des venes d un magazine a augmené de % puis diminué de %. Globalemen il a augmené de 6%. D après l énoncé, on a :,6 = +%

Plus en détail

Questionnaire examen final MTH1006. Sigle du cours. Sigle et titre du cours Groupe Trimestre

Questionnaire examen final MTH1006. Sigle du cours. Sigle et titre du cours Groupe Trimestre Quesionnaire examen final MTH1006 Sigle du cours Idenificaion de l éudian(e) Nom : Prénom : Signaure : Maricule : Groupe : Sigle e ire du cours Groupe Trimesre MTH1006 Algèbre Linéaire AUTOMNE 2008 Professeur

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

Exercices sur les coniques

Exercices sur les coniques xercices sur les coniques ; l coure plne C es le suppor de l coure x i j où, pour ou nomre réel, x() = 3 sin + cos e () = sin Le pln es rpporé à un repère orhonormé O, i, j prmérée : OM ) Soi le réel de

Plus en détail

Les nombres complexes. π π. Théorème 1 : Pour tout x R avec k. et tout b ] π; π π

Les nombres complexes. π π. Théorème 1 : Pour tout x R avec k. et tout b ] π; π π Les nombres complexes 1. Equation trigonométrique Théorème 1 : Pour tout x R et tout a ] π; π ] sin x = sin aéquivaut à x = a + kπ ou x = π a + k 'π avec k Exemple : 1 π π sin x = équivaut à sin x = sin

Plus en détail

Nombres complexes. Chapitre 1

Nombres complexes. Chapitre 1 Chapitre 1 Nombres complexes Les nombres complexes sont apparus en Italie au XVI e siècle. Niccolo Tartaglia le premier résout des équations du troisième degré. Il révèle sa formule à Jérôme Cardan qui

Plus en détail

Intégrale fonction des bornes

Intégrale fonction des bornes [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Inégrale foncion des bornes Eercice [ 87 ] [correcion] On pourra à ou momen s aider du logiciel de calcul formel. a Résoudre sur l inervalle I = ],

Plus en détail

Intégration sur un intervalle quelconque

Intégration sur un intervalle quelconque TD - corrigés Inégraion sur un inervalle quelconque. Jusifier, pour ou réel >, la convergence de l inégrale J) d Énoncés. Soi α un réel sricemen posiif. Pour quelles valeurs de α, l inégrale généralisée

Plus en détail

Pierre-Louis CAYREL Licence 1 Introduction aux Mathématiques Générales Université de Paris 8. Nombres complexes

Pierre-Louis CAYREL Licence 1 Introduction aux Mathématiques Générales Université de Paris 8. Nombres complexes Pierre-Louis CAYREL 008-009 Licence 1 Introduction aux Mathématiques Générales Université de Paris 8 Nombres complexes 1 Forme cartésienne, forme polaire Exercice 1 Calculer le module des nombres complexes

Plus en détail

Devoir surveillé n o 5 (4

Devoir surveillé n o 5 (4 Devoir surveillé n o 5 4 heures) Ce devoir es consiué d'un eercice e de deu problèmes de concours)l'ordre des eercices ne correspond à aucun crière de diculé ou de longueur : vous pouvez les raier dans

Plus en détail

Autour des fonctions vectorielles

Autour des fonctions vectorielles NOTES DE COURS Chap GEO01 Auour des foncions vecorielles Cadre de ravail e/ou noaions uilisées Dans ou ce qui sui, I désignera un inervalle non vide e non rédui à un poin de R, e n désignera un enier naurel

Plus en détail

Corrigé TD 12 Fonctions caractéristiques

Corrigé TD 12 Fonctions caractéristiques Corrigé TD Foncions caracérisiques Eercice. Sur un espace de probabilié (Ω, F, P, on se donne (X, Y une variable aléaoire à valeurs dans.. On suppose que la loi de (X, Y es λµe λ µy + (, y d dy. Déerminer

Plus en détail

Nombres et plan complexes Les exercices fondamentaux à connaître

Nombres et plan complexes Les exercices fondamentaux à connaître Nombres et plan complexes Les exercices fondamentaux à connaître Y. Morel Version en ligne et interactive : http://xymaths.free.fr/lycee/ts/exercices-corriges-complexes.php Table des matières 1 Formes

Plus en détail